organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1120-o1121
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Crystal structure of 4-(1H-indol-3-yl)-2-(4-meth­­oxy­phen­yl)-6-phenyl­pyridine-3-carbo­nitrile

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 September 2014; accepted 7 September 2014; online 24 September 2014)

In the title compound, C27H19N3O, the dihedral angles between the plane of the pyridine ring and those of the indole (r.m.s. deviation = 0.018 Å), phenyl and meth­oxy­benzene substituents are 33.60 (6), 25.28 (7) and 49.31 (7)°, respectively. The N atom of the carbo­nitrile group is significantly displaced [0.288 (2) Å] from the plane of the pyridine ring, perhaps due to steric crowding. In the crystal, inversion dimers linked by pairs of N—H⋯Nn (n = nitrile) hydrogen bonds generate R22(16) loops. Aromatic ππ stacking [centroid–centroid separation = 3.6906 (7) Å] and very weak C—H⋯π inter­actions are also observed".

1. Related literature

For the use of 2-amino-3-cyano­pyridines as inter­mediates in the preparation of heterocyclic compounds, see: Shishoo et al. (1983[Shishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. pp. 4611-4612.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C27H19N3O

  • Mr = 401.45

  • Orthorhombic, P b c a

  • a = 15.7102 (5) Å

  • b = 10.7491 (3) Å

  • c = 24.3648 (7) Å

  • V = 4114.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.980

  • 27554 measured reflections

  • 4486 independent reflections

  • 3331 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 1.01

  • 4486 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the pyrrole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2i 0.86 2.15 2.9693 (19) 159
C32—H32⋯Cg1ii 0.93 3.00 3.9157 (19) 170
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Derivatives of 3-cyanopyridine are important and useful intermediates in preparing a varity of heterocyclic compounds (Shishoo et al., 1983). Therefore, the synthesis of 3-cyanopyridine derivatives attracts much interest in organic chemistry. It was in this context that the title compound, was investigated.

The deviation of the nitrile atoms (C41,N2) from the mean plane of the pyridine ring system is -0.1497 (1) Å and -0.2886 (5) Å. The shortening of the C—N distances [1.337 (3) and 1.341 Å] and the opening of the N1–C11–C10 angle [121.15 (2)°] may be attributed to the size of the substituent at C1, correlating well with the values observed in the ortho-substituted derivative. The dihedral angle between the pseudo-axial phenyl substituent and the plane of the pyridine ring is 69.13 (8)°.

The crystal structure features an N—H···N interaction between inverse related molecules generating a graph set ring motif R22 (16) which are linked into chains through C—H···Cg1 interation (Cg1 is the centroid of the pyrrole ring of the indole moiety) and by π···π stacking interaction involving adjacent pyridine rings of the symmetry related molecule at (1-X,1-Y,-Z), with a centroid-to-centroid distance of 3.6906 (7) Å·(Fig 2).

Related literature top

For the use of 2-amino-3-cyanopyridines as intermediates in the preparation of heterocyclic compounds, see: Shishoo et al. (1983).

Experimental top

A mixture of 3-(1H-indol-3-yl)-3-oxopropanenitrile 1 (1 mmol), 4,4,4-trifluoro-1- phenylbutane-1,3-dione 2 (1 mmol) and 4-methoxy benzaldehyde 3 (1 mmol) in the presence of ammonium acetate (400 mmol) under solvent-free condition was heated at 110°C for 7 h. After completion of the reaction (TLC), the reaction mixture was poured into water and extracted with dichloromethane. After removal of the solvent, the residue was chromatographed over σilica gel (230–400 mesh) using petroleum ether-ethyl acetate mixture (7:3 v/v), which afforded the pure compound.

Melting point:265 °C, Yield: 72%.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å and with Uiso = 1.2Ueq(C, N) for N, CH2 and CH atoms and Uiso = 1.5Ueq(C) for CH3 atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. partial packing view of the compound showing molecules interconnected through a C—H···π and π···π stacking interaction (dotted lines; symmetry code: (i) (1-x, 1-y,-z)
4-(1H-Indol-3-yl)-2-(4-methoxyphenyl)-6-phenylpyridine-3-carbonitrile top
Crystal data top
C27H19N3OF(000) = 1680
Mr = 401.45Dx = 1.296 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2000 reflections
a = 15.7102 (5) Åθ = 2–27°
b = 10.7491 (3) ŵ = 0.08 mm1
c = 24.3648 (7) ÅT = 293 K
V = 4114.5 (2) Å3Block, colourless
Z = 80.30 × 0.28 × 0.25 mm
Data collection top
Bruker Kappa APEXII
diffractometer
4486 independent reflections
Radiation source: fine-focus sealed tube3331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 0 pixels mm-1θmax = 27.0°, θmin = 2.1°
ω and ϕ scansh = 2020
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 138
Tmin = 0.976, Tmax = 0.980l = 3131
27554 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0411P)2 + 1.0149P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4486 reflectionsΔρmax = 0.15 e Å3
282 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (4)
Crystal data top
C27H19N3OV = 4114.5 (2) Å3
Mr = 401.45Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.7102 (5) ŵ = 0.08 mm1
b = 10.7491 (3) ÅT = 293 K
c = 24.3648 (7) Å0.30 × 0.28 × 0.25 mm
Data collection top
Bruker Kappa APEXII
diffractometer
4486 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3331 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.980Rint = 0.025
27554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
4486 reflectionsΔρmin = 0.16 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11716 (8)1.07304 (12)0.96916 (5)0.0400 (3)
C20.14114 (9)1.06339 (12)1.02373 (5)0.0436 (3)
H20.15741.13441.04280.052*
C30.14124 (8)0.94978 (12)1.05007 (5)0.0416 (3)
C40.11465 (8)0.84683 (11)1.01907 (5)0.0416 (3)
C50.08413 (8)0.86400 (11)0.96531 (5)0.0407 (3)
C110.12231 (8)1.19255 (12)0.93922 (5)0.0402 (3)
C120.07016 (9)1.21553 (12)0.89470 (5)0.0465 (3)
H120.03161.15520.88330.056*
C130.07492 (11)1.32728 (14)0.86716 (6)0.0559 (4)
H130.03911.34200.83750.067*
C140.13180 (11)1.41679 (14)0.88303 (7)0.0605 (4)
H140.13501.49170.86410.073*
C150.18372 (11)1.39515 (15)0.92690 (8)0.0711 (5)
H150.22231.45580.93800.085*
C160.17937 (10)1.28396 (14)0.95483 (7)0.0614 (4)
H160.21521.27010.98460.074*
C310.16647 (9)0.94381 (12)1.10856 (5)0.0430 (3)
C320.13218 (10)1.03013 (13)1.14465 (6)0.0515 (4)
H320.09351.08861.13170.062*
C330.15425 (11)1.03077 (14)1.19904 (6)0.0576 (4)
H330.13011.08881.22270.069*
C340.21220 (10)0.94553 (14)1.21888 (6)0.0547 (4)
C350.24701 (10)0.85934 (15)1.18375 (6)0.0586 (4)
H350.28620.80151.19680.070*
C360.22377 (10)0.85875 (14)1.12909 (6)0.0532 (4)
H360.24730.79971.10570.064*
C370.28200 (13)0.8619 (2)1.29741 (7)0.0858 (6)
H37A0.25740.78141.29100.129*
H37B0.28610.87631.33620.129*
H37C0.33780.86511.28140.129*
C410.11876 (9)0.72404 (13)1.04200 (6)0.0492 (3)
C510.04591 (9)0.76538 (12)0.93237 (6)0.0441 (3)
C520.04502 (9)0.75788 (12)0.87349 (6)0.0462 (3)
C530.08391 (10)0.82422 (15)0.83125 (6)0.0572 (4)
H530.11820.89250.83900.069*
C540.07081 (13)0.78724 (17)0.77795 (7)0.0721 (5)
H540.09670.83110.74960.087*
C550.01956 (14)0.68547 (18)0.76559 (8)0.0784 (6)
H550.01200.66230.72910.094*
C560.01989 (12)0.61900 (15)0.80601 (8)0.0704 (5)
H560.05430.55110.79770.085*
C570.00692 (10)0.65614 (13)0.85977 (7)0.0533 (4)
C580.00419 (10)0.66969 (13)0.95069 (6)0.0529 (4)
H580.01450.65130.98740.063*
N10.08729 (7)0.97572 (9)0.94093 (4)0.0419 (3)
N20.12503 (10)0.62657 (12)1.05973 (6)0.0694 (4)
N30.03648 (9)0.60601 (11)0.90767 (6)0.0597 (4)
H30.07040.54350.91010.072*
O0.22989 (9)0.95450 (12)1.27328 (4)0.0808 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0366 (7)0.0401 (7)0.0433 (7)0.0005 (5)0.0008 (5)0.0017 (5)
C20.0461 (8)0.0390 (7)0.0457 (7)0.0014 (6)0.0031 (6)0.0012 (6)
C30.0385 (7)0.0436 (7)0.0427 (7)0.0036 (5)0.0014 (5)0.0027 (6)
C40.0398 (7)0.0374 (7)0.0477 (7)0.0027 (5)0.0046 (6)0.0030 (6)
C50.0383 (7)0.0384 (7)0.0453 (7)0.0021 (5)0.0043 (6)0.0007 (6)
C110.0390 (7)0.0396 (7)0.0420 (7)0.0000 (5)0.0025 (5)0.0025 (5)
C120.0513 (8)0.0437 (7)0.0444 (7)0.0006 (6)0.0023 (6)0.0008 (6)
C130.0626 (10)0.0533 (8)0.0518 (9)0.0050 (7)0.0070 (7)0.0100 (7)
C140.0608 (10)0.0472 (8)0.0736 (11)0.0003 (7)0.0047 (8)0.0200 (8)
C150.0608 (10)0.0561 (9)0.0963 (13)0.0219 (8)0.0149 (9)0.0197 (9)
C160.0568 (9)0.0567 (9)0.0706 (10)0.0151 (7)0.0196 (8)0.0164 (8)
C310.0436 (7)0.0424 (7)0.0429 (7)0.0017 (6)0.0001 (6)0.0037 (6)
C320.0586 (9)0.0455 (8)0.0504 (8)0.0109 (7)0.0023 (7)0.0032 (6)
C330.0707 (10)0.0544 (9)0.0477 (8)0.0103 (8)0.0017 (7)0.0055 (7)
C340.0593 (9)0.0642 (9)0.0407 (7)0.0013 (8)0.0038 (7)0.0020 (7)
C350.0568 (9)0.0660 (10)0.0528 (8)0.0164 (7)0.0072 (7)0.0068 (7)
C360.0550 (9)0.0555 (8)0.0490 (8)0.0152 (7)0.0012 (7)0.0019 (7)
C370.0742 (12)0.1313 (17)0.0517 (10)0.0134 (12)0.0137 (9)0.0174 (11)
C410.0482 (8)0.0456 (8)0.0539 (8)0.0005 (6)0.0004 (6)0.0042 (6)
C510.0444 (7)0.0367 (7)0.0511 (8)0.0035 (6)0.0004 (6)0.0023 (6)
C520.0466 (7)0.0389 (7)0.0531 (8)0.0107 (6)0.0068 (6)0.0024 (6)
C530.0616 (10)0.0562 (9)0.0537 (9)0.0091 (7)0.0037 (7)0.0016 (7)
C540.0878 (13)0.0767 (12)0.0519 (9)0.0216 (10)0.0066 (9)0.0040 (9)
C550.1021 (15)0.0748 (12)0.0582 (11)0.0315 (11)0.0277 (10)0.0137 (9)
C560.0829 (13)0.0511 (9)0.0773 (12)0.0176 (9)0.0367 (10)0.0141 (9)
C570.0554 (9)0.0389 (7)0.0655 (10)0.0110 (6)0.0160 (7)0.0060 (7)
C580.0548 (9)0.0423 (7)0.0616 (9)0.0015 (6)0.0010 (7)0.0032 (7)
N10.0427 (6)0.0382 (6)0.0447 (6)0.0008 (5)0.0002 (5)0.0003 (5)
N20.0780 (10)0.0480 (8)0.0823 (10)0.0025 (7)0.0103 (8)0.0158 (7)
N30.0606 (8)0.0397 (6)0.0787 (10)0.0065 (6)0.0109 (7)0.0045 (6)
O0.0949 (10)0.1018 (10)0.0457 (6)0.0184 (8)0.0140 (6)0.0034 (6)
Geometric parameters (Å, º) top
C1—N11.3370 (16)C33—H330.9300
C1—C21.3857 (18)C34—O1.3577 (17)
C1—C111.4795 (17)C34—C351.375 (2)
C2—C31.3796 (18)C35—C361.381 (2)
C2—H20.9300C35—H350.9300
C3—C41.4035 (18)C36—H360.9300
C3—C311.4806 (18)C37—O1.417 (2)
C4—C51.4069 (18)C37—H37A0.9600
C4—C411.4347 (18)C37—H37B0.9600
C5—N11.3406 (16)C37—H37C0.9600
C5—C511.4590 (18)C41—N21.1375 (17)
C11—C121.3817 (18)C51—C581.3700 (19)
C11—C161.3833 (19)C51—C521.4368 (19)
C12—C131.3780 (19)C52—C531.393 (2)
C12—H120.9300C52—C571.405 (2)
C13—C141.369 (2)C53—C541.374 (2)
C13—H130.9300C53—H530.9300
C14—C151.365 (2)C54—C551.391 (3)
C14—H140.9300C54—H540.9300
C15—C161.377 (2)C55—C561.365 (3)
C15—H150.9300C55—H550.9300
C16—H160.9300C56—C571.384 (2)
C31—C361.3771 (19)C56—H560.9300
C31—C321.3872 (19)C57—N31.367 (2)
C32—C331.370 (2)C58—N31.3507 (19)
C32—H320.9300C58—H580.9300
C33—C341.379 (2)N3—H30.8600
N1—C1—C2122.03 (12)C35—C34—C33119.47 (13)
N1—C1—C11116.42 (11)C34—C35—C36119.89 (14)
C2—C1—C11121.55 (12)C34—C35—H35120.1
C3—C2—C1120.85 (12)C36—C35—H35120.1
C3—C2—H2119.6C31—C36—C35121.33 (14)
C1—C2—H2119.6C31—C36—H36119.3
C2—C3—C4116.57 (12)C35—C36—H36119.3
C2—C3—C31119.10 (12)O—C37—H37A109.5
C4—C3—C31124.31 (11)O—C37—H37B109.5
C3—C4—C5119.94 (11)H37A—C37—H37B109.5
C3—C4—C41120.15 (12)O—C37—H37C109.5
C5—C4—C41119.91 (12)H37A—C37—H37C109.5
N1—C5—C4121.15 (12)H37B—C37—H37C109.5
N1—C5—C51114.99 (12)N2—C41—C4177.55 (17)
C4—C5—C51123.85 (12)C58—C51—C52106.12 (12)
C12—C11—C16118.24 (12)C58—C51—C5127.06 (13)
C12—C11—C1120.66 (12)C52—C51—C5126.44 (12)
C16—C11—C1121.11 (12)C53—C52—C57118.51 (14)
C13—C12—C11120.40 (13)C53—C52—C51134.80 (14)
C13—C12—H12119.8C57—C52—C51106.67 (13)
C11—C12—H12119.8C54—C53—C52118.99 (16)
C14—C13—C12120.70 (14)C54—C53—H53120.5
C14—C13—H13119.6C52—C53—H53120.5
C12—C13—H13119.6C53—C54—C55121.26 (18)
C15—C14—C13119.45 (14)C53—C54—H54119.4
C15—C14—H14120.3C55—C54—H54119.4
C13—C14—H14120.3C56—C55—C54121.20 (16)
C14—C15—C16120.36 (15)C56—C55—H55119.4
C14—C15—H15119.8C54—C55—H55119.4
C16—C15—H15119.8C55—C56—C57117.69 (17)
C15—C16—C11120.85 (14)C55—C56—H56121.2
C15—C16—H16119.6C57—C56—H56121.2
C11—C16—H16119.6N3—C57—C56130.11 (16)
C36—C31—C32117.89 (13)N3—C57—C52107.52 (13)
C36—C31—C3123.59 (12)C56—C57—C52122.35 (16)
C32—C31—C3118.50 (12)N3—C58—C51110.08 (14)
C33—C32—C31121.22 (13)N3—C58—H58125.0
C33—C32—H32119.4C51—C58—H58125.0
C31—C32—H32119.4C1—N1—C5119.08 (11)
C32—C33—C34120.19 (14)C58—N3—C57109.59 (13)
C32—C33—H33119.9C58—N3—H3125.2
C34—C33—H33119.9C57—N3—H3125.2
O—C34—C35125.05 (14)C34—O—C37118.26 (14)
O—C34—C33115.48 (14)
N1—C1—C2—C35.0 (2)C33—C34—C35—C360.0 (3)
C11—C1—C2—C3175.75 (12)C32—C31—C36—C350.4 (2)
C1—C2—C3—C41.04 (19)C3—C31—C36—C35178.13 (14)
C1—C2—C3—C31179.38 (12)C34—C35—C36—C310.5 (3)
C2—C3—C4—C54.40 (19)N1—C5—C51—C58143.80 (14)
C31—C3—C4—C5173.84 (12)C4—C5—C51—C5835.2 (2)
C2—C3—C4—C41175.41 (13)N1—C5—C51—C5228.20 (19)
C31—C3—C4—C416.3 (2)C4—C5—C51—C52152.85 (13)
C3—C4—C5—N16.38 (19)C58—C51—C52—C53178.06 (16)
C41—C4—C5—N1173.43 (12)C5—C51—C52—C538.6 (3)
C3—C4—C5—C51172.52 (12)C58—C51—C52—C570.18 (15)
C41—C4—C5—C517.7 (2)C5—C51—C52—C57173.18 (13)
N1—C1—C11—C1224.87 (18)C57—C52—C53—C540.6 (2)
C2—C1—C11—C12154.39 (13)C51—C52—C53—C54177.47 (15)
N1—C1—C11—C16154.96 (14)C52—C53—C54—C550.1 (2)
C2—C1—C11—C1625.8 (2)C53—C54—C55—C560.3 (3)
C16—C11—C12—C130.5 (2)C54—C55—C56—C570.2 (3)
C1—C11—C12—C13179.65 (13)C55—C56—C57—N3178.46 (16)
C11—C12—C13—C140.6 (2)C55—C56—C57—C520.3 (2)
C12—C13—C14—C150.6 (3)C53—C52—C57—N3179.24 (13)
C13—C14—C15—C160.4 (3)C51—C52—C57—N30.66 (15)
C14—C15—C16—C110.3 (3)C53—C52—C57—C560.7 (2)
C12—C11—C16—C150.3 (2)C51—C52—C57—C56177.84 (14)
C1—C11—C16—C15179.83 (15)C52—C51—C58—N30.98 (16)
C2—C3—C31—C36132.13 (15)C5—C51—C58—N3172.33 (13)
C4—C3—C31—C3649.7 (2)C2—C1—N1—C53.18 (19)
C2—C3—C31—C3246.38 (19)C11—C1—N1—C5177.56 (11)
C4—C3—C31—C32131.82 (14)C4—C5—N1—C12.49 (18)
C36—C31—C32—C330.2 (2)C51—C5—N1—C1176.49 (11)
C3—C31—C32—C33178.80 (14)C51—C58—N3—C571.44 (17)
C31—C32—C33—C340.7 (2)C56—C57—N3—C58177.06 (16)
C32—C33—C34—O179.74 (15)C52—C57—N3—C581.28 (16)
C32—C33—C34—C350.6 (3)C35—C34—O—C376.1 (3)
O—C34—C35—C36179.65 (16)C33—C34—O—C37173.55 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyrrole ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.862.152.9693 (19)159
C32—H32···Cg1ii0.933.003.9157 (19)170
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyrrole ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.862.152.9693 (19)159
C32—H32···Cg1ii0.933.003.9157 (19)170
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z.
 

Acknowledgements

JS and RV thank the management of Madura College for their encouragement and support. SP thanks the Department of Science and Technology, New Delhi, for a major research project (SR/S1/OC/-50/2011) and the University Grants Commission, New Delhi, for the award of a BSR Faculty Fellowship

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. pp. 4611–4612.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1120-o1121
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds