organic compounds
of 2-bromo-1,4-dihydroxy-9,10-anthraquinone
aDepartment of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
*Correspondence e-mail: kitamura.c@mat.usp.ac.jp
In an attempt to brominate 1,4-dipropoxy-9,10-anthraquinone, a mixture of products, including the title compound, C14H7BrO4, was obtained. The molecule is essentially planar (r.m.s. deviation = 0.029 Å) and two intramolecular O—H⋯O hydrogen bonds occur. In the crystal, the molecules are linked by weak C—H⋯O hydrogen bonds, Br⋯O contacts [3.240 (5) Å], and π–π stacking interactions [shortest centroid–centroid separation = 3.562 (4) Å], generating a three-dimensional network.
CCDC reference: 1025364
1. Related literature
For the original synthesis of the title compound, see: Peters & Tenny (1977). For related crystal structures of 1,4-dihydroxy-9,10-anthraquinone derivatives, see: Nigam & Deppisch (1980); Hall et al. (1988). For 1,4-dipropoxy-9,10-anthraquinone, see: Kitamura et al. (2004).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1025364
10.1107/S1600536814020996/hb7282sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814020996/hb7282Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814020996/hb7282Isup3.cml
A mixture of 1,4-dipropoxy-9,10-anthraquinone (653 mg, 2.01 mmol), iron powder (50 mg, 0.89 mmol), bromine (0.40 g, 2.5 mmol) in acetic acid (20 ml) was stirred at 80 °C under air. The reaction was quenched with an aqueous solution of Na2SO3. Then the reaction products were precipitated. After filtration, the residue was subjected to
on silica gel using CH2Cl2-hexane as the to afford the title compound (18 mg, 2.8% yield) as a red solid. Red platelets were obtained by slow evaporation of a CH2Cl2 solution.All the aromatic H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). The H atoms of the OH groups were located in a difference Fourier map and freely refined [O1—H1 = 0.80 (9) Å and O2—H2 = 0.99 (10) Å].
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. The intramolecular hydrogen bonds are drawn by dashed lines. | |
Fig. 2. The crystal packing of (I), showing short contacts of selected C–H···O and Br···O interactions by blue lines. |
C14H7BrO4 | Dx = 1.905 Mg m−3 |
Mr = 319.11 | Melting point: 485 K |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 12445 reflections |
a = 18.977 (3) Å | θ = 3.4–27.5° |
b = 3.7811 (4) Å | µ = 3.70 mm−1 |
c = 15.5047 (18) Å | T = 200 K |
V = 1112.5 (2) Å3 | Platelet, red |
Z = 4 | 0.5 × 0.4 × 0.05 mm |
F(000) = 632 |
Rigaku R-AXIS RAPID diffractometer | 2476 independent reflections |
Radiation source: fine-focus sealed x-ray tube | 2103 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.091 |
Detector resolution: 10 pixels mm-1 | θmax = 27.5°, θmin = 3.4° |
ω scans | h = −24→24 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −4→4 |
Tmin = 0.322, Tmax = 0.912 | l = −20→20 |
15045 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.057 | w = 1/[σ2(Fo2) + (0.0171P)2 + 1.2737P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.099 | (Δ/σ)max = 0.001 |
S = 1.11 | Δρmax = 0.85 e Å−3 |
2476 reflections | Δρmin = −1.36 e Å−3 |
179 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.017 (2) |
0 constraints | Absolute structure: Flack x determined using 846 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.000 (11) |
C14H7BrO4 | V = 1112.5 (2) Å3 |
Mr = 319.11 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 18.977 (3) Å | µ = 3.70 mm−1 |
b = 3.7811 (4) Å | T = 200 K |
c = 15.5047 (18) Å | 0.5 × 0.4 × 0.05 mm |
Rigaku R-AXIS RAPID diffractometer | 2476 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2103 reflections with I > 2σ(I) |
Tmin = 0.322, Tmax = 0.912 | Rint = 0.091 |
15045 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.099 | Δρmax = 0.85 e Å−3 |
S = 1.11 | Δρmin = −1.36 e Å−3 |
2476 reflections | Absolute structure: Flack x determined using 846 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
179 parameters | Absolute structure parameter: 0.000 (11) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | −0.12607 (3) | 0.68820 (18) | 0.29479 (9) | 0.0301 (2) | |
O1 | −0.0661 (3) | 0.3974 (18) | 0.4573 (4) | 0.0354 (15) | |
O2 | 0.1215 (3) | 0.3132 (19) | 0.1883 (4) | 0.0381 (15) | |
O3 | 0.2118 (2) | 0.0436 (14) | 0.2927 (4) | 0.0350 (11) | |
O4 | 0.0247 (3) | 0.1085 (17) | 0.5543 (3) | 0.0361 (15) | |
C1 | −0.0179 (4) | 0.373 (2) | 0.3944 (5) | 0.0242 (16) | |
C2 | −0.0352 (4) | 0.4934 (18) | 0.3106 (5) | 0.0258 (17) | |
C3 | 0.0105 (4) | 0.476 (2) | 0.2437 (5) | 0.0259 (17) | |
H3 | −0.0024 | 0.5634 | 0.1885 | 0.031* | |
C4 | 0.0786 (5) | 0.325 (2) | 0.2576 (5) | 0.0262 (18) | |
C5 | 0.0979 (4) | 0.209 (2) | 0.3392 (5) | 0.0222 (17) | |
C6 | 0.1685 (4) | 0.061 (2) | 0.3529 (5) | 0.0271 (17) | |
C7 | 0.1876 (4) | −0.062 (2) | 0.4400 (5) | 0.0236 (15) | |
C8 | 0.2550 (4) | −0.196 (2) | 0.4556 (5) | 0.0280 (17) | |
H8 | 0.2885 | −0.2062 | 0.4101 | 0.034* | |
C9 | 0.2731 (4) | −0.312 (2) | 0.5369 (6) | 0.0304 (18) | |
H9 | 0.319 | −0.4027 | 0.5471 | 0.037* | |
C10 | 0.2248 (5) | −0.299 (2) | 0.6038 (6) | 0.0310 (19) | |
H10 | 0.2378 | −0.3771 | 0.6598 | 0.037* | |
C11 | 0.1572 (4) | −0.171 (2) | 0.5885 (5) | 0.0282 (17) | |
H11 | 0.1239 | −0.1641 | 0.6342 | 0.034* | |
C12 | 0.1385 (4) | −0.054 (2) | 0.5078 (5) | 0.0228 (16) | |
C13 | 0.0675 (4) | 0.0989 (19) | 0.4941 (5) | 0.0234 (15) | |
C14 | 0.0487 (4) | 0.2263 (19) | 0.4077 (5) | 0.0226 (15) | |
H1 | −0.051 (5) | 0.30 (2) | 0.499 (6) | 0.034* | |
H2 | 0.164 (5) | 0.20 (2) | 0.212 (6) | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0287 (4) | 0.0284 (4) | 0.0332 (4) | 0.0024 (3) | −0.0052 (4) | 0.0010 (8) |
O1 | 0.030 (3) | 0.052 (4) | 0.024 (3) | 0.008 (3) | 0.002 (2) | 0.003 (3) |
O2 | 0.033 (3) | 0.061 (4) | 0.021 (3) | 0.002 (3) | 0.006 (2) | 0.007 (3) |
O3 | 0.031 (3) | 0.048 (3) | 0.025 (2) | 0.003 (2) | 0.006 (3) | 0.000 (5) |
O4 | 0.032 (4) | 0.055 (5) | 0.022 (3) | 0.007 (3) | 0.006 (2) | 0.003 (3) |
C1 | 0.025 (4) | 0.026 (5) | 0.021 (3) | −0.004 (3) | 0.000 (3) | −0.003 (4) |
C2 | 0.029 (4) | 0.021 (4) | 0.028 (5) | −0.002 (2) | −0.004 (3) | 0.001 (4) |
C3 | 0.038 (5) | 0.017 (4) | 0.023 (4) | −0.002 (3) | 0.001 (3) | 0.007 (3) |
C4 | 0.027 (5) | 0.028 (5) | 0.023 (4) | −0.003 (3) | 0.003 (3) | 0.007 (4) |
C5 | 0.025 (4) | 0.018 (4) | 0.023 (4) | −0.002 (3) | 0.003 (3) | 0.002 (4) |
C6 | 0.030 (4) | 0.025 (4) | 0.026 (4) | −0.002 (3) | 0.001 (3) | −0.003 (4) |
C7 | 0.025 (4) | 0.021 (4) | 0.025 (4) | −0.003 (3) | 0.002 (3) | −0.005 (3) |
C8 | 0.025 (4) | 0.028 (4) | 0.031 (4) | 0.000 (3) | 0.003 (3) | 0.004 (4) |
C9 | 0.022 (4) | 0.031 (4) | 0.039 (5) | 0.001 (3) | −0.003 (4) | 0.002 (5) |
C10 | 0.034 (5) | 0.030 (5) | 0.029 (4) | −0.001 (3) | −0.005 (4) | 0.006 (5) |
C11 | 0.029 (4) | 0.031 (4) | 0.024 (4) | 0.000 (3) | 0.000 (3) | −0.002 (4) |
C12 | 0.030 (4) | 0.017 (4) | 0.022 (4) | −0.002 (3) | 0.001 (3) | 0.002 (3) |
C13 | 0.030 (4) | 0.022 (4) | 0.019 (3) | −0.002 (3) | 0.000 (3) | −0.001 (3) |
C14 | 0.026 (4) | 0.021 (4) | 0.020 (3) | −0.001 (3) | 0.001 (3) | −0.002 (3) |
Br1—C2 | 1.890 (7) | C5—C6 | 1.467 (12) |
O1—C1 | 1.340 (9) | C6—C7 | 1.474 (11) |
O1—H1 | 0.80 (9) | C7—C8 | 1.396 (11) |
O2—C4 | 1.348 (10) | C7—C12 | 1.405 (10) |
O2—H2 | 0.99 (10) | C8—C9 | 1.379 (12) |
O3—C6 | 1.246 (9) | C8—H8 | 0.95 |
O4—C13 | 1.238 (9) | C9—C10 | 1.384 (13) |
C1—C14 | 1.397 (10) | C9—H9 | 0.95 |
C1—C2 | 1.414 (10) | C10—C11 | 1.391 (12) |
C2—C3 | 1.354 (10) | C10—H10 | 0.95 |
C3—C4 | 1.431 (12) | C11—C12 | 1.375 (11) |
C3—H3 | 0.95 | C11—H11 | 0.95 |
C4—C5 | 1.387 (10) | C12—C13 | 1.481 (10) |
C5—C14 | 1.416 (10) | C13—C14 | 1.467 (10) |
C1—O1—H1 | 108 (7) | C12—C7—C6 | 120.9 (7) |
C4—O2—H2 | 102 (5) | C9—C8—C7 | 120.0 (7) |
O1—C1—C14 | 122.5 (7) | C9—C8—H8 | 120 |
O1—C1—C2 | 119.2 (7) | C7—C8—H8 | 120 |
C14—C1—C2 | 118.3 (7) | C8—C9—C10 | 120.6 (8) |
C3—C2—C1 | 122.6 (7) | C8—C9—H9 | 119.7 |
C3—C2—Br1 | 120.2 (6) | C10—C9—H9 | 119.7 |
C1—C2—Br1 | 117.1 (5) | C9—C10—C11 | 119.7 (8) |
C2—C3—C4 | 118.8 (7) | C9—C10—H10 | 120.2 |
C2—C3—H3 | 120.6 | C11—C10—H10 | 120.2 |
C4—C3—H3 | 120.6 | C12—C11—C10 | 120.4 (7) |
O2—C4—C5 | 123.9 (8) | C12—C11—H11 | 119.8 |
O2—C4—C3 | 116.0 (7) | C10—C11—H11 | 119.8 |
C5—C4—C3 | 120.2 (7) | C11—C12—C7 | 120.1 (7) |
C4—C5—C14 | 119.7 (7) | C11—C12—C13 | 119.4 (7) |
C4—C5—C6 | 119.6 (7) | C7—C12—C13 | 120.4 (7) |
C14—C5—C6 | 120.7 (7) | O4—C13—C14 | 121.3 (7) |
O3—C6—C5 | 120.9 (8) | O4—C13—C12 | 120.0 (7) |
O3—C6—C7 | 120.5 (7) | C14—C13—C12 | 118.6 (6) |
C5—C6—C7 | 118.6 (7) | C1—C14—C5 | 120.3 (7) |
C8—C7—C12 | 119.2 (7) | C1—C14—C13 | 119.1 (7) |
C8—C7—C6 | 119.9 (7) | C5—C14—C13 | 120.6 (7) |
O1—C1—C2—C3 | −179.7 (7) | C9—C10—C11—C12 | −0.7 (14) |
C14—C1—C2—C3 | −1.1 (11) | C10—C11—C12—C7 | −0.1 (13) |
O1—C1—C2—Br1 | 1.0 (9) | C10—C11—C12—C13 | −176.8 (7) |
C14—C1—C2—Br1 | 179.6 (5) | C8—C7—C12—C11 | 1.0 (12) |
C1—C2—C3—C4 | 1.2 (12) | C6—C7—C12—C11 | 179.8 (8) |
Br1—C2—C3—C4 | −179.5 (6) | C8—C7—C12—C13 | 177.6 (7) |
C2—C3—C4—O2 | 179.5 (7) | C6—C7—C12—C13 | −3.6 (11) |
C2—C3—C4—C5 | −2.2 (13) | C11—C12—C13—O4 | −2.7 (12) |
O2—C4—C5—C14 | −178.8 (7) | C7—C12—C13—O4 | −179.3 (8) |
C3—C4—C5—C14 | 3.0 (14) | C11—C12—C13—C14 | 179.3 (7) |
O2—C4—C5—C6 | −0.7 (15) | C7—C12—C13—C14 | 2.6 (11) |
C3—C4—C5—C6 | −178.8 (7) | O1—C1—C14—C5 | −179.6 (7) |
C4—C5—C6—O3 | 1.6 (13) | C2—C1—C14—C5 | 1.9 (11) |
C14—C5—C6—O3 | 179.6 (7) | O1—C1—C14—C13 | −1.2 (11) |
C4—C5—C6—C7 | −179.6 (8) | C2—C1—C14—C13 | −179.8 (6) |
C14—C5—C6—C7 | −1.5 (11) | C4—C5—C14—C1 | −2.9 (12) |
O3—C6—C7—C8 | 0.7 (12) | C6—C5—C14—C1 | 179.0 (7) |
C5—C6—C7—C8 | −178.2 (8) | C4—C5—C14—C13 | 178.7 (8) |
O3—C6—C7—C12 | −178.2 (7) | C6—C5—C14—C13 | 0.7 (11) |
C5—C6—C7—C12 | 3.0 (11) | O4—C13—C14—C1 | 2.5 (11) |
C12—C7—C8—C9 | −0.9 (13) | C12—C13—C14—C1 | −179.5 (7) |
C6—C7—C8—C9 | −179.8 (8) | O4—C13—C14—C5 | −179.2 (7) |
C7—C8—C9—C10 | 0.1 (14) | C12—C13—C14—C5 | −1.1 (11) |
C8—C9—C10—C11 | 0.8 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4 | 0.80 (9) | 1.82 (9) | 2.536 (8) | 148 (9) |
O2—H2···O3 | 0.99 (10) | 1.65 (10) | 2.568 (9) | 152 (8) |
C3—H3···O4i | 0.95 | 2.46 | 3.396 (9) | 169 |
C9—H9···O1ii | 0.95 | 2.59 | 3.308 (10) | 133 |
C9—H9···O2iii | 0.95 | 2.69 | 3.394 (10) | 132 |
Symmetry codes: (i) −x, −y+1, z−1/2; (ii) x+1/2, −y, z; (iii) −x+1/2, y−1, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4 | 0.80 (9) | 1.82 (9) | 2.536 (8) | 148 (9) |
O2—H2···O3 | 0.99 (10) | 1.65 (10) | 2.568 (9) | 152 (8) |
C3—H3···O4i | 0.95 | 2.46 | 3.396 (9) | 169 |
C9—H9···O1ii | 0.95 | 2.59 | 3.308 (10) | 133 |
C9—H9···O2iii | 0.95 | 2.69 | 3.394 (10) | 132 |
Symmetry codes: (i) −x, −y+1, z−1/2; (ii) x+1/2, −y, z; (iii) −x+1/2, y−1, z+1/2. |
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hall, R. C., Paul, I. C. & Curtin, D. Y. (1988). J. Am. Chem. Soc. 110, 2848–2854. CrossRef CAS Web of Science Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kitamura, C., Hasegawa, M., Ishikawa, H., Fujimoto, J., Ouchi, M. & Yoneda, A. (2004). Bull. Chem. Soc. Jpn, 77, 1385–1393. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nigam, G. D. & Deppisch, B. (1980). Z. Kristallogr. 151, 185–191. CrossRef CAS Web of Science Google Scholar
Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61. CrossRef IUCr Journals Google Scholar
Peters, A. T. & Tenny, B. A. (1977). J. Soc. Dyers Colour. 93, 373–378. CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Anthraquinone and its derivatives are important dyestuff molecules. In this work, we attempted to brominate 1,4-dipropoxy-9,10-anthraquinone (Kitamura et al., 2004) with elementary bromine in acetic acid to obtain 2-bromo-1,4-dipropoxy-9,10-anthraquinone. As a result, the reaction afforded a complex mixture of products containing 2-bromo-1,4-dihydroxy-9,10-anthraquinone, C14H7BrO4 (I). Synthesis of the title compound, (I), was already reported by Peters & Tenny (1977) using a different method. However, the X-ray structure of (I) was not reported so far. We report here the crystal structure of the title compound, (I).
The title compound crystallizes in the orthorhombic space group Pca21 with a Flack parameter of 0.000 (11). The molecular structure of (I) is shown in Figure 1. The molecule is nearly planar with the maximum deviation of 0.053 (7) Å for O2. The bond length of C6—O3 and C13—O4 is 1.246 (9) Å and 1.238 (9) Å, respectively. The length of the single C—O bond of C1—O1 and C4—O2 is 1.340 (9) Å and 1.348 (10) Å, respectively. There are two intramolecular hydrogen bonds, O1—H1···O4 and O2—H2···O3. The distance of O1—O4 and O2—O3 is 2.536 (8) Å and 2.568 (9) Å, respectively. These values are in good agreement with those observed for 1,4-dihydroxy-9,10-anthraquinone (Nigam & Deppisch, 1980) and 2,3-dichloro-1,4-dihydroxy-9,10-anthraquinone (Hall et al., 1988).
As shown in Figure 2, in the crystal, molecules are linked by C—H···O hydrogen bonds (Table 1) and Br···O contacts [Br1···O3i = 3.240 (5) Å; symmetry code: (i) x - 1/2, -y + 1, z], whose value is shorter than the sum of van der Waals radii of bromine and oxygen atoms. The molecules are π-stacked along the a axis with an interplanar distance of 3.450 Å.