organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,4-di­butyl-2-phenyl-3,4-di­hydro­quinazoline

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cChemistry Department, College of Sciences and Humanities, Salman bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 September 2014; accepted 4 September 2014; online 10 September 2014)

In the title compound, C22H28N2, the dihedral angle between the planes of the phenyl ring and the di­hydro­quinazoline ring system (r.m.s. deviation = 0.030 Å) is 24.95 (7)° and both n-butane chains assume all-trans conformations. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into C(4) chains propagating in the [001] direction.

1. Related literature

For the synthesis of 4,4-dibutyl-2-phenyl-3,4-di­hydro­quin­azo­line, see: Smith et al. (2005[Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2005). J. Sulfur Chem. 26, 121-131.]); Plé et al. (1997[Plé, N., Turck, A., Chapoulaud, V. & Quéguiner, G. (1997). Tetrahedron, 53, 2871-2890.]). For the crystal structures of related compounds, see Valkonen et al. (2011[Valkonen, A., Kolehmainen, E., Zakrzewska, A., Skotnicka, A. & Gawinecki, R. (2011). Acta Cryst. E67, o923-o924.]); Derabli et al. (2013[Derabli, C., Boulcina, R., Bouacida, S., Merazig, H. & Debache, A. (2013). Acta Cryst. E69, o1653-o1654.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H28N2

  • Mr = 320.46

  • Monoclinic, P 21 /c

  • a = 19.2953 (8) Å

  • b = 9.9889 (3) Å

  • c = 9.6341 (4) Å

  • β = 96.667 (4)°

  • V = 1844.31 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.51 mm−1

  • T = 150 K

  • 0.41 × 0.13 × 0.04 mm

2.2. Data collection

  • SuperNova, Dual, Cu at zero, Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.829, Tmax = 1.000

  • 12894 measured reflections

  • 3657 independent reflections

  • 2866 reflections with I > 2σ(I)

  • Rint = 0.043

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.129

  • S = 1.04

  • 3657 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.88 2.29 3.1239 (16) 157
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Structural commentary top

In the molecule of C22H28N2 (Fig. 1), the phenyl ring is twisted by 24.95 (7) from the plane of the di­hydro­quinazoline group. Both n-butane chains assume all-trans conformation. N—H···N hydrogen bonds between neigbouring molecules form chains parallel to the c-axis (Fig. 2).

4,4-Di­butyl-2-phenyl-3,4-di­hydro­quinazoline can be obtained from reaction of two mole equivalents of n-butyl­lithium with 4-(methyl­thio)-2-phenyl­quinazoline at –78°C in anhydrous THF [Smith et al. (2005); Plé et al. (1997)]. The reaction involves initial addition of n-butyl­lithium at the 4-position of quinazoline ring followed by elimination of methane­thiol­ate anion and then further addition of n-butyl­lithium (Smith et al., 2005). For the X-ray structures of related compounds, see Valkonen et al. (2011); Derabli et al. (2013).

Synthesis and crystallization top

4,4-Di­butyl-2-phenyl-3,4-di­hydro­quinazoline

A solution of n-butyl­lithium in hexane (1.76 mL, 2.5 M, 4.4 mmol) was added to a cold (–78 οC), stirred solution of 4-(methyl­thio)-2-phenyl­quinazoline (0.50 g, 2.0 mmol) in anhydrous THF (10 mL) under N2. The reaction mixture was stirred at –78 οC for 1 h then removed from the cooling bath and allowed to warm to room temperature, diluted with di­ethyl ether (10 mL), then quenched with aqueous saturated NH4Cl (10 mL). The organic layer was separated, washed with water (2 x 10 mL), dried (MgSO4), and evaporated under reduced pressure. The residue obtained was purified by column chromatography (silica gel; di­ethyl ether–hexane, 1:4 by volume) to give 4,4-di­butyl-2-phenyl-3,4-di­hydro­quinazoline in 96% yield, m.p. 161 οC [lit. 161 οC: Smith et al. (2005); 154–155 οC: Plé et al. (1997)]. Crystallization from a mixture of ethyl acetate and di­ethyl ether (1:3 by volume) gave the title compound as colorless crystals. The spectroscopic data for the title compound, including NMR and low and high resolution mass spectra, were consistent with those reported [Smith et al. (2005)].

Refinement top

H atoms were positioned geometrically and refined using a riding model, with Uiso(H) constrained to be 1.2 times Ueq for the bonded atom except for methyl groups where Uiso(H) was 1.5 times and free rotation about the C—C bond was allowed. Crystal data, data collection and structure refinement details are summarized in the table.

Related literature top

For the synthesis of 4,4-dibutyl-2-phenyl-3,4-dihydroquinazoline, see: Smith et al. (2005); Plé et al. (1997). For the crystal structures of related compounds, see Valkonen et al. (2011); Derabli et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing in the crystal structure showing N—H···N contacts as dotted lines with hydrogen atoms omitted for clarity.
4,4-Dibutyl-2-phenyl-3,4-dihydroquinazoline top
Crystal data top
C22H28N2F(000) = 696
Mr = 320.46Dx = 1.154 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 19.2953 (8) ÅCell parameters from 3898 reflections
b = 9.9889 (3) Åθ = 4.6–73.6°
c = 9.6341 (4) ŵ = 0.51 mm1
β = 96.667 (4)°T = 150 K
V = 1844.31 (12) Å3Plate, colourless
Z = 40.41 × 0.13 × 0.04 mm
Data collection top
SuperNova, Dual, Cu at zero, Atlas
diffractometer
2866 reflections with I > 2σ(I)
ω scansRint = 0.043
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
θmax = 73.6°, θmin = 4.6°
Tmin = 0.829, Tmax = 1.000h = 2323
12894 measured reflectionsk = 1212
3657 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.3637P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3657 reflectionsΔρmax = 0.23 e Å3
219 parametersΔρmin = 0.17 e Å3
Crystal data top
C22H28N2V = 1844.31 (12) Å3
Mr = 320.46Z = 4
Monoclinic, P21/cCu Kα radiation
a = 19.2953 (8) ŵ = 0.51 mm1
b = 9.9889 (3) ÅT = 150 K
c = 9.6341 (4) Å0.41 × 0.13 × 0.04 mm
β = 96.667 (4)°
Data collection top
SuperNova, Dual, Cu at zero, Atlas
diffractometer
3657 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
2866 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 1.000Rint = 0.043
12894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
3657 reflectionsΔρmin = 0.17 e Å3
219 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28102 (8)0.40404 (13)0.14783 (14)0.0259 (3)
C20.18929 (7)0.30261 (13)0.27980 (14)0.0246 (3)
C30.26279 (8)0.45814 (13)0.39845 (15)0.0272 (3)
C40.29777 (8)0.48405 (13)0.28214 (15)0.0273 (3)
C50.28292 (9)0.52724 (14)0.52321 (16)0.0314 (3)
H50.25920.51030.60250.038*
C60.33672 (9)0.61972 (15)0.53300 (17)0.0356 (4)
H60.35000.66500.61870.043*
C70.37112 (9)0.64606 (15)0.41752 (18)0.0358 (4)
H70.40780.70990.42320.043*
C80.35142 (8)0.57829 (15)0.29334 (17)0.0326 (3)
H80.37500.59660.21420.039*
C90.12820 (8)0.20985 (13)0.27592 (14)0.0259 (3)
C100.11781 (8)0.10256 (14)0.18380 (16)0.0293 (3)
H100.15010.08690.11830.035*
C110.06087 (9)0.01805 (15)0.18637 (17)0.0347 (4)
H110.05440.05460.12250.042*
C120.01348 (9)0.03893 (17)0.28127 (18)0.0369 (4)
H120.02510.01980.28370.044*
C130.02269 (9)0.14620 (18)0.37290 (18)0.0399 (4)
H130.00990.16160.43780.048*
C140.07937 (9)0.23099 (16)0.36999 (17)0.0346 (4)
H140.08510.30450.43280.041*
C150.26253 (8)0.49478 (14)0.01923 (15)0.0286 (3)
H15A0.30440.54790.00490.034*
H15B0.25200.43660.06370.034*
C160.20181 (9)0.59109 (15)0.02432 (16)0.0322 (3)
H16A0.21070.64830.10840.039*
H16B0.15860.53940.03190.039*
C170.19140 (8)0.67945 (14)0.10553 (16)0.0309 (3)
H17A0.23520.72880.11410.037*
H17B0.18170.62170.18910.037*
C180.13220 (9)0.77946 (17)0.10306 (19)0.0410 (4)
H18A0.08800.73130.10290.061*
H18B0.13000.83690.18590.061*
H18C0.14040.83470.01870.061*
C190.34439 (8)0.31704 (14)0.12029 (15)0.0284 (3)
H19A0.33050.26050.03730.034*
H19B0.38200.37730.09660.034*
C200.37407 (8)0.22668 (15)0.23908 (16)0.0322 (3)
H20A0.33750.16320.26130.039*
H20B0.38770.28180.32330.039*
C210.43742 (9)0.14803 (16)0.20321 (18)0.0380 (4)
H21A0.42490.09970.11410.046*
H21B0.47550.21150.18940.046*
C220.46367 (11)0.0478 (2)0.3163 (2)0.0534 (5)
H22A0.48060.09580.40230.080*
H22B0.50180.00490.28510.080*
H22C0.42550.01210.33430.080*
N10.22079 (6)0.31594 (12)0.16295 (12)0.0269 (3)
H10.20420.26840.08970.032*
N20.20764 (7)0.36574 (12)0.39726 (12)0.0281 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0316 (8)0.0222 (6)0.0253 (7)0.0012 (5)0.0088 (6)0.0013 (5)
C20.0291 (7)0.0207 (6)0.0248 (7)0.0044 (5)0.0060 (5)0.0031 (5)
C30.0328 (8)0.0205 (6)0.0285 (7)0.0035 (5)0.0049 (6)0.0009 (5)
C40.0322 (7)0.0201 (6)0.0297 (7)0.0024 (5)0.0045 (6)0.0022 (5)
C50.0408 (9)0.0265 (7)0.0273 (7)0.0023 (6)0.0054 (6)0.0007 (6)
C60.0445 (9)0.0260 (7)0.0349 (8)0.0018 (6)0.0013 (7)0.0062 (6)
C70.0369 (9)0.0247 (7)0.0456 (9)0.0037 (6)0.0032 (7)0.0020 (6)
C80.0376 (8)0.0256 (7)0.0357 (8)0.0009 (6)0.0089 (7)0.0010 (6)
C90.0297 (7)0.0240 (6)0.0243 (7)0.0022 (5)0.0049 (6)0.0050 (5)
C100.0344 (8)0.0264 (7)0.0287 (7)0.0016 (6)0.0104 (6)0.0019 (5)
C110.0389 (9)0.0254 (7)0.0404 (9)0.0018 (6)0.0070 (7)0.0001 (6)
C120.0320 (8)0.0353 (8)0.0440 (9)0.0029 (6)0.0068 (7)0.0066 (7)
C130.0338 (9)0.0490 (10)0.0398 (9)0.0008 (7)0.0168 (7)0.0003 (7)
C140.0366 (9)0.0372 (8)0.0313 (8)0.0006 (6)0.0101 (6)0.0039 (6)
C150.0349 (8)0.0257 (7)0.0265 (7)0.0016 (6)0.0092 (6)0.0023 (5)
C160.0378 (8)0.0286 (7)0.0313 (8)0.0019 (6)0.0083 (6)0.0035 (6)
C170.0358 (8)0.0264 (7)0.0305 (8)0.0011 (6)0.0036 (6)0.0011 (6)
C180.0396 (9)0.0356 (8)0.0477 (10)0.0043 (7)0.0053 (7)0.0087 (7)
C190.0334 (8)0.0265 (7)0.0267 (7)0.0005 (6)0.0094 (6)0.0009 (5)
C200.0380 (8)0.0292 (7)0.0301 (8)0.0036 (6)0.0075 (6)0.0020 (6)
C210.0387 (9)0.0322 (8)0.0443 (9)0.0047 (7)0.0095 (7)0.0024 (7)
C220.0478 (11)0.0497 (11)0.0628 (12)0.0166 (9)0.0060 (9)0.0133 (9)
N10.0345 (7)0.0247 (6)0.0227 (6)0.0036 (5)0.0084 (5)0.0009 (4)
N20.0352 (7)0.0253 (6)0.0248 (6)0.0012 (5)0.0079 (5)0.0002 (5)
Geometric parameters (Å, º) top
C1—N11.4783 (18)C13—H130.9500
C1—C41.523 (2)C14—H140.9500
C1—C151.5432 (19)C15—C161.521 (2)
C1—C191.5480 (19)C15—H15A0.9900
C2—N21.3079 (19)C15—H15B0.9900
C2—N11.3466 (18)C16—C171.525 (2)
C2—C91.496 (2)C16—H16A0.9900
C3—C41.398 (2)C16—H16B0.9900
C3—C51.401 (2)C17—C181.520 (2)
C3—N21.4078 (19)C17—H17A0.9900
C4—C81.394 (2)C17—H17B0.9900
C5—C61.385 (2)C18—H18A0.9800
C5—H50.9500C18—H18B0.9800
C6—C71.385 (2)C18—H18C0.9800
C6—H60.9500C19—C201.517 (2)
C7—C81.389 (2)C19—H19A0.9900
C7—H70.9500C19—H19B0.9900
C8—H80.9500C20—C211.526 (2)
C9—C101.391 (2)C20—H20A0.9900
C9—C141.397 (2)C20—H20B0.9900
C10—C111.388 (2)C21—C221.523 (2)
C10—H100.9500C21—H21A0.9900
C11—C121.382 (2)C21—H21B0.9900
C11—H110.9500C22—H22A0.9800
C12—C131.387 (2)C22—H22B0.9800
C12—H120.9500C22—H22C0.9800
C13—C141.386 (2)N1—H10.8800
N1—C1—C4108.69 (11)C1—C15—H15B108.1
N1—C1—C15108.52 (12)H15A—C15—H15B107.3
C4—C1—C15112.35 (11)C15—C16—C17111.60 (12)
N1—C1—C19109.17 (11)C15—C16—H16A109.3
C4—C1—C19110.25 (12)C17—C16—H16A109.3
C15—C1—C19107.80 (11)C15—C16—H16B109.3
N2—C2—N1124.93 (13)C17—C16—H16B109.3
N2—C2—C9116.96 (12)H16A—C16—H16B108.0
N1—C2—C9118.10 (12)C18—C17—C16113.28 (13)
C4—C3—C5119.01 (14)C18—C17—H17A108.9
C4—C3—N2123.35 (13)C16—C17—H17A108.9
C5—C3—N2117.64 (13)C18—C17—H17B108.9
C8—C4—C3119.10 (14)C16—C17—H17B108.9
C8—C4—C1120.17 (13)H17A—C17—H17B107.7
C3—C4—C1120.61 (13)C17—C18—H18A109.5
C6—C5—C3121.19 (14)C17—C18—H18B109.5
C6—C5—H5119.4H18A—C18—H18B109.5
C3—C5—H5119.4C17—C18—H18C109.5
C5—C6—C7119.83 (15)H18A—C18—H18C109.5
C5—C6—H6120.1H18B—C18—H18C109.5
C7—C6—H6120.1C20—C19—C1116.19 (12)
C6—C7—C8119.38 (15)C20—C19—H19A108.2
C6—C7—H7120.3C1—C19—H19A108.2
C8—C7—H7120.3C20—C19—H19B108.2
C7—C8—C4121.49 (14)C1—C19—H19B108.2
C7—C8—H8119.3H19A—C19—H19B107.4
C4—C8—H8119.3C19—C20—C21112.19 (12)
C10—C9—C14118.18 (14)C19—C20—H20A109.2
C10—C9—C2123.21 (12)C21—C20—H20A109.2
C14—C9—C2118.61 (13)C19—C20—H20B109.2
C11—C10—C9120.86 (13)C21—C20—H20B109.2
C11—C10—H10119.6H20A—C20—H20B107.9
C9—C10—H10119.6C22—C21—C20112.66 (14)
C12—C11—C10120.39 (15)C22—C21—H21A109.1
C12—C11—H11119.8C20—C21—H21A109.1
C10—C11—H11119.8C22—C21—H21B109.1
C11—C12—C13119.48 (15)C20—C21—H21B109.1
C11—C12—H12120.3H21A—C21—H21B107.8
C13—C12—H12120.3C21—C22—H22A109.5
C14—C13—C12120.16 (14)C21—C22—H22B109.5
C14—C13—H13119.9H22A—C22—H22B109.5
C12—C13—H13119.9C21—C22—H22C109.5
C13—C14—C9120.92 (15)H22A—C22—H22C109.5
C13—C14—H14119.5H22B—C22—H22C109.5
C9—C14—H14119.5C2—N1—C1125.27 (12)
C16—C15—C1116.92 (12)C2—N1—H1117.4
C16—C15—H15A108.1C1—N1—H1117.4
C1—C15—H15A108.1C2—N2—C3116.84 (12)
C16—C15—H15B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.293.1239 (16)157
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.293.1239 (16)157
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

This project was supported by the Deanship of Scientific Research at Salman bin Abdulaziz University under research project 2013/01/8.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationDerabli, C., Boulcina, R., Bouacida, S., Merazig, H. & Debache, A. (2013). Acta Cryst. E69, o1653–o1654.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPlé, N., Turck, A., Chapoulaud, V. & Quéguiner, G. (1997). Tetrahedron, 53, 2871–2890.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A. & Hegazy, A. S. (2005). J. Sulfur Chem. 26, 121–131.  CrossRef CAS Google Scholar
First citationValkonen, A., Kolehmainen, E., Zakrzewska, A., Skotnicka, A. & Gawinecki, R. (2011). Acta Cryst. E67, o923–o924.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds