metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bromido­bis­­(naph­thal­en-1-yl)anti­mony(III)

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

Edited by H. Ishida, Okayama University, Japan (Received 30 August 2014; accepted 5 September 2014; online 24 September 2014)

In the title compound, [SbBr(C10H7)2], the SbIII atom has a distorted trigonal–pyramidal coordination geometry and the planes of the two naphthalene ring systems make a dihedral angle of 80.26 (18)°. An intra­molecular C—H⋯Br hydrogen bond forms an S(5) ring motif. In the crystal, weak C—H⋯Br inter­actions link the mol­ecules into helical chains along the b-axis direction.

1. Related literature

For general background to organo­anti­mony(III) compounds and related structures of haloorgano­anti­mony(III) compounds, see: Breunig et al. (2008[Breunig, H. J., Lork, E., Moldovan, O. & Rat, C. I. (2008). J. Organomet. Chem. 693, 2527-2534.]); Millington & Sowerby (1994[Millington, P. L. & Sowerby, D. B. (1994). J. Organomet. Chem. 480, 227-234.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [SbBr(C10H7)2]

  • Mr = 455.97

  • Monoclinic, P 21 /c

  • a = 12.7371 (3) Å

  • b = 10.9189 (3) Å

  • c = 11.6300 (3) Å

  • β = 92.661 (1)°

  • V = 1615.70 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.17 mm−1

  • T = 100 K

  • 0.56 × 0.33 × 0.14 mm

2.2. Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.204, Tmax = 0.597

  • 20528 measured reflections

  • 4705 independent reflections

  • 3936 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.198

  • S = 1.06

  • 4705 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 3.68 e Å−3

  • Δρmin = −3.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Br1 0.95 2.71 3.408 (6) 130
C2—H2A⋯Br1i 0.95 2.96 3.698 (6) 135
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For general background to organoantimony(III) compounds and related structures of haloorganoantimony(III) compounds, see: Breunig et al. (2008); Millington & Sowerby (1994).

Experimental top

All synthetic reactions were performed under dry, oxygen-free dinitrogen atmosphere using standard Schlenk techniques; THF was dried over sodium and distilled from sodium benzophenone ketyl under nitrogen. Antimony trichloride, 1-bromo-naphthaline, and magnesium filing purchased from Sigma Aldrich. The title compound was prepared by adding a solution of antimony trichloride (0.9124 g, 0.0040 mol) in 30 ml THF was added dropwise with stirring to a Grignard mixture of magnesium filings (0.31 g, 0.0129 mol) and 1-bromonaphthaline (1.72 g, 0.0083 mol). The reaction mixture was stirred for 12 h, the solvent was removed in vacuum and the remaining solid was recrystallized from ethanol.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The dashed line indicates the C—H···Br hydrogen bond.
[Figure 2] Fig. 2. A crystal packing view of the title compound. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bonds have been omitted for clarity.
Bromidobis(naphthalen-1-yl)antimony(III) top
Crystal data top
[SbBr(C10H7)2]F(000) = 880
Mr = 455.97Dx = 1.875 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9971 reflections
a = 12.7371 (3) Åθ = 2.5–32.2°
b = 10.9189 (3) ŵ = 4.17 mm1
c = 11.6300 (3) ÅT = 100 K
β = 92.661 (1)°Block, yellow
V = 1615.70 (7) Å30.56 × 0.33 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4705 independent reflections
Radiation source: fine-focus sealed tube3936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.204, Tmax = 0.597k = 1512
20528 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.112P)2 + 12.2014P]
where P = (Fo2 + 2Fc2)/3
4705 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 3.68 e Å3
0 restraintsΔρmin = 3.12 e Å3
Crystal data top
[SbBr(C10H7)2]V = 1615.70 (7) Å3
Mr = 455.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7371 (3) ŵ = 4.17 mm1
b = 10.9189 (3) ÅT = 100 K
c = 11.6300 (3) Å0.56 × 0.33 × 0.14 mm
β = 92.661 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4705 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3936 reflections with I > 2σ(I)
Tmin = 0.204, Tmax = 0.597Rint = 0.032
20528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.112P)2 + 12.2014P]
where P = (Fo2 + 2Fc2)/3
4705 reflectionsΔρmax = 3.68 e Å3
199 parametersΔρmin = 3.12 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.17759 (3)0.74179 (3)0.07848 (3)0.02490 (15)
Br10.13863 (7)0.90878 (7)0.06577 (8)0.0494 (3)
C10.0943 (5)0.6110 (5)0.1412 (5)0.0257 (11)
H1A0.08380.69280.16720.031*
C20.0591 (5)0.5128 (6)0.2125 (5)0.0292 (12)
H2A0.02670.52900.28620.035*
C30.0717 (5)0.3958 (6)0.1758 (5)0.0261 (11)
H3A0.04820.33040.22440.031*
C40.1192 (4)0.3695 (5)0.0659 (5)0.0230 (10)
C50.1307 (5)0.2481 (5)0.0249 (6)0.0288 (13)
H5A0.10610.18220.07210.035*
C60.1765 (5)0.2234 (6)0.0814 (6)0.0313 (13)
H6A0.18310.14130.10780.038*
C70.2140 (6)0.3218 (6)0.1516 (6)0.0326 (13)
H7A0.24630.30500.22520.039*
C80.2043 (5)0.4399 (6)0.1150 (5)0.0289 (12)
H8A0.22990.50440.16340.035*
C90.1567 (4)0.4681 (5)0.0055 (5)0.0212 (10)
C100.1425 (4)0.5910 (5)0.0364 (5)0.0206 (10)
C110.3440 (4)0.7501 (5)0.0575 (5)0.0220 (10)
C120.3925 (5)0.6658 (5)0.0089 (5)0.0244 (10)
H12A0.35220.60240.04530.029*
C130.5023 (5)0.6718 (6)0.0241 (5)0.0309 (12)
H13A0.53540.61200.06950.037*
C140.5603 (5)0.7642 (6)0.0268 (6)0.0314 (13)
H14A0.63390.76720.01710.038*
C150.5130 (5)0.8555 (6)0.0936 (5)0.0278 (12)
C160.5719 (5)0.9541 (6)0.1423 (6)0.0351 (14)
H16A0.64520.95900.13100.042*
C170.5250 (6)1.0422 (7)0.2053 (6)0.0424 (18)
H17A0.56531.10910.23540.051*
C180.4171 (6)1.0344 (6)0.2257 (6)0.0370 (15)
H18A0.38531.09480.27150.044*
C190.3575 (5)0.9398 (5)0.1799 (5)0.0277 (11)
H19A0.28470.93590.19400.033*
C200.4029 (4)0.8482 (5)0.1120 (5)0.0233 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0235 (2)0.0210 (2)0.0304 (2)0.00274 (13)0.00205 (15)0.00743 (13)
Br10.0450 (4)0.0284 (4)0.0729 (6)0.0000 (3)0.0185 (4)0.0040 (3)
C10.025 (3)0.023 (3)0.028 (3)0.006 (2)0.001 (2)0.001 (2)
C20.028 (3)0.033 (3)0.026 (3)0.005 (2)0.004 (2)0.004 (2)
C30.027 (3)0.027 (3)0.025 (2)0.008 (2)0.001 (2)0.007 (2)
C40.023 (2)0.021 (2)0.026 (2)0.0027 (19)0.0031 (19)0.0039 (19)
C50.032 (3)0.015 (2)0.039 (3)0.005 (2)0.009 (3)0.004 (2)
C60.031 (3)0.021 (3)0.042 (4)0.000 (2)0.006 (3)0.005 (2)
C70.041 (3)0.028 (3)0.028 (3)0.001 (3)0.003 (2)0.006 (2)
C80.034 (3)0.025 (3)0.027 (3)0.004 (2)0.003 (2)0.003 (2)
C90.020 (2)0.019 (2)0.025 (2)0.0038 (18)0.0020 (18)0.0027 (19)
C100.019 (2)0.015 (2)0.028 (3)0.0010 (17)0.0013 (18)0.0054 (18)
C110.018 (2)0.022 (3)0.026 (2)0.0024 (18)0.0040 (19)0.0023 (18)
C120.025 (3)0.021 (2)0.027 (3)0.000 (2)0.000 (2)0.0011 (19)
C130.027 (3)0.034 (3)0.032 (3)0.005 (2)0.002 (2)0.003 (2)
C140.019 (3)0.042 (4)0.033 (3)0.001 (2)0.000 (2)0.007 (2)
C150.027 (3)0.028 (3)0.027 (3)0.006 (2)0.009 (2)0.010 (2)
C160.033 (3)0.035 (3)0.036 (3)0.013 (3)0.012 (2)0.010 (3)
C170.056 (4)0.031 (3)0.037 (3)0.018 (3)0.026 (3)0.011 (3)
C180.053 (4)0.024 (3)0.033 (3)0.004 (3)0.017 (3)0.003 (2)
C190.034 (3)0.022 (3)0.026 (3)0.001 (2)0.010 (2)0.000 (2)
C200.026 (3)0.021 (2)0.022 (2)0.004 (2)0.0084 (19)0.0029 (19)
Geometric parameters (Å, º) top
Sb1—C112.146 (6)C9—C101.436 (7)
Sb1—C102.155 (5)C11—C121.367 (8)
Sb1—Br12.5116 (9)C11—C201.438 (7)
C1—C101.357 (8)C12—C131.420 (9)
C1—C21.416 (8)C12—H12A0.9500
C1—H1A0.9500C13—C141.369 (10)
C2—C31.354 (9)C13—H13A0.9500
C2—H2A0.9500C14—C151.416 (10)
C3—C41.418 (8)C14—H14A0.9500
C3—H3A0.9500C15—C161.416 (8)
C4—C51.414 (8)C15—C201.431 (8)
C4—C91.429 (7)C16—C171.363 (12)
C5—C61.368 (10)C16—H16A0.9500
C5—H5A0.9500C17—C181.409 (12)
C6—C71.419 (10)C17—H17A0.9500
C6—H6A0.9500C18—C191.374 (8)
C7—C81.362 (9)C18—H18A0.9500
C7—H7A0.9500C19—C201.414 (9)
C8—C91.418 (8)C19—H19A0.9500
C8—H8A0.9500
C11—Sb1—C1098.0 (2)C9—C10—Sb1119.0 (4)
C11—Sb1—Br193.38 (15)C12—C11—C20120.7 (5)
C10—Sb1—Br196.42 (15)C12—C11—Sb1120.7 (4)
C10—C1—C2121.4 (5)C20—C11—Sb1118.6 (4)
C10—C1—H1A119.3C11—C12—C13120.9 (5)
C2—C1—H1A119.3C11—C12—H12A119.5
C3—C2—C1120.0 (5)C13—C12—H12A119.5
C3—C2—H2A120.0C14—C13—C12119.6 (6)
C1—C2—H2A120.0C14—C13—H13A120.2
C2—C3—C4121.0 (5)C12—C13—H13A120.2
C2—C3—H3A119.5C13—C14—C15121.4 (6)
C4—C3—H3A119.5C13—C14—H14A119.3
C5—C4—C3121.8 (5)C15—C14—H14A119.3
C5—C4—C9118.9 (5)C14—C15—C16121.6 (6)
C3—C4—C9119.2 (5)C14—C15—C20119.2 (5)
C6—C5—C4121.5 (6)C16—C15—C20119.2 (6)
C6—C5—H5A119.2C17—C16—C15121.0 (6)
C4—C5—H5A119.2C17—C16—H16A119.5
C5—C6—C7119.3 (6)C15—C16—H16A119.5
C5—C6—H6A120.4C16—C17—C18120.2 (6)
C7—C6—H6A120.4C16—C17—H17A119.9
C8—C7—C6120.9 (6)C18—C17—H17A119.9
C8—C7—H7A119.6C19—C18—C17120.4 (7)
C6—C7—H7A119.6C19—C18—H18A119.8
C7—C8—C9121.0 (6)C17—C18—H18A119.8
C7—C8—H8A119.5C18—C19—C20121.0 (6)
C9—C8—H8A119.5C18—C19—H19A119.5
C8—C9—C4118.4 (5)C20—C19—H19A119.5
C8—C9—C10123.3 (5)C19—C20—C15118.2 (5)
C4—C9—C10118.3 (5)C19—C20—C11123.7 (5)
C1—C10—C9120.0 (5)C15—C20—C11118.1 (5)
C1—C10—Sb1120.4 (4)
C10—C1—C2—C31.2 (9)C10—Sb1—C11—C123.9 (5)
C1—C2—C3—C40.4 (9)Br1—Sb1—C11—C12100.9 (5)
C2—C3—C4—C5178.4 (6)C10—Sb1—C11—C20174.3 (4)
C2—C3—C4—C91.6 (9)Br1—Sb1—C11—C2077.4 (4)
C3—C4—C5—C6179.9 (6)C20—C11—C12—C131.0 (9)
C9—C4—C5—C60.2 (9)Sb1—C11—C12—C13179.2 (4)
C4—C5—C6—C70.5 (10)C11—C12—C13—C141.0 (9)
C5—C6—C7—C80.4 (10)C12—C13—C14—C150.8 (10)
C6—C7—C8—C90.1 (10)C13—C14—C15—C16177.3 (6)
C7—C8—C9—C40.2 (9)C13—C14—C15—C202.5 (9)
C7—C8—C9—C10178.7 (6)C14—C15—C16—C17179.2 (6)
C5—C4—C9—C80.2 (8)C20—C15—C16—C170.6 (9)
C3—C4—C9—C8179.8 (5)C15—C16—C17—C181.9 (10)
C5—C4—C9—C10178.7 (5)C16—C17—C18—C191.8 (10)
C3—C4—C9—C101.3 (8)C17—C18—C19—C200.4 (9)
C2—C1—C10—C91.5 (9)C18—C19—C20—C150.9 (8)
C2—C1—C10—Sb1172.3 (4)C18—C19—C20—C11177.2 (6)
C8—C9—C10—C1178.6 (6)C14—C15—C20—C19179.5 (5)
C4—C9—C10—C10.2 (8)C16—C15—C20—C190.8 (8)
C8—C9—C10—Sb17.6 (7)C14—C15—C20—C112.4 (8)
C4—C9—C10—Sb1171.2 (4)C16—C15—C20—C11177.4 (5)
C11—Sb1—C10—C1105.6 (5)C12—C11—C20—C19178.7 (5)
Br1—Sb1—C10—C111.2 (5)Sb1—C11—C20—C190.5 (7)
C11—Sb1—C10—C983.5 (4)C12—C11—C20—C150.7 (8)
Br1—Sb1—C10—C9177.8 (4)Sb1—C11—C20—C15177.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br10.952.713.408 (6)130
C2—H2A···Br1i0.952.963.698 (6)135
Symmetry code: (i) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br10.952.713.408 (6)130
C2—H2A···Br1i0.952.963.698 (6)135
Symmetry code: (i) x, y1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: B-6034-2009.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for Research Grant 1001/PJJAUH/811225. HMHA thanks USM for the award of a USM Fellowship.

References

First citationBreunig, H. J., Lork, E., Moldovan, O. & Rat, C. I. (2008). J. Organomet. Chem. 693, 2527–2534.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMillington, P. L. & Sowerby, D. B. (1994). J. Organomet. Chem. 480, 227–234.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds