organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-bromo-1,4-dihy­dr­oxy-9,10-anthra­quinone

aDepartment of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
*Correspondence e-mail: kitamura.c@mat.usp.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 September 2014; accepted 20 September 2014; online 27 September 2014)

In an attempt to brominate 1,4-diprop­oxy-9,10-anthra­quinone, a mixture of products, including the title compound, C14H7BrO4, was obtained. The mol­ecule is essentially planar (r.m.s. deviation = 0.029 Å) and two intra­molecular O—H⋯O hydrogen bonds occur. In the crystal, the mol­ecules are linked by weak C—H⋯O hydrogen bonds, Br⋯O contacts [3.240 (5) Å], and ππ stacking inter­actions [shortest centroid–centroid separation = 3.562 (4) Å], generating a three-dimensional network.

1. Related literature

For the original synthesis of the title compound, see: Peters & Tenny (1977[Peters, A. T. & Tenny, B. A. (1977). J. Soc. Dyers Colour. 93, 373-378.]). For related crystal structures of 1,4-dihy­droxy-9,10-anthra­quinone derivatives, see: Nigam & Deppisch (1980[Nigam, G. D. & Deppisch, B. (1980). Z. Kristallogr. 151, 185-191.]); Hall et al. (1988[Hall, R. C., Paul, I. C. & Curtin, D. Y. (1988). J. Am. Chem. Soc. 110, 2848-2854.]). For 1,4-diprop­oxy-9,10-anthra­quinone, see: Kitamura et al. (2004[Kitamura, C., Hasegawa, M., Ishikawa, H., Fujimoto, J., Ouchi, M. & Yoneda, A. (2004). Bull. Chem. Soc. Jpn, 77, 1385-1393.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H7BrO4

  • Mr = 319.11

  • Orthorhombic, P c a 21

  • a = 18.977 (3) Å

  • b = 3.7811 (4) Å

  • c = 15.5047 (18) Å

  • V = 1112.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.70 mm−1

  • T = 200 K

  • 0.5 × 0.4 × 0.05 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.322, Tmax = 0.912

  • 15045 measured reflections

  • 2476 independent reflections

  • 2103 reflections with I > 2σ(I)

  • Rint = 0.091

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.099

  • S = 1.11

  • 2476 reflections

  • 179 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.85 e Å−3

  • Δρmin = −1.36 e Å−3

  • Absolute structure: Flack x determined using 846 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: 0.000 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.80 (9) 1.82 (9) 2.536 (8) 148 (9)
O2—H2⋯O3 0.99 (10) 1.65 (10) 2.568 (9) 152 (8)
C3—H3⋯O4i 0.95 2.46 3.396 (9) 169
C9—H9⋯O1ii 0.95 2.59 3.308 (10) 133
C9—H9⋯O2iii 0.95 2.69 3.394 (10) 132
Symmetry codes: (i) [-x, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y, z]; (iii) [-x+{\script{1\over 2}}, y-1, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Anthraquinone and its derivatives are important dyestuff molecules. In this work, we attempted to brominate 1,4-dipropoxy-9,10-anthraquinone (Kitamura et al., 2004) with elementary bromine in acetic acid to obtain 2-bromo-1,4-dipropoxy-9,10-anthraquinone. As a result, the reaction afforded a complex mixture of products containing 2-bromo-1,4-dihydroxy-9,10-anthraquinone, C14H7BrO4 (I). Synthesis of the title compound, (I), was already reported by Peters & Tenny (1977) using a different method. However, the X-ray structure of (I) was not reported so far. We report here the crystal structure of the title compound, (I).

The title compound crystallizes in the orthorhombic space group Pca21 with a Flack parameter of 0.000 (11). The molecular structure of (I) is shown in Figure 1. The molecule is nearly planar with the maximum deviation of 0.053 (7) Å for O2. The bond length of C6—O3 and C13—O4 is 1.246 (9) Å and 1.238 (9) Å, respectively. The length of the single C—O bond of C1—O1 and C4—O2 is 1.340 (9) Å and 1.348 (10) Å, respectively. There are two intramolecular hydrogen bonds, O1—H1···O4 and O2—H2···O3. The distance of O1—O4 and O2—O3 is 2.536 (8) Å and 2.568 (9) Å, respectively. These values are in good agreement with those observed for 1,4-dihydroxy-9,10-anthraquinone (Nigam & Deppisch, 1980) and 2,3-dichloro-1,4-dihydroxy-9,10-anthraquinone (Hall et al., 1988).

As shown in Figure 2, in the crystal, molecules are linked by C—H···O hydrogen bonds (Table 1) and Br···O contacts [Br1···O3i = 3.240 (5) Å; symmetry code: (i) x - 1/2, -y + 1, z], whose value is shorter than the sum of van der Waals radii of bromine and oxygen atoms. The molecules are π-stacked along the a axis with an interplanar distance of 3.450 Å.

Related literature top

For the original synthesis of the title compound, see: Peters & Tenny (1977). For related crystal structures of 1,4-dihydroxy-9,10-anthraquinone derivatives, see: Nigam & Deppisch (1980); Hall et al. (1988). For 1,4-dipropoxy-9,10-anthraquinone, see: Kitamura et al. (2004).

Experimental top

A mixture of 1,4-dipropoxy-9,10-anthraquinone (653 mg, 2.01 mmol), iron powder (50 mg, 0.89 mmol), bromine (0.40 g, 2.5 mmol) in acetic acid (20 ml) was stirred at 80 °C under air. The reaction was quenched with an aqueous solution of Na2SO3. Then the reaction products were precipitated. After filtration, the residue was subjected to column chromatography on silica gel using CH2Cl2-hexane as the eluent to afford the title compound (18 mg, 2.8% yield) as a red solid. Red platelets were obtained by slow evaporation of a CH2Cl2 solution.

Refinement top

All the aromatic H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). The H atoms of the OH groups were located in a difference Fourier map and freely refined [O1—H1 = 0.80 (9) Å and O2—H2 = 0.99 (10) Å].

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. The intramolecular hydrogen bonds are drawn by dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), showing short contacts of selected C–H···O and Br···O interactions by blue lines.
2-Bromo-1,4-dihydroxy-9,10-anthraquinone top
Crystal data top
C14H7BrO4Dx = 1.905 Mg m3
Mr = 319.11Melting point: 485 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 12445 reflections
a = 18.977 (3) Åθ = 3.4–27.5°
b = 3.7811 (4) ŵ = 3.70 mm1
c = 15.5047 (18) ÅT = 200 K
V = 1112.5 (2) Å3Platelet, red
Z = 40.5 × 0.4 × 0.05 mm
F(000) = 632
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2476 independent reflections
Radiation source: fine-focus sealed x-ray tube2103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 2424
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 44
Tmin = 0.322, Tmax = 0.912l = 2020
15045 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0171P)2 + 1.2737P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.85 e Å3
2476 reflectionsΔρmin = 1.36 e Å3
179 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.017 (2)
0 constraintsAbsolute structure: Flack x determined using 846 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (11)
Crystal data top
C14H7BrO4V = 1112.5 (2) Å3
Mr = 319.11Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 18.977 (3) ŵ = 3.70 mm1
b = 3.7811 (4) ÅT = 200 K
c = 15.5047 (18) Å0.5 × 0.4 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2476 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2103 reflections with I > 2σ(I)
Tmin = 0.322, Tmax = 0.912Rint = 0.091
15045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099Δρmax = 0.85 e Å3
S = 1.11Δρmin = 1.36 e Å3
2476 reflectionsAbsolute structure: Flack x determined using 846 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
179 parametersAbsolute structure parameter: 0.000 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.12607 (3)0.68820 (18)0.29479 (9)0.0301 (2)
O10.0661 (3)0.3974 (18)0.4573 (4)0.0354 (15)
O20.1215 (3)0.3132 (19)0.1883 (4)0.0381 (15)
O30.2118 (2)0.0436 (14)0.2927 (4)0.0350 (11)
O40.0247 (3)0.1085 (17)0.5543 (3)0.0361 (15)
C10.0179 (4)0.373 (2)0.3944 (5)0.0242 (16)
C20.0352 (4)0.4934 (18)0.3106 (5)0.0258 (17)
C30.0105 (4)0.476 (2)0.2437 (5)0.0259 (17)
H30.00240.56340.18850.031*
C40.0786 (5)0.325 (2)0.2576 (5)0.0262 (18)
C50.0979 (4)0.209 (2)0.3392 (5)0.0222 (17)
C60.1685 (4)0.061 (2)0.3529 (5)0.0271 (17)
C70.1876 (4)0.062 (2)0.4400 (5)0.0236 (15)
C80.2550 (4)0.196 (2)0.4556 (5)0.0280 (17)
H80.28850.20620.41010.034*
C90.2731 (4)0.312 (2)0.5369 (6)0.0304 (18)
H90.3190.40270.54710.037*
C100.2248 (5)0.299 (2)0.6038 (6)0.0310 (19)
H100.23780.37710.65980.037*
C110.1572 (4)0.171 (2)0.5885 (5)0.0282 (17)
H110.12390.16410.63420.034*
C120.1385 (4)0.054 (2)0.5078 (5)0.0228 (16)
C130.0675 (4)0.0989 (19)0.4941 (5)0.0234 (15)
C140.0487 (4)0.2263 (19)0.4077 (5)0.0226 (15)
H10.051 (5)0.30 (2)0.499 (6)0.034*
H20.164 (5)0.20 (2)0.212 (6)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0287 (4)0.0284 (4)0.0332 (4)0.0024 (3)0.0052 (4)0.0010 (8)
O10.030 (3)0.052 (4)0.024 (3)0.008 (3)0.002 (2)0.003 (3)
O20.033 (3)0.061 (4)0.021 (3)0.002 (3)0.006 (2)0.007 (3)
O30.031 (3)0.048 (3)0.025 (2)0.003 (2)0.006 (3)0.000 (5)
O40.032 (4)0.055 (5)0.022 (3)0.007 (3)0.006 (2)0.003 (3)
C10.025 (4)0.026 (5)0.021 (3)0.004 (3)0.000 (3)0.003 (4)
C20.029 (4)0.021 (4)0.028 (5)0.002 (2)0.004 (3)0.001 (4)
C30.038 (5)0.017 (4)0.023 (4)0.002 (3)0.001 (3)0.007 (3)
C40.027 (5)0.028 (5)0.023 (4)0.003 (3)0.003 (3)0.007 (4)
C50.025 (4)0.018 (4)0.023 (4)0.002 (3)0.003 (3)0.002 (4)
C60.030 (4)0.025 (4)0.026 (4)0.002 (3)0.001 (3)0.003 (4)
C70.025 (4)0.021 (4)0.025 (4)0.003 (3)0.002 (3)0.005 (3)
C80.025 (4)0.028 (4)0.031 (4)0.000 (3)0.003 (3)0.004 (4)
C90.022 (4)0.031 (4)0.039 (5)0.001 (3)0.003 (4)0.002 (5)
C100.034 (5)0.030 (5)0.029 (4)0.001 (3)0.005 (4)0.006 (5)
C110.029 (4)0.031 (4)0.024 (4)0.000 (3)0.000 (3)0.002 (4)
C120.030 (4)0.017 (4)0.022 (4)0.002 (3)0.001 (3)0.002 (3)
C130.030 (4)0.022 (4)0.019 (3)0.002 (3)0.000 (3)0.001 (3)
C140.026 (4)0.021 (4)0.020 (3)0.001 (3)0.001 (3)0.002 (3)
Geometric parameters (Å, º) top
Br1—C21.890 (7)C5—C61.467 (12)
O1—C11.340 (9)C6—C71.474 (11)
O1—H10.80 (9)C7—C81.396 (11)
O2—C41.348 (10)C7—C121.405 (10)
O2—H20.99 (10)C8—C91.379 (12)
O3—C61.246 (9)C8—H80.95
O4—C131.238 (9)C9—C101.384 (13)
C1—C141.397 (10)C9—H90.95
C1—C21.414 (10)C10—C111.391 (12)
C2—C31.354 (10)C10—H100.95
C3—C41.431 (12)C11—C121.375 (11)
C3—H30.95C11—H110.95
C4—C51.387 (10)C12—C131.481 (10)
C5—C141.416 (10)C13—C141.467 (10)
C1—O1—H1108 (7)C12—C7—C6120.9 (7)
C4—O2—H2102 (5)C9—C8—C7120.0 (7)
O1—C1—C14122.5 (7)C9—C8—H8120
O1—C1—C2119.2 (7)C7—C8—H8120
C14—C1—C2118.3 (7)C8—C9—C10120.6 (8)
C3—C2—C1122.6 (7)C8—C9—H9119.7
C3—C2—Br1120.2 (6)C10—C9—H9119.7
C1—C2—Br1117.1 (5)C9—C10—C11119.7 (8)
C2—C3—C4118.8 (7)C9—C10—H10120.2
C2—C3—H3120.6C11—C10—H10120.2
C4—C3—H3120.6C12—C11—C10120.4 (7)
O2—C4—C5123.9 (8)C12—C11—H11119.8
O2—C4—C3116.0 (7)C10—C11—H11119.8
C5—C4—C3120.2 (7)C11—C12—C7120.1 (7)
C4—C5—C14119.7 (7)C11—C12—C13119.4 (7)
C4—C5—C6119.6 (7)C7—C12—C13120.4 (7)
C14—C5—C6120.7 (7)O4—C13—C14121.3 (7)
O3—C6—C5120.9 (8)O4—C13—C12120.0 (7)
O3—C6—C7120.5 (7)C14—C13—C12118.6 (6)
C5—C6—C7118.6 (7)C1—C14—C5120.3 (7)
C8—C7—C12119.2 (7)C1—C14—C13119.1 (7)
C8—C7—C6119.9 (7)C5—C14—C13120.6 (7)
O1—C1—C2—C3179.7 (7)C9—C10—C11—C120.7 (14)
C14—C1—C2—C31.1 (11)C10—C11—C12—C70.1 (13)
O1—C1—C2—Br11.0 (9)C10—C11—C12—C13176.8 (7)
C14—C1—C2—Br1179.6 (5)C8—C7—C12—C111.0 (12)
C1—C2—C3—C41.2 (12)C6—C7—C12—C11179.8 (8)
Br1—C2—C3—C4179.5 (6)C8—C7—C12—C13177.6 (7)
C2—C3—C4—O2179.5 (7)C6—C7—C12—C133.6 (11)
C2—C3—C4—C52.2 (13)C11—C12—C13—O42.7 (12)
O2—C4—C5—C14178.8 (7)C7—C12—C13—O4179.3 (8)
C3—C4—C5—C143.0 (14)C11—C12—C13—C14179.3 (7)
O2—C4—C5—C60.7 (15)C7—C12—C13—C142.6 (11)
C3—C4—C5—C6178.8 (7)O1—C1—C14—C5179.6 (7)
C4—C5—C6—O31.6 (13)C2—C1—C14—C51.9 (11)
C14—C5—C6—O3179.6 (7)O1—C1—C14—C131.2 (11)
C4—C5—C6—C7179.6 (8)C2—C1—C14—C13179.8 (6)
C14—C5—C6—C71.5 (11)C4—C5—C14—C12.9 (12)
O3—C6—C7—C80.7 (12)C6—C5—C14—C1179.0 (7)
C5—C6—C7—C8178.2 (8)C4—C5—C14—C13178.7 (8)
O3—C6—C7—C12178.2 (7)C6—C5—C14—C130.7 (11)
C5—C6—C7—C123.0 (11)O4—C13—C14—C12.5 (11)
C12—C7—C8—C90.9 (13)C12—C13—C14—C1179.5 (7)
C6—C7—C8—C9179.8 (8)O4—C13—C14—C5179.2 (7)
C7—C8—C9—C100.1 (14)C12—C13—C14—C51.1 (11)
C8—C9—C10—C110.8 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.80 (9)1.82 (9)2.536 (8)148 (9)
O2—H2···O30.99 (10)1.65 (10)2.568 (9)152 (8)
C3—H3···O4i0.952.463.396 (9)169
C9—H9···O1ii0.952.593.308 (10)133
C9—H9···O2iii0.952.693.394 (10)132
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y, z; (iii) x+1/2, y1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.80 (9)1.82 (9)2.536 (8)148 (9)
O2—H2···O30.99 (10)1.65 (10)2.568 (9)152 (8)
C3—H3···O4i0.952.463.396 (9)169
C9—H9···O1ii0.952.593.308 (10)133
C9—H9···O2iii0.952.693.394 (10)132
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y, z; (iii) x+1/2, y1, z+1/2.
 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHall, R. C., Paul, I. C. & Curtin, D. Y. (1988). J. Am. Chem. Soc. 110, 2848–2854.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKitamura, C., Hasegawa, M., Ishikawa, H., Fujimoto, J., Ouchi, M. & Yoneda, A. (2004). Bull. Chem. Soc. Jpn, 77, 1385–1393.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNigam, G. D. & Deppisch, B. (1980). Z. Kristallogr. 151, 185–191.  CrossRef CAS Web of Science Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationPeters, A. T. & Tenny, B. A. (1977). J. Soc. Dyers Colour. 93, 373–378.  CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds