organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 2-[(4-bromo­phen­yl)amino]-3,4-di­methyl­pent-3-enoate

aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 10 September 2014; accepted 16 September 2014; online 24 September 2014)

In the title compound, C15H20BrNO2, there are two independent mol­ecules (A and B) comprising the asymmetric unit and these adopt very similar conformations. In A, the dihedral angle between the CO2 and MeC=CMe2 groups is 80.7 (3)°, and these make dihedral angles of 3.5 (3) and 84.09 (16)°, respectively, with the bromo­benzene ring. The equivalent dihedral angles for mol­ecule B are 78.4 (3), 2.1 (3) and 78.37 (12)°, respectively. The most prominent inter­actions in the crystal packing are amine-N—H⋯O(carbon­yl) hydrogen bonds between the two independent mol­ecules, resulting in non-centrosymmetric ten-membered {⋯OC2NH}2 synthons. Statistical disorder is noted for each of the terminal methyl groups of the ethyl residues.

1. Related literature

For background to the study into new and simpler synthetic routes for β,γ-unsaturated α-amino acid derivatives, see: Stefani et al. (2013[Stefani, H. A., Khan, A. N., Manarin, F., Vendramini, P. H. & Eberlin, M. N. (2013). Tetrahedron Lett. 54, 6204-6207.]). For the use of potassium organotri­fluoro­borate in synthesis, see: Caracelli et al. (2007[Caracelli, I., Stefani, H. A., Vieira, A. S., Machado, M. M. P. & Zukerman-Schpector, J. (2007). Z. Kristallogr. New Cryst. Struct. 222, 345-347.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H20BrNO2

  • Mr = 326.22

  • Triclinic, [P \overline 1]

  • a = 11.8746 (6) Å

  • b = 12.2023 (5) Å

  • c = 13.7760 (6) Å

  • α = 97.557 (3)°

  • β = 110.520 (2)°

  • γ = 113.866 (2)°

  • V = 1620.20 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.54 mm−1

  • T = 290 K

  • 0.50 × 0.34 × 0.28 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.552, Tmax = 0.745

  • 18794 measured reflections

  • 5927 independent reflections

  • 4054 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.03

  • 5927 reflections

  • 377 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 2.44 3.235 (6) 154
N2—H2N⋯O1i 0.86 2.37 3.153 (5) 153
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010[Chemaxon (2010). Marvinsketch. http://www.chemaxon.com]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

Ytterbium triflate (10 mol%) was added to a stirred solution of (E)-ethyl 2-(4-bromo­phenyl­imino)­acetate (0.5 mmol) in CH2Cl2 (5 mL). Potassium 3-methyl-2-buten-2-yltri­fluoro­borate (0.6 mmol) was then added and reaction mixture was stirred at room temperature until there was total consumption of the starting material. The reaction mixture was extracted with NaOH (0.5 N). The organic phase was dried using MgSO4, and the solvent was removed under reduced pressure. Suitable crystals were obtained by slow evaporation from its EtOAc solution.

1H NMR (CDCl3, 300 MHz): δ 7.18 (d, J = 8.7 Hz, 2H), 6.35 (d, J = 8.7 Hz, 2H), 4.86 (s,1H), 4.59 (bs, NH), 4.17-4.08 (m, 2H), 1.87 (s, 3H), 1.65 (s, 3H), 1.42 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H) ppm. 13C NMR (CDCl3, 75 MHz) δ =171.9, 145.3, 131.8 (2C), 131.6, 123.6, 114.7 (2C), 109.2, 61.4, 57.7, 21.4, 20.5, 14.1, 12.6 ppm. HRMS: calcd. for C15H20BrNO2 [M + H]+ 325.0677; found: 325.0671.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C). The N—H H atoms were refined with N—H = 0.86±0.01 Å, and with Uiso(H) = 1.2Ueq(N). The terminal methyl group of each ethyl residue was found to be statistically disordered over two positions. These were refined so that equivalent pairs of atoms in each residue had the same anisotropic displacement parameters. Disorder in the C10–C15 benzene ring, manifested in a short average C—C bond length, i.e. 1.37 Å, could not be resolved.

Related literature top

For background to the study into new and simpler synthetic routes for β,γ-unsaturated α-amino acid derivatives, see: Stefani et al. (2013). For the use of potassium organotrifluoroborate in synthesis, see: Caracelli et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules in the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Overlay diagram of the two crystallographically independent molecules of the title compound. The N1- and N2-containing molecules are shown in red and blue, respectively.
Ethyl 2-[(4-bromophenyl)amino]-3,4-dimethylpent-3-enoate top
Crystal data top
C15H20BrNO2Z = 4
Mr = 326.22F(000) = 672
Triclinic, P1Dx = 1.337 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.8746 (6) ÅCell parameters from 6830 reflections
b = 12.2023 (5) Åθ = 2.8–24.5°
c = 13.7760 (6) ŵ = 2.54 mm1
α = 97.557 (3)°T = 290 K
β = 110.520 (2)°Irregular, colourless
γ = 113.866 (2)°0.50 × 0.34 × 0.28 mm
V = 1620.20 (14) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5927 independent reflections
Radiation source: fine-focus sealed tube4054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 25.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.552, Tmax = 0.745k = 1414
18794 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.9501P]
where P = (Fo2 + 2Fc2)/3
5927 reflections(Δ/σ)max < 0.001
377 parametersΔρmax = 0.70 e Å3
2 restraintsΔρmin = 0.73 e Å3
Crystal data top
C15H20BrNO2γ = 113.866 (2)°
Mr = 326.22V = 1620.20 (14) Å3
Triclinic, P1Z = 4
a = 11.8746 (6) ÅMo Kα radiation
b = 12.2023 (5) ŵ = 2.54 mm1
c = 13.7760 (6) ÅT = 290 K
α = 97.557 (3)°0.50 × 0.34 × 0.28 mm
β = 110.520 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5927 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4054 reflections with I > 2σ(I)
Tmin = 0.552, Tmax = 0.745Rint = 0.026
18794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.70 e Å3
5927 reflectionsΔρmin = 0.73 e Å3
377 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.40749 (8)0.86878 (7)0.59824 (4)0.1400 (3)
O11.0407 (3)0.8284 (3)1.1303 (2)0.0801 (8)
O21.0548 (2)0.9633 (3)1.2646 (2)0.0763 (7)
N10.8516 (4)0.8629 (4)0.9787 (3)0.0780 (10)
H1N0.889 (4)0.819 (3)0.966 (3)0.094*
C10.8827 (3)0.9110 (3)1.0912 (3)0.0566 (8)
H10.91021.00121.10930.068*
C21.0017 (3)0.8954 (3)1.1617 (3)0.0613 (9)
C31.1615 (4)0.9495 (4)1.3454 (3)0.0851 (12)0.50
H3A1.23530.96471.32480.102*0.50
H3B1.12410.86431.34950.102*0.50
C41.2124 (17)1.0377 (15)1.4481 (16)0.095 (5)0.50
H4A1.22911.11891.43970.143*0.50
H4B1.29681.04411.49790.143*0.50
H4C1.14601.01011.47630.143*0.50
C3'1.1615 (4)0.9495 (4)1.3454 (3)0.0851 (12)0.50
H3C1.25061.00091.34830.102*0.50
H3D1.14120.86201.33000.102*0.50
C4'1.157 (2)0.998 (2)1.4551 (17)0.191 (14)0.50
H4D1.10031.03761.44270.286*0.50
H4E1.24851.05791.50980.286*0.50
H4F1.11950.92761.47970.286*0.50
C50.7633 (3)0.8432 (3)1.1185 (3)0.0526 (8)
C60.7384 (3)0.9023 (3)1.1894 (3)0.0576 (8)
C70.6809 (4)0.7015 (3)1.0618 (3)0.0844 (12)
H7A0.62810.66231.09850.127*
H7B0.74240.66861.06370.127*
H7C0.62000.68390.98710.127*
C80.6271 (4)0.8335 (5)1.2224 (4)0.0909 (13)
H8A0.56720.74881.17260.136*
H8B0.57510.87701.22040.136*
H8C0.66840.83101.29510.136*
C90.8196 (4)1.0425 (4)1.2481 (3)0.0801 (11)
H9A0.88521.05901.32070.120*
H9B0.75831.07361.25200.120*
H9C0.86711.08441.20900.120*
C100.7498 (4)0.8649 (3)0.8936 (3)0.0547 (8)
C110.6902 (4)0.9391 (3)0.9089 (3)0.0610 (9)
H110.71870.98840.97920.073*
C120.5895 (4)0.9404 (3)0.8214 (3)0.0646 (9)
H120.55130.99120.83240.077*
C130.5462 (4)0.8675 (4)0.7189 (3)0.0696 (10)
C140.6019 (4)0.7914 (4)0.7010 (3)0.0709 (10)
H140.57090.74070.63070.085*
C150.7030 (4)0.7917 (3)0.7878 (3)0.0614 (9)
H150.74140.74140.77560.074*
Br20.49175 (4)0.41287 (4)0.39558 (3)0.07843 (18)
O31.0151 (3)0.2650 (2)0.13441 (19)0.0672 (6)
O41.0539 (3)0.4148 (3)0.27261 (18)0.0744 (7)
N20.8714 (3)0.3402 (3)0.0138 (2)0.0595 (7)
H2N0.888 (4)0.280 (2)0.031 (3)0.071*
C160.9097 (3)0.3973 (3)0.0989 (2)0.0481 (7)
H160.96420.48920.11810.058*
C170.9983 (3)0.3501 (3)0.1685 (3)0.0524 (8)
C181.1336 (4)0.3766 (4)0.3526 (3)0.0819 (12)0.50
H18A1.21440.38650.34380.098*0.50
H18B1.07900.28900.34570.098*0.50
C191.1732 (15)0.4617 (17)0.4594 (11)0.126 (6)0.50
H19A1.24090.54540.47050.189*0.50
H19B1.21070.43140.51660.189*0.50
H19C1.09360.46360.46050.189*0.50
C18'1.1336 (4)0.3766 (4)0.3526 (3)0.0819 (12)0.50
H18C1.23090.43250.37770.098*0.50
H18D1.11290.29130.31970.098*0.50
C19'1.0989 (17)0.3819 (14)0.4482 (13)0.117 (5)0.50
H19D1.12480.46750.48310.175*0.50
H19E1.14820.35240.49970.175*0.50
H19F1.00190.32920.42250.175*0.50
C200.7878 (3)0.3681 (3)0.1252 (2)0.0484 (7)
C210.7868 (3)0.4541 (3)0.1947 (3)0.0550 (8)
C220.6735 (4)0.2335 (3)0.0699 (3)0.0700 (10)
H22A0.62910.20860.11560.105*
H22B0.71080.17930.05760.105*
H22C0.60780.22660.00110.105*
C230.9035 (4)0.5876 (4)0.2554 (3)0.0807 (11)
H23A0.96290.59130.32570.121*
H23B0.86700.64330.26490.121*
H23C0.95470.61300.21430.121*
C240.6692 (4)0.4254 (4)0.2237 (3)0.0864 (12)
H24A0.59030.34790.17150.130*
H24B0.64740.49300.22270.130*
H24C0.69500.41690.29550.130*
C250.7873 (3)0.3598 (3)0.0999 (2)0.0471 (7)
C260.7547 (3)0.4562 (3)0.0847 (2)0.0520 (8)
H260.79150.51070.01460.062*
C270.6683 (3)0.4717 (3)0.1726 (2)0.0532 (8)
H270.64650.53600.16140.064*
C280.6147 (3)0.3936 (3)0.2755 (2)0.0498 (7)
C290.6476 (3)0.2985 (3)0.2934 (3)0.0560 (8)
H290.61190.24600.36400.067*
C300.7330 (3)0.2825 (3)0.2061 (3)0.0542 (8)
H300.75500.21860.21830.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1954 (7)0.2199 (7)0.0665 (3)0.1728 (6)0.0380 (3)0.0441 (4)
O10.0827 (18)0.110 (2)0.0766 (17)0.0718 (17)0.0375 (15)0.0241 (15)
O20.0632 (15)0.1006 (19)0.0620 (16)0.0502 (14)0.0184 (13)0.0091 (14)
N10.093 (2)0.121 (3)0.0558 (18)0.083 (2)0.0354 (17)0.0231 (18)
C10.061 (2)0.070 (2)0.0554 (19)0.0412 (18)0.0312 (17)0.0200 (16)
C20.052 (2)0.077 (2)0.062 (2)0.0338 (18)0.0294 (17)0.0218 (19)
C30.057 (2)0.098 (3)0.077 (3)0.040 (2)0.008 (2)0.014 (2)
C40.082 (8)0.103 (7)0.086 (10)0.055 (6)0.020 (6)0.001 (6)
C3'0.057 (2)0.098 (3)0.077 (3)0.040 (2)0.008 (2)0.014 (2)
C4'0.22 (3)0.36 (4)0.056 (8)0.21 (3)0.033 (14)0.049 (15)
C50.0490 (18)0.0557 (18)0.0530 (18)0.0303 (15)0.0173 (15)0.0164 (15)
C60.054 (2)0.072 (2)0.0556 (19)0.0354 (17)0.0268 (16)0.0246 (17)
C70.079 (3)0.063 (2)0.089 (3)0.033 (2)0.020 (2)0.013 (2)
C80.064 (3)0.128 (4)0.091 (3)0.041 (3)0.048 (2)0.047 (3)
C90.100 (3)0.075 (2)0.080 (3)0.048 (2)0.053 (2)0.017 (2)
C100.070 (2)0.0635 (19)0.0572 (19)0.0426 (17)0.0411 (18)0.0254 (16)
C110.080 (2)0.073 (2)0.0539 (19)0.052 (2)0.0379 (18)0.0191 (17)
C120.089 (3)0.076 (2)0.066 (2)0.060 (2)0.046 (2)0.0313 (19)
C130.097 (3)0.088 (3)0.059 (2)0.065 (2)0.042 (2)0.037 (2)
C140.106 (3)0.084 (2)0.052 (2)0.065 (2)0.043 (2)0.0235 (18)
C150.087 (3)0.071 (2)0.063 (2)0.056 (2)0.048 (2)0.0292 (18)
Br20.0834 (3)0.0954 (3)0.0568 (2)0.0548 (2)0.01649 (19)0.0287 (2)
O30.0790 (17)0.0841 (16)0.0601 (14)0.0583 (14)0.0297 (13)0.0270 (13)
O40.0727 (16)0.1072 (19)0.0448 (13)0.0582 (15)0.0137 (12)0.0153 (13)
N20.0765 (19)0.0811 (19)0.0456 (15)0.0580 (17)0.0288 (14)0.0222 (14)
C160.0514 (18)0.0561 (17)0.0445 (17)0.0303 (15)0.0236 (14)0.0185 (14)
C170.0427 (18)0.069 (2)0.0476 (18)0.0255 (16)0.0226 (15)0.0216 (16)
C180.065 (2)0.120 (3)0.057 (2)0.051 (2)0.0153 (19)0.030 (2)
C190.123 (13)0.23 (2)0.051 (6)0.124 (13)0.023 (8)0.043 (11)
C18'0.065 (2)0.120 (3)0.057 (2)0.051 (2)0.0153 (19)0.030 (2)
C19'0.144 (15)0.153 (14)0.063 (7)0.079 (10)0.045 (10)0.038 (9)
C200.0478 (18)0.0601 (18)0.0423 (16)0.0306 (15)0.0189 (14)0.0197 (14)
C210.057 (2)0.069 (2)0.0473 (17)0.0355 (17)0.0266 (16)0.0196 (16)
C220.057 (2)0.067 (2)0.076 (2)0.0245 (18)0.0259 (19)0.0204 (19)
C230.092 (3)0.075 (2)0.073 (3)0.045 (2)0.035 (2)0.008 (2)
C240.083 (3)0.121 (3)0.081 (3)0.061 (3)0.052 (2)0.029 (3)
C250.0487 (18)0.0571 (17)0.0464 (17)0.0295 (15)0.0261 (14)0.0219 (14)
C260.065 (2)0.0538 (17)0.0441 (17)0.0350 (16)0.0241 (15)0.0148 (14)
C270.068 (2)0.0529 (17)0.0511 (18)0.0365 (16)0.0285 (16)0.0221 (15)
C280.0492 (18)0.0592 (18)0.0470 (17)0.0289 (15)0.0225 (14)0.0232 (15)
C290.062 (2)0.070 (2)0.0398 (17)0.0363 (17)0.0232 (15)0.0134 (15)
C300.062 (2)0.0629 (19)0.0507 (19)0.0393 (17)0.0292 (16)0.0152 (15)
Geometric parameters (Å, º) top
Br1—C131.894 (4)Br2—C281.900 (3)
O1—C21.194 (4)O3—C171.201 (4)
O2—C21.318 (4)O4—C171.317 (4)
O2—C31.451 (4)O4—C181.445 (4)
N1—C101.369 (4)N2—C251.378 (4)
N1—C11.438 (4)N2—C161.437 (4)
N1—H1N0.858 (10)N2—H2N0.856 (10)
C1—C21.509 (5)C16—C171.513 (4)
C1—C51.531 (5)C16—C201.530 (4)
C1—H10.9800C16—H160.9800
C3—C41.413 (17)C18—C191.477 (16)
C3—H3A0.9700C18—H18A0.9700
C3—H3B0.9700C18—H18B0.9700
C4—H4A0.9600C19—H19A0.9600
C4—H4B0.9600C19—H19B0.9600
C4—H4C0.9600C19—H19C0.9600
C4'—H4D0.9600C19'—H19D0.9600
C4'—H4E0.9600C19'—H19E0.9600
C4'—H4F0.9600C19'—H19F0.9600
C5—C61.323 (5)C20—C211.331 (4)
C5—C71.515 (5)C20—C221.504 (4)
C6—C91.505 (5)C21—C241.505 (5)
C6—C81.511 (5)C21—C231.508 (5)
C7—H7A0.9600C22—H22A0.9600
C7—H7B0.9600C22—H22B0.9600
C7—H7C0.9600C22—H22C0.9600
C8—H8A0.9600C23—H23A0.9600
C8—H8B0.9600C23—H23B0.9600
C8—H8C0.9600C23—H23C0.9600
C9—H9A0.9600C24—H24A0.9600
C9—H9B0.9600C24—H24B0.9600
C9—H9C0.9600C24—H24C0.9600
C10—C151.386 (4)C25—C301.390 (4)
C10—C111.392 (4)C25—C261.393 (4)
C11—C121.376 (5)C26—C271.379 (4)
C11—H110.9300C26—H260.9300
C12—C131.356 (5)C27—C281.358 (4)
C12—H120.9300C27—H270.9300
C13—C141.382 (5)C28—C291.385 (4)
C14—C151.364 (5)C29—C301.371 (4)
C14—H140.9300C29—H290.9300
C15—H150.9300C30—H300.9300
C2—O2—C3117.8 (3)C17—O4—C18118.3 (3)
C10—N1—C1123.0 (3)C25—N2—C16123.7 (2)
C10—N1—H1N120 (3)C25—N2—H2N116 (2)
C1—N1—H1N116 (3)C16—N2—H2N119 (2)
N1—C1—C2108.2 (3)N2—C16—C17108.2 (2)
N1—C1—C5114.0 (3)N2—C16—C20114.1 (3)
C2—C1—C5107.8 (3)C17—C16—C20108.4 (2)
N1—C1—H1108.9N2—C16—H16108.7
C2—C1—H1108.9C17—C16—H16108.7
C5—C1—H1108.9C20—C16—H16108.7
O1—C2—O2124.1 (3)O3—C17—O4124.5 (3)
O1—C2—C1125.4 (3)O3—C17—C16125.2 (3)
O2—C2—C1110.5 (3)O4—C17—C16110.3 (3)
O2—C3—C4108.7 (8)O4—C18—C19104.7 (6)
O2—C3—H3A109.9O4—C18—H18A110.8
C4—C3—H3A109.9C19—C18—H18A110.8
O2—C3—H3B109.9O4—C18—H18B110.8
C4—C3—H3B109.9C19—C18—H18B110.8
H3A—C3—H3B108.3H18A—C18—H18B108.9
H4D—C4'—H4E109.5H19D—C19'—H19E109.5
H4D—C4'—H4F109.5H19D—C19'—H19F109.5
H4E—C4'—H4F109.5H19E—C19'—H19F109.5
C6—C5—C7123.1 (3)C21—C20—C22123.5 (3)
C6—C5—C1122.9 (3)C21—C20—C16122.2 (3)
C7—C5—C1114.0 (3)C22—C20—C16114.2 (3)
C5—C6—C9124.2 (3)C20—C21—C24122.7 (3)
C5—C6—C8122.6 (3)C20—C21—C23124.3 (3)
C9—C6—C8113.1 (3)C24—C21—C23113.0 (3)
C5—C7—H7A109.5C20—C22—H22A109.5
C5—C7—H7B109.5C20—C22—H22B109.5
H7A—C7—H7B109.5H22A—C22—H22B109.5
C5—C7—H7C109.5C20—C22—H22C109.5
H7A—C7—H7C109.5H22A—C22—H22C109.5
H7B—C7—H7C109.5H22B—C22—H22C109.5
C6—C8—H8A109.5C21—C23—H23A109.5
C6—C8—H8B109.5C21—C23—H23B109.5
H8A—C8—H8B109.5H23A—C23—H23B109.5
C6—C8—H8C109.5C21—C23—H23C109.5
H8A—C8—H8C109.5H23A—C23—H23C109.5
H8B—C8—H8C109.5H23B—C23—H23C109.5
C6—C9—H9A109.5C21—C24—H24A109.5
C6—C9—H9B109.5C21—C24—H24B109.5
H9A—C9—H9B109.5H24A—C24—H24B109.5
C6—C9—H9C109.5C21—C24—H24C109.5
H9A—C9—H9C109.5H24A—C24—H24C109.5
H9B—C9—H9C109.5H24B—C24—H24C109.5
N1—C10—C15120.0 (3)N2—C25—C30119.9 (3)
N1—C10—C11122.3 (3)N2—C25—C26122.2 (3)
C15—C10—C11117.7 (3)C30—C25—C26117.9 (3)
C12—C11—C10120.8 (3)C27—C26—C25120.6 (3)
C12—C11—H11119.6C27—C26—H26119.7
C10—C11—H11119.6C25—C26—H26119.7
C13—C12—C11119.8 (3)C28—C27—C26120.3 (3)
C13—C12—H12120.1C28—C27—H27119.9
C11—C12—H12120.1C26—C27—H27119.9
C12—C13—C14120.8 (3)C27—C28—C29120.4 (3)
C12—C13—Br1120.0 (3)C27—C28—Br2120.0 (2)
C14—C13—Br1119.2 (3)C29—C28—Br2119.6 (2)
C15—C14—C13119.2 (3)C30—C29—C28119.5 (3)
C15—C14—H14120.4C30—C29—H29120.3
C13—C14—H14120.4C28—C29—H29120.3
C14—C15—C10121.6 (3)C29—C30—C25121.2 (3)
C14—C15—H15119.2C29—C30—H30119.4
C10—C15—H15119.2C25—C30—H30119.4
C10—N1—C1—C2178.9 (3)C25—N2—C16—C17178.2 (3)
C10—N1—C1—C561.1 (5)C25—N2—C16—C2057.4 (4)
C3—O2—C2—O13.9 (6)C18—O4—C17—O34.1 (5)
C3—O2—C2—C1173.9 (3)C18—O4—C17—C16175.2 (3)
N1—C1—C2—O116.7 (5)N2—C16—C17—O310.7 (4)
C5—C1—C2—O1107.1 (4)C20—C16—C17—O3113.5 (3)
N1—C1—C2—O2165.4 (3)N2—C16—C17—O4170.0 (3)
C5—C1—C2—O270.8 (4)C20—C16—C17—O465.7 (3)
C2—O2—C3—C4174.9 (9)C17—O4—C18—C19176.6 (7)
N1—C1—C5—C6144.0 (3)N2—C16—C20—C21141.6 (3)
C2—C1—C5—C695.8 (4)C17—C16—C20—C2197.8 (3)
N1—C1—C5—C739.1 (4)N2—C16—C20—C2241.0 (4)
C2—C1—C5—C781.2 (3)C17—C16—C20—C2279.7 (3)
C7—C5—C6—C9179.1 (3)C22—C20—C21—C241.0 (5)
C1—C5—C6—C92.5 (5)C16—C20—C21—C24178.2 (3)
C7—C5—C6—C81.4 (5)C22—C20—C21—C23176.7 (3)
C1—C5—C6—C8175.2 (3)C16—C20—C21—C230.5 (5)
C1—N1—C10—C15164.7 (3)C16—N2—C25—C30167.1 (3)
C1—N1—C10—C1115.6 (6)C16—N2—C25—C2613.5 (5)
N1—C10—C11—C12178.9 (3)N2—C25—C26—C27178.9 (3)
C15—C10—C11—C120.9 (5)C30—C25—C26—C271.6 (5)
C10—C11—C12—C130.9 (6)C25—C26—C27—C280.6 (5)
C11—C12—C13—C140.0 (6)C26—C27—C28—C290.7 (5)
C11—C12—C13—Br1179.9 (3)C26—C27—C28—Br2178.2 (2)
C12—C13—C14—C150.9 (6)C27—C28—C29—C301.0 (5)
Br1—C13—C14—C15179.2 (3)Br2—C28—C29—C30178.0 (2)
C13—C14—C15—C100.9 (6)C28—C29—C30—C250.1 (5)
N1—C10—C15—C14179.9 (4)N2—C25—C30—C29179.2 (3)
C11—C10—C15—C140.1 (5)C26—C25—C30—C291.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.443.235 (6)154
N2—H2N···O1i0.862.373.153 (5)153
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.443.235 (6)154
N2—H2N···O1i0.862.373.153 (5)153
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC-USP for the X-ray data collection. The Brazilian agencies CNPq (305626/2013–2 to JZ-S; 306121/2013–2 to IC; 308320/2010–7 to HAS), CAPES (808/2009 to JZ-S and IC) and FAPESP (2012/00424–2) are acknowledged for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaracelli, I., Stefani, H. A., Vieira, A. S., Machado, M. M. P. & Zukerman-Schpector, J. (2007). Z. Kristallogr. New Cryst. Struct. 222, 345–347.  CAS Google Scholar
First citationChemaxon (2010). Marvinsketch. http://www.chemaxon.com  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStefani, H. A., Khan, A. N., Manarin, F., Vendramini, P. H. & Eberlin, M. N. (2013). Tetrahedron Lett. 54, 6204–6207.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds