research communications
H-pyrrol-2-yl)methylidene]amino-κN}propan-2-olato-κO)manganese(III) nitrate methanol monosolvate
of bis(1,3-bis{[(1aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and bBeamline Department, Pohang Accelerator Laboratory/POSTECH 80, Pohang 790-784, South Korea
*Correspondence e-mail: dmoon@postech.ac.kr
The 13H15N4O)2]NO3·CH3OH, contains two independent complex cations, in each of which the MnIII ion is located on an inversion centre. The MnIII ion is coordinated by four N and two O atoms from two 1,3-bis{[(1H-pyrrol-2-yl)methylidene]amino}propan-2-olate ligands, resulting in a distorted octahedral geometry. The average Mn—ligand bond lengths in the two complex molecules are 2.074 and 2.079 Å. In the crystal, intermolecular N—H⋯O hydrogen bonds between the pyrrole group of the ligand and the non-coordinating nitrate ion give rise to a chain structure along [10-1]. The methanol solvent molecule and the nitrate ion are connected by an O—H⋯O hydrogen bond.
of the title compound, [Mn(CKeywords: crystal structure; propan-2-olate ligand; Jahn–Teller distortion; manganese(III) complex; hydrogen bonding; synchrotron study.
CCDC reference: 1023763
1. Chemical context
Pyrrolyl derivatives ligands have attracted considerable attention in chemistry and materials science because they can easily be used for the preparation of multifunctional metal complexes with various transition metal ions. These complexes have potential applications in catalysis, and as luminescent materials (Goff & Cosnier, 2011). For example, a CrI,III complex with a 2,5-dimethylpyrrole ligand has been investigated as a potential ethylene trimerization catalyst (Yang et al., 2014). Furthermore, zinc complexes containing various pyrrolyl substituents exhibit excellent luminescence properties due to the n–π* transitions in the electronic spectra of the pyrrolyl ligand precursors (Gomes et al., 2009). Here, we report the synthesis and the of an MnIII complex with the metal octahedrally coordinated by two anions of 1,3-bis{[(1H-pyrrol-2-yl)methylidene]amino}propan-2-ol (Hbpmap), the title compound [Mn(bpmap)2]NO3·CH3OH.
2. Structural commentary
The title compound crystallizes with two crystallographically independent complex molecules in the ). Each MnIII ion is located on an inversion centre and is six-coordinated in a distorted octahedral geometry. Two bpmap ligands are coordinated to the MnIII ion in a tridentate and fac-type manner (Berends et al., 2012). That is, one O atom and one imine N of each bpmap ligand occupy in the equatorial plane and the other imine N atom is in the axial position. The pyrrole groups of both ligands are non-coordinating. Interestingly, the geometry of pyrrole groups, which results from different bpmap ligands, displays a trans conformation in the axial positions (Jeong et al., 2014). The average equatorial bond lengths, Mn1—Leq and Mn2—Leq, are 1.952 and 1.918 Å, respectively. The axial bond lengths, Mn1—N2 and Mn2—N6, are 2.318 (3) and 2.345 (3) Å, respectively. The axial bond lengths are much longer than the equatorial bond lengths, which can be attributed to a rather large Jahn–Teller distortion of the MnIII ion (Halcrow, 2013). The bite distance (O1⋯N2) and the bite angle (N2—Mn1—O1) of the five-membered chelate ring are 2.590 (4) Å and 83.07 (10)°, respectively, while O2⋯N6 and O2—Mn2—N6 are 2.715 (3) Å and 79.26 (9)°. There are intramolecular N—H⋯O hydrogen bonds between the pyrrole groups and the O atoms of the bpmap ligands (Fig. 1 and Table 1).
(Fig. 13. Supramolecular features
The packing in the structure involves N—H⋯O hydrogen bonds between the pyrrole groups and the non-coordinating nitrate anions (Table 1), giving chains along [10]. The hydroxy group of methanol and the nitrate ion are also connected by an O—H⋯O hydrogen bond (Fig. 2).
4. Database survey
A search of the Cambridge Structural Database (Version 5.35, November 2013 with 3 updates; Allen, 2002) indicates that only one CuII complex with the bpmap ligand has been reported (Borer & Sinn, 1998). This paper elucidates the synthesis of various pyrrole, imidazole, and salicylaldehyde derivatives and investigates the magnetic properties and chelating effects of Cu complexes.
4.1. Synthesis and crystallization
The bpmap ligand was prepared by a slight modification of the reported method (Borer & Sinn, 1998). 1,3-Diaminopropan-2-ol (1.50 g, 0.0166 mol) was dissolved in MeOH (40 mL) followed by the addition of pyrrole-2-carbaldehyde (3.17 g, 0.0333 mol). The resulting mixture was stirred overnight at room temperature. The solvent was evaporated and the residue was dissolved in CHCl3. The solution was washed by concentrated brine and dried with MgSO4. After evaporation of the solvents under reduced pressure, an orange powder was obtained and used for the preparation of the title compound without further purification (yield: 2.98 g, 73%). 1H NMR (400 MHz, DMSO-d6, 293 K): δ 3.40–3.44 (m, 4H), 3.65 (ddd, J = 0.8, 5.1, 11.7 Hz, 2H, pyr-NH), 3.87–3.93 (m, 1H), 6.10 (dd, J = 3.6, 6.4 Hz, 1H, pyr), 6.44 (dd, J = 1.52, 3.4 Hz, 1H, pyr), 6.87 (t, J = 1.8 Hz, 1H, pyr), 8.05 (s, 2H), 11.32 (s, 1H, –OH). The title compound was prepared as follows: to an MeOH solution (3 mL) of Mn(NO3)2·4H2O (102 mg, 0.406 mmol) was added dropwise an MeOH solution (3 mL) of bpmap (50 mg, 0.205 mmol). The colour became dark orange, and then the solution was stirred for 30 min at room temperature. Black crystals of the title compound were obtained by diffusion of diethyl ether into the dark-orange solution for several days, and were collected by filtration and washed with diethyl ether and dried in air (yield: 80 mg, 33%). IR (ATR, cm−1): 3341, 2948, 1614, 1385, 1306.
5. Refinement
Crystal data, data collection and structure . All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) and 0.95–0.99 Å (open-chain H atoms), N—H distances of 0.88 Å (ring H atoms) and O—H distances of 0.84 Å, and with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1023763
10.1107/S1600536814020406/is5374sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814020406/is5374Isup2.hkl
Pyrrolyl derivatives ligands have attracted considerable attention in chemistry and materials science because they can easily be used for the preparation of multifunctional metal complexes with various transition metal ions. These complexes have potential applications in catalysis, and as luminescent materials (Goff & Cosnier, 2011). For example, a CrI,III complex with a 2,5-dimethylpyrrole ligand has been investigated as a potential ethylene trimerization catalyst (Yang et al., 2014). Furthermore, zinc complexes containing various pyrrolyl substituents exhibit excellent luminescence properties due to the n–π* transitions in the electronic spectra of the pyrrolyl ligand precursors (Gomes et al., 2009). Here, we report the synthesis and the of a six-coordinated MnIII complex with 1,3-bis{[(1H-pyrrol-2-yl)methylidene]amino}propan-2-ol (Hbpmap), the title compound [Mn(bpmap)2]NO3·CH3OH.
The title compound crystallized with two crystallographically independent complex molecules in the
(Fig. 1). Each MnIII ion is located on an inversion centre and is six-coordinated in a distorted octahedral geometry. Two bpmap ligands are coordinated to the MnIII ion in a tridentate and fac-type manner (Berends et al., 2012). That is, one O atom and one imine N of each bpmap ligand occupy in the equatorial plane and the other imine N atom is in the axial position. The pyrrole groups of both ligands are not coordinated. Interestingly, the geometry of pyrrole groups, which results from different bpmap ligands, displays a conformation in the axial positions (Jeong et al., 2014). The average equatorial bond lengths, Mn1—Leq and Mn2—Leq, are 1.952 (2) and 1.918 (2) Å, respectively. The axial bond lengths, Mn1—N2 and Mn2—N6, are 2.318 (3) and 2.345 (3) Å, respectively. The axial bond lengths are much longer than the equatorial bond lengths, which can be attributed to a rather large Jahn–Teller distortion of the MnIII ion (Halcrow, 2013). The bite distance (O1···N2) and the bite angle (N2—Mn1—O1) of the five-membered chelate ring are 2.667 (1) Å [please check – PLATON gives 2.590 (4) Å] and 83.07 (10)°, respectively, while O2···N6 and O2—Mn2—N6 are 2.610 (1) Å [please check – PLATON gives 2.715 (3) Å] and 79.26 (9)°. There are intramolecular N—H···O hydrogen bonds between the pyrrole groups and the O atoms of the bpmap ligands (Fig. 1 and Table 1).The packing structure involves N—H···O hydrogen bonds between the pyrrole groups and the uncoordinated nitrate anions (Table 1), giving chains along [101]. The hydroxy group of methanol and the nitrate ion are also connected by an O—H···O hydrogen bond (Fig. 2).
A search of the Cambridge Structural Database (Version 5.35, November 2013 with 3 updates; Allen, 2002) indicates that only one CuII complex with the bpmap ligand has been reported (Borer & Sinn, 1998). This paper elucidates the synthesis of various pyrrole, imidazole, and salicylaldehyde derivatives and investigates the magnetic property and chelating effects of Cu complexes.
The bpmap ligand was prepared by a slight modification of the reported method (Borer & Sinn, 1998). 1,3-Diaminopropan-2-ol (1.50 g, 0.0166 mol) was dissolved in MeOH (40 ml) followed by the addition of pyrrole-2-carbaldehyde (3.17 g, 0.0333 mol). The resulting mixture was stirred overnight at room temperature. The solvent was evaporated and the residue was dissolved in CHCl3. The solution was washed by concentrated brine and dried with MgSO4. After evaporation of the solvents under reduced pressure, an orange powder was obtained and used for the preparation of the title compound without further purification (yield: 2.98 g, 73%). 1H NMR (400 MHz, DMSO, 293 K): δ 3.40–3.44 (m, 4H), 3.65 (ddd, J = 0.8, 5.1, 11.7 Hz, 2H, pyr-NH), 3.87–3.93 (m, 1H), 6.10 (dd, J = 3.6, 6.4 Hz, 1H, pyr), 6.44 (dd, J = 1.52, 3.4 Hz, 1H, pyr), 6.87 (t, J = 1.8 Hz, 1H, pyr), 8.05 (s, 2H), 11.32 (s, 1H, –OH). The title compound was prepared as follows: to an MeOH solution (3 ml) of Mn(NO3)2·4H2O (102 mg, 0.406 mmol) was added dropwise an MeOH solution (3 ml) of bpmap (50 mg, 0.205 mmol). The colour became dark orange, and then the solution was stirred for 30 min at room temperature. Black crystals of the title compound were obtained by diffusion of diethyl ether into the dark-orange solution for several days, and were collected by filtration and washed with diethyl ether and dried in air (yield: 80 mg, 33%). IR (ATR, cm-1): 3341, 2948, 1614, 1385, 1306.
Crystal data, data collection and structure
details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) and 0.95–0.99 Å (open-chain H atoms), N—H distances of 0.88 Å (ring H atoms) and O—H distances of 0.84 Å, and with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms.Data collection: PAL ADSC Quantum-210 ADX Program (Arvai & Nielsen, 1983); cell
HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS2013/1 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The structure of the two independent MnIII complex cations in the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms bonded to C atoms have been omitted for clarity. Intramolecular N—H···O hydrogen bonds are shown as red dashed lines. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z.] | |
Fig. 2. A view of the crystal packing structure of the title compound, with N—H···O hydrogen bonds drawn as red (intramolecular) and blue (intermolecular) dashed lines, and O—H···O hydrogen bonds drawn as black dashed lines. |
[Mn(C13H15N4O)2]NO3·CH4O | Z = 2 |
Mr = 635.57 | F(000) = 664 |
Triclinic, P1 | Dx = 1.447 Mg m−3 |
a = 10.516 (2) Å | Synchrotron radiation, λ = 0.62998 Å |
b = 10.887 (2) Å | Cell parameters from 36688 reflections |
c = 14.981 (3) Å | θ = 0.4–33.6° |
α = 76.05 (3)° | µ = 0.37 mm−1 |
β = 82.51 (3)° | T = 100 K |
γ = 61.22 (3)° | Needle, black |
V = 1458.7 (7) Å3 | 0.08 × 0.02 × 0.02 mm |
ADSC Q210 CCD area detector diffractometer | 4716 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.037 |
ω scan | θmax = 26.0°, θmin = 2.0° |
Absorption correction: empirical (using intensity measurements) (HKL-3000 SCALEPACK; Otwinowski & Minor, 1997) | h = −14→14 |
Tmin = 0.971, Tmax = 0.993 | k = −14→14 |
15140 measured reflections | l = −20→20 |
7679 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.068 | w = 1/[σ2(Fo2) + (0.1401P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.223 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 1.35 e Å−3 |
7679 reflections | Δρmin = −0.69 e Å−3 |
394 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.023 (6) |
[Mn(C13H15N4O)2]NO3·CH4O | γ = 61.22 (3)° |
Mr = 635.57 | V = 1458.7 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.516 (2) Å | Synchrotron radiation, λ = 0.62998 Å |
b = 10.887 (2) Å | µ = 0.37 mm−1 |
c = 14.981 (3) Å | T = 100 K |
α = 76.05 (3)° | 0.08 × 0.02 × 0.02 mm |
β = 82.51 (3)° |
ADSC Q210 CCD area detector diffractometer | 7679 independent reflections |
Absorption correction: empirical (using intensity measurements) (HKL-3000 SCALEPACK; Otwinowski & Minor, 1997) | 4716 reflections with I > 2σ(I) |
Tmin = 0.971, Tmax = 0.993 | Rint = 0.037 |
15140 measured reflections |
R[F2 > 2σ(F2)] = 0.068 | 0 restraints |
wR(F2) = 0.223 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.35 e Å−3 |
7679 reflections | Δρmin = −0.69 e Å−3 |
394 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.5000 | 0.5000 | 0.5000 | 0.0337 (2) | |
Mn2 | 1.0000 | 0.5000 | 0.0000 | 0.0370 (2) | |
N1 | 0.3876 (3) | 0.1435 (3) | 0.3766 (2) | 0.0470 (7) | |
H1A | 0.4305 | 0.1641 | 0.3249 | 0.056* | |
N2 | 0.4163 (3) | 0.3654 (3) | 0.51136 (17) | 0.0374 (6) | |
N3 | 0.2623 (3) | 0.6564 (3) | 0.53278 (18) | 0.0425 (6) | |
N4 | 0.2438 (3) | 0.7984 (3) | 0.3331 (2) | 0.0432 (6) | |
H4 | 0.3286 | 0.7212 | 0.3413 | 0.052* | |
N5 | 1.0374 (3) | 0.5081 (3) | 0.23664 (18) | 0.0399 (6) | |
H5A | 1.0444 | 0.4558 | 0.1979 | 0.048* | |
N6 | 0.9404 (3) | 0.7068 (3) | 0.05388 (18) | 0.0392 (6) | |
N7 | 0.7813 (3) | 0.5863 (3) | 0.00379 (19) | 0.0403 (6) | |
N8 | 0.4871 (3) | 0.5318 (3) | 0.1303 (2) | 0.0497 (7) | |
H8 | 0.5362 | 0.4546 | 0.1719 | 0.060* | |
O1 | 0.4992 (3) | 0.4489 (3) | 0.63029 (15) | 0.0420 (5) | |
O2 | 0.9660 (2) | 0.6340 (2) | −0.11102 (15) | 0.0406 (5) | |
C1 | 0.3287 (4) | 0.0528 (4) | 0.3925 (3) | 0.0530 (9) | |
H1 | 0.3268 | 0.0021 | 0.3497 | 0.064* | |
C2 | 0.2728 (4) | 0.0467 (4) | 0.4801 (3) | 0.0543 (9) | |
H2 | 0.2259 | −0.0090 | 0.5088 | 0.065* | |
C3 | 0.2972 (4) | 0.1374 (4) | 0.5201 (3) | 0.0501 (8) | |
H3 | 0.2696 | 0.1545 | 0.5807 | 0.060* | |
C4 | 0.3697 (4) | 0.1984 (3) | 0.4542 (2) | 0.0411 (7) | |
C5 | 0.4203 (3) | 0.2987 (3) | 0.4509 (2) | 0.0394 (7) | |
H5 | 0.4647 | 0.3200 | 0.3940 | 0.047* | |
C6 | 0.3538 (4) | 0.3449 (4) | 0.6050 (2) | 0.0476 (8) | |
H6A | 0.4084 | 0.2443 | 0.6380 | 0.057* | |
H6B | 0.2511 | 0.3679 | 0.6014 | 0.057* | |
C7 | 0.3654 (4) | 0.4475 (4) | 0.6559 (2) | 0.0439 (7) | |
H7 | 0.3629 | 0.4117 | 0.7238 | 0.053* | |
C8 | 0.2444 (4) | 0.5988 (4) | 0.6308 (2) | 0.0460 (8) | |
H8A | 0.1492 | 0.5994 | 0.6413 | 0.055* | |
H8B | 0.2483 | 0.6589 | 0.6695 | 0.055* | |
C9 | 0.1474 (4) | 0.7678 (4) | 0.4932 (2) | 0.0448 (8) | |
H9 | 0.0616 | 0.8030 | 0.5298 | 0.054* | |
C10 | 0.1401 (4) | 0.8415 (4) | 0.3988 (2) | 0.0418 (7) | |
C11 | 0.0259 (4) | 0.9673 (4) | 0.3590 (3) | 0.0494 (8) | |
H11 | −0.0618 | 1.0217 | 0.3894 | 0.059* | |
C12 | 0.0602 (4) | 1.0018 (4) | 0.2666 (3) | 0.0514 (9) | |
H12 | 0.0019 | 1.0833 | 0.2222 | 0.062* | |
C13 | 0.1962 (4) | 0.8930 (4) | 0.2529 (2) | 0.0506 (9) | |
H13 | 0.2483 | 0.8859 | 0.1959 | 0.061* | |
C14 | 1.0783 (4) | 0.4581 (4) | 0.3259 (2) | 0.0440 (8) | |
H14 | 1.1192 | 0.3605 | 0.3567 | 0.053* | |
C15 | 1.0514 (4) | 0.5702 (4) | 0.3644 (2) | 0.0478 (8) | |
H15 | 1.0698 | 0.5646 | 0.4260 | 0.057* | |
C16 | 0.9909 (4) | 0.6960 (4) | 0.2954 (2) | 0.0436 (7) | |
H16 | 0.9614 | 0.7908 | 0.3020 | 0.052* | |
C17 | 0.9829 (3) | 0.6557 (3) | 0.2167 (2) | 0.0391 (7) | |
C18 | 0.9344 (3) | 0.7474 (3) | 0.1285 (2) | 0.0390 (7) | |
H18 | 0.8941 | 0.8474 | 0.1251 | 0.047* | |
C19 | 0.8833 (4) | 0.8196 (3) | −0.0296 (2) | 0.0448 (8) | |
H19A | 0.9579 | 0.8485 | −0.0578 | 0.054* | |
H19B | 0.7971 | 0.9048 | −0.0137 | 0.054* | |
C20 | 0.8422 (4) | 0.7605 (3) | −0.0969 (2) | 0.0431 (7) | |
H20 | 0.8145 | 0.8315 | −0.1567 | 0.052* | |
C21 | 0.7186 (4) | 0.7242 (3) | −0.0626 (2) | 0.0426 (7) | |
H21A | 0.6417 | 0.7999 | −0.0324 | 0.051* | |
H21B | 0.6757 | 0.7162 | −0.1146 | 0.051* | |
C22 | 0.7018 (4) | 0.5366 (3) | 0.0565 (2) | 0.0413 (7) | |
H22 | 0.7532 | 0.4472 | 0.0971 | 0.050* | |
C23 | 0.5464 (4) | 0.5981 (4) | 0.0621 (2) | 0.0435 (7) | |
C24 | 0.4318 (4) | 0.7159 (4) | 0.0125 (3) | 0.0488 (8) | |
H24 | 0.4395 | 0.7834 | −0.0386 | 0.059* | |
C25 | 0.3023 (4) | 0.7167 (4) | 0.0518 (3) | 0.0542 (9) | |
H25 | 0.2065 | 0.7835 | 0.0318 | 0.065* | |
C26 | 0.3408 (4) | 0.6038 (5) | 0.1238 (3) | 0.0587 (10) | |
H26 | 0.2751 | 0.5789 | 0.1637 | 0.070* | |
N9 | 0.6664 (4) | 0.1756 (3) | 0.2130 (2) | 0.0536 (8) | |
O3 | 0.7146 (4) | 0.0487 (3) | 0.2126 (3) | 0.0847 (10) | |
O4 | 0.5335 (4) | 0.2489 (3) | 0.2351 (2) | 0.0736 (9) | |
O5 | 0.7396 (4) | 0.2393 (3) | 0.1937 (2) | 0.0816 (10) | |
C27 | 0.5483 (5) | 0.8915 (5) | 0.1434 (3) | 0.0647 (11) | |
H27A | 0.5612 | 0.9497 | 0.0855 | 0.097* | |
H27B | 0.4776 | 0.8609 | 0.1351 | 0.097* | |
H27C | 0.6414 | 0.8070 | 0.1616 | 0.097* | |
O6 | 0.4984 (4) | 0.9716 (4) | 0.2111 (2) | 0.0767 (9) | |
H6 | 0.5689 | 0.9692 | 0.2335 | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0435 (4) | 0.0353 (4) | 0.0310 (3) | −0.0242 (3) | −0.0070 (3) | −0.0055 (2) |
Mn2 | 0.0459 (4) | 0.0355 (4) | 0.0377 (4) | −0.0254 (3) | −0.0034 (3) | −0.0060 (3) |
N1 | 0.0617 (18) | 0.0434 (16) | 0.0475 (16) | −0.0297 (14) | −0.0076 (13) | −0.0146 (12) |
N2 | 0.0460 (15) | 0.0404 (14) | 0.0355 (13) | −0.0270 (12) | −0.0055 (11) | −0.0069 (10) |
N3 | 0.0583 (17) | 0.0484 (16) | 0.0352 (14) | −0.0351 (14) | −0.0027 (12) | −0.0098 (11) |
N4 | 0.0473 (15) | 0.0349 (14) | 0.0526 (16) | −0.0219 (12) | −0.0139 (13) | −0.0054 (11) |
N5 | 0.0443 (15) | 0.0419 (15) | 0.0417 (14) | −0.0248 (12) | −0.0028 (11) | −0.0116 (11) |
N6 | 0.0475 (15) | 0.0378 (14) | 0.0406 (14) | −0.0263 (12) | −0.0022 (11) | −0.0074 (11) |
N7 | 0.0485 (15) | 0.0392 (14) | 0.0425 (14) | −0.0268 (12) | −0.0022 (12) | −0.0099 (11) |
N8 | 0.0544 (18) | 0.0510 (18) | 0.0534 (17) | −0.0321 (15) | 0.0050 (14) | −0.0145 (14) |
O1 | 0.0514 (13) | 0.0506 (13) | 0.0365 (11) | −0.0325 (11) | −0.0047 (10) | −0.0092 (9) |
O2 | 0.0518 (13) | 0.0394 (12) | 0.0390 (11) | −0.0280 (11) | −0.0031 (10) | −0.0068 (9) |
C1 | 0.056 (2) | 0.046 (2) | 0.070 (2) | −0.0280 (17) | −0.0115 (18) | −0.0204 (17) |
C2 | 0.054 (2) | 0.051 (2) | 0.076 (3) | −0.0359 (18) | 0.0054 (18) | −0.0225 (18) |
C3 | 0.053 (2) | 0.047 (2) | 0.063 (2) | −0.0301 (17) | 0.0031 (17) | −0.0195 (16) |
C4 | 0.0455 (17) | 0.0372 (16) | 0.0471 (18) | −0.0219 (14) | −0.0083 (14) | −0.0103 (13) |
C5 | 0.0455 (17) | 0.0408 (17) | 0.0385 (16) | −0.0242 (14) | −0.0054 (13) | −0.0082 (13) |
C6 | 0.061 (2) | 0.051 (2) | 0.0452 (18) | −0.0369 (18) | 0.0021 (16) | −0.0125 (15) |
C7 | 0.0526 (19) | 0.0461 (18) | 0.0409 (17) | −0.0294 (16) | −0.0019 (14) | −0.0075 (14) |
C8 | 0.058 (2) | 0.051 (2) | 0.0369 (17) | −0.0315 (17) | −0.0039 (14) | −0.0056 (14) |
C9 | 0.052 (2) | 0.0451 (19) | 0.0491 (19) | −0.0303 (16) | −0.0017 (15) | −0.0136 (15) |
C10 | 0.058 (2) | 0.0419 (17) | 0.0392 (16) | −0.0331 (16) | −0.0110 (14) | −0.0049 (13) |
C11 | 0.0506 (19) | 0.048 (2) | 0.060 (2) | −0.0288 (17) | −0.0009 (16) | −0.0181 (16) |
C12 | 0.062 (2) | 0.0414 (19) | 0.054 (2) | −0.0277 (17) | −0.0198 (17) | 0.0022 (15) |
C13 | 0.066 (2) | 0.059 (2) | 0.0411 (18) | −0.042 (2) | −0.0040 (16) | −0.0065 (15) |
C14 | 0.0443 (18) | 0.0463 (19) | 0.0465 (18) | −0.0240 (15) | −0.0103 (14) | −0.0067 (14) |
C15 | 0.055 (2) | 0.057 (2) | 0.0446 (18) | −0.0347 (18) | −0.0076 (15) | −0.0107 (15) |
C16 | 0.0478 (18) | 0.0464 (19) | 0.0471 (18) | −0.0272 (15) | −0.0020 (14) | −0.0158 (14) |
C17 | 0.0416 (16) | 0.0408 (17) | 0.0445 (17) | −0.0262 (14) | −0.0005 (13) | −0.0102 (13) |
C18 | 0.0435 (17) | 0.0384 (16) | 0.0450 (17) | −0.0249 (14) | −0.0028 (13) | −0.0118 (13) |
C19 | 0.061 (2) | 0.0343 (16) | 0.0458 (18) | −0.0278 (16) | −0.0096 (15) | −0.0033 (13) |
C20 | 0.057 (2) | 0.0350 (16) | 0.0403 (17) | −0.0245 (15) | −0.0095 (15) | −0.0026 (13) |
C21 | 0.0502 (19) | 0.0370 (17) | 0.0445 (18) | −0.0231 (15) | −0.0075 (14) | −0.0052 (13) |
C22 | 0.0516 (19) | 0.0383 (17) | 0.0437 (17) | −0.0270 (15) | −0.0043 (14) | −0.0102 (13) |
C23 | 0.0526 (19) | 0.0488 (19) | 0.0453 (18) | −0.0334 (16) | 0.0038 (14) | −0.0186 (14) |
C24 | 0.053 (2) | 0.053 (2) | 0.0489 (19) | −0.0288 (17) | −0.0054 (16) | −0.0147 (15) |
C25 | 0.047 (2) | 0.060 (2) | 0.065 (2) | −0.0272 (18) | 0.0007 (17) | −0.0254 (19) |
C26 | 0.052 (2) | 0.064 (3) | 0.077 (3) | −0.036 (2) | 0.0161 (19) | −0.033 (2) |
N9 | 0.060 (2) | 0.0422 (17) | 0.062 (2) | −0.0288 (16) | −0.0171 (16) | 0.0033 (14) |
O3 | 0.091 (2) | 0.0600 (19) | 0.115 (3) | −0.0362 (18) | −0.017 (2) | −0.0284 (19) |
O4 | 0.106 (3) | 0.0543 (17) | 0.0586 (18) | −0.0387 (18) | 0.0115 (17) | −0.0116 (13) |
O5 | 0.091 (2) | 0.0552 (18) | 0.104 (3) | −0.0405 (18) | −0.040 (2) | 0.0090 (16) |
C27 | 0.061 (2) | 0.077 (3) | 0.067 (3) | −0.032 (2) | 0.005 (2) | −0.038 (2) |
O6 | 0.086 (2) | 0.082 (2) | 0.075 (2) | −0.045 (2) | 0.0010 (18) | −0.0264 (17) |
Mn1—O1 | 1.896 (2) | C8—H8A | 0.9900 |
Mn1—N2 | 2.008 (2) | C8—H8B | 0.9900 |
Mn1—N3 | 2.318 (3) | C9—C10 | 1.440 (5) |
Mn2—O2 | 1.872 (2) | C9—H9 | 0.9500 |
Mn2—N7 | 2.021 (3) | C10—C11 | 1.372 (5) |
Mn2—N6 | 2.345 (3) | C11—C12 | 1.391 (5) |
N1—C1 | 1.361 (4) | C11—H11 | 0.9500 |
N1—C4 | 1.383 (4) | C12—C13 | 1.379 (6) |
N1—H1A | 0.8800 | C12—H12 | 0.9500 |
N2—C5 | 1.276 (4) | C13—H13 | 0.9500 |
N2—C6 | 1.483 (4) | C14—C15 | 1.366 (5) |
N3—C9 | 1.309 (4) | C14—H14 | 0.9500 |
N3—C8 | 1.477 (4) | C15—C16 | 1.414 (5) |
N4—C13 | 1.348 (4) | C15—H15 | 0.9500 |
N4—C10 | 1.352 (5) | C16—C17 | 1.379 (4) |
N4—H4 | 0.8800 | C16—H16 | 0.9500 |
N5—C14 | 1.357 (4) | C17—C18 | 1.432 (4) |
N5—C17 | 1.387 (4) | C18—H18 | 0.9500 |
N5—H5A | 0.8800 | C19—C20 | 1.520 (4) |
N6—C18 | 1.282 (4) | C19—H19A | 0.9900 |
N6—C19 | 1.476 (4) | C19—H19B | 0.9900 |
N7—C22 | 1.294 (4) | C20—C21 | 1.528 (5) |
N7—C21 | 1.474 (4) | C20—H20 | 1.0000 |
N8—C26 | 1.353 (5) | C21—H21A | 0.9900 |
N8—C23 | 1.366 (4) | C21—H21B | 0.9900 |
N8—H8 | 0.8800 | C22—C23 | 1.436 (5) |
O1—C7 | 1.416 (4) | C22—H22 | 0.9500 |
O2—C20 | 1.407 (4) | C23—C24 | 1.391 (5) |
C1—C2 | 1.366 (6) | C24—C25 | 1.409 (5) |
C1—H1 | 0.9500 | C24—H24 | 0.9500 |
C2—C3 | 1.404 (5) | C25—C26 | 1.354 (6) |
C2—H2 | 0.9500 | C25—H25 | 0.9500 |
C3—C4 | 1.405 (5) | C26—H26 | 0.9500 |
C3—H3 | 0.9500 | N9—O3 | 1.223 (4) |
C4—C5 | 1.416 (4) | N9—O5 | 1.231 (4) |
C5—H5 | 0.9500 | N9—O4 | 1.278 (4) |
C6—C7 | 1.553 (4) | C27—O6 | 1.382 (5) |
C6—H6A | 0.9900 | C27—H27A | 0.9800 |
C6—H6B | 0.9900 | C27—H27B | 0.9800 |
C7—C8 | 1.511 (5) | C27—H27C | 0.9800 |
C7—H7 | 1.0000 | O6—H6 | 0.8400 |
O1i—Mn1—O1 | 180.0 | C7—C8—H8B | 110.0 |
O1i—Mn1—N2 | 96.93 (10) | H8A—C8—H8B | 108.4 |
O1—Mn1—N2 | 83.07 (10) | N3—C9—C10 | 125.5 (3) |
N2—Mn1—N2i | 180.0 | N3—C9—H9 | 117.2 |
O1i—Mn1—N3 | 100.41 (10) | C10—C9—H9 | 117.2 |
O1—Mn1—N3 | 79.59 (10) | N4—C10—C11 | 107.7 (3) |
N2—Mn1—N3 | 82.41 (10) | N4—C10—C9 | 126.2 (3) |
N2i—Mn1—N3 | 97.59 (10) | C11—C10—C9 | 126.1 (3) |
N3—Mn1—N3i | 180.0 | C10—C11—C12 | 108.5 (3) |
O2ii—Mn2—O2 | 180.0 | C10—C11—H11 | 125.8 |
O2ii—Mn2—N7 | 96.98 (11) | C12—C11—H11 | 125.8 |
O2—Mn2—N7 | 83.02 (11) | C13—C12—C11 | 105.6 (3) |
N7—Mn2—N7ii | 180.0 | C13—C12—H12 | 127.2 |
O2ii—Mn2—N6 | 100.74 (9) | C11—C12—H12 | 127.2 |
O2—Mn2—N6 | 79.26 (9) | N4—C13—C12 | 109.2 (3) |
N7—Mn2—N6 | 80.35 (10) | N4—C13—H13 | 125.4 |
N7ii—Mn2—N6 | 99.65 (10) | C12—C13—H13 | 125.4 |
N6—Mn2—N6ii | 180.0 | N5—C14—C15 | 109.3 (3) |
C1—N1—C4 | 109.4 (3) | N5—C14—H14 | 125.4 |
C1—N1—H1A | 125.3 | C15—C14—H14 | 125.4 |
C4—N1—H1A | 125.3 | C14—C15—C16 | 107.2 (3) |
C5—N2—C6 | 122.7 (3) | C14—C15—H15 | 126.4 |
C5—N2—Mn1 | 127.1 (2) | C16—C15—H15 | 126.4 |
C6—N2—Mn1 | 110.10 (19) | C17—C16—C15 | 107.2 (3) |
C9—N3—C8 | 116.0 (3) | C17—C16—H16 | 126.4 |
C9—N3—Mn1 | 141.1 (2) | C15—C16—H16 | 126.4 |
C8—N3—Mn1 | 102.9 (2) | C16—C17—N5 | 107.7 (3) |
C13—N4—C10 | 109.0 (3) | C16—C17—C18 | 126.6 (3) |
C13—N4—H4 | 125.5 | N5—C17—C18 | 125.6 (3) |
C10—N4—H4 | 125.5 | N6—C18—C17 | 125.9 (3) |
C14—N5—C17 | 108.5 (3) | N6—C18—H18 | 117.0 |
C14—N5—H5A | 125.7 | C17—C18—H18 | 117.0 |
C17—N5—H5A | 125.7 | N6—C19—C20 | 108.3 (3) |
C18—N6—C19 | 117.2 (3) | N6—C19—H19A | 110.0 |
C18—N6—Mn2 | 140.8 (2) | C20—C19—H19A | 110.0 |
C19—N6—Mn2 | 101.82 (18) | N6—C19—H19B | 110.0 |
C22—N7—C21 | 122.4 (3) | C20—C19—H19B | 110.0 |
C22—N7—Mn2 | 128.0 (2) | H19A—C19—H19B | 108.4 |
C21—N7—Mn2 | 109.6 (2) | O2—C20—C19 | 107.1 (3) |
C26—N8—C23 | 109.2 (3) | O2—C20—C21 | 108.2 (2) |
C26—N8—H8 | 125.4 | C19—C20—C21 | 113.9 (3) |
C23—N8—H8 | 125.4 | O2—C20—H20 | 109.2 |
C7—O1—Mn1 | 105.75 (18) | C19—C20—H20 | 109.2 |
C20—O2—Mn2 | 106.92 (19) | C21—C20—H20 | 109.2 |
N1—C1—C2 | 108.9 (3) | N7—C21—C20 | 107.0 (3) |
N1—C1—H1 | 125.5 | N7—C21—H21A | 110.3 |
C2—C1—H1 | 125.5 | C20—C21—H21A | 110.3 |
C1—C2—C3 | 107.7 (3) | N7—C21—H21B | 110.3 |
C1—C2—H2 | 126.2 | C20—C21—H21B | 110.3 |
C3—C2—H2 | 126.2 | H21A—C21—H21B | 108.6 |
C2—C3—C4 | 107.4 (3) | N7—C22—C23 | 128.8 (3) |
C2—C3—H3 | 126.3 | N7—C22—H22 | 115.6 |
C4—C3—H3 | 126.3 | C23—C22—H22 | 115.6 |
N1—C4—C3 | 106.5 (3) | N8—C23—C24 | 106.9 (3) |
N1—C4—C5 | 118.3 (3) | N8—C23—C22 | 117.8 (3) |
C3—C4—C5 | 135.1 (3) | C24—C23—C22 | 135.3 (3) |
N2—C5—C4 | 130.9 (3) | C23—C24—C25 | 107.5 (4) |
N2—C5—H5 | 114.6 | C23—C24—H24 | 126.3 |
C4—C5—H5 | 114.6 | C25—C24—H24 | 126.3 |
N2—C6—C7 | 106.8 (3) | C26—C25—C24 | 106.7 (4) |
N2—C6—H6A | 110.4 | C26—C25—H25 | 126.6 |
C7—C6—H6A | 110.4 | C24—C25—H25 | 126.6 |
N2—C6—H6B | 110.4 | N8—C26—C25 | 109.7 (4) |
C7—C6—H6B | 110.4 | N8—C26—H26 | 125.2 |
H6A—C6—H6B | 108.6 | C25—C26—H26 | 125.2 |
O1—C7—C8 | 108.4 (3) | O3—N9—O5 | 123.6 (4) |
O1—C7—C6 | 108.2 (3) | O3—N9—O4 | 119.8 (3) |
C8—C7—C6 | 112.0 (3) | O5—N9—O4 | 116.6 (3) |
O1—C7—H7 | 109.4 | O6—C27—H27A | 109.5 |
C8—C7—H7 | 109.4 | O6—C27—H27B | 109.5 |
C6—C7—H7 | 109.4 | H27A—C27—H27B | 109.5 |
N3—C8—C7 | 108.4 (3) | O6—C27—H27C | 109.5 |
N3—C8—H8A | 110.0 | H27A—C27—H27C | 109.5 |
C7—C8—H8A | 110.0 | H27B—C27—H27C | 109.5 |
N3—C8—H8B | 110.0 | C27—O6—H6 | 109.5 |
N2—Mn1—O1—C7 | −41.9 (2) | C9—C10—C11—C12 | −179.0 (3) |
N2i—Mn1—O1—C7 | 138.1 (2) | C10—C11—C12—C13 | 0.5 (4) |
N3—Mn1—O1—C7 | 41.56 (19) | C10—N4—C13—C12 | 1.3 (4) |
N3i—Mn1—O1—C7 | −138.44 (19) | C11—C12—C13—N4 | −1.1 (4) |
N7—Mn2—O2—C20 | 39.63 (19) | C17—N5—C14—C15 | 0.0 (4) |
N7ii—Mn2—O2—C20 | −140.37 (19) | N5—C14—C15—C16 | −0.1 (4) |
N6—Mn2—O2—C20 | −41.82 (18) | C14—C15—C16—C17 | 0.1 (4) |
N6ii—Mn2—O2—C20 | 138.18 (18) | C15—C16—C17—N5 | −0.1 (4) |
C4—N1—C1—C2 | −0.3 (4) | C15—C16—C17—C18 | −177.1 (3) |
N1—C1—C2—C3 | 0.3 (4) | C14—N5—C17—C16 | 0.1 (4) |
C1—C2—C3—C4 | −0.1 (4) | C14—N5—C17—C18 | 177.1 (3) |
C1—N1—C4—C3 | 0.3 (4) | C19—N6—C18—C17 | 179.6 (3) |
C1—N1—C4—C5 | −178.3 (3) | Mn2—N6—C18—C17 | 6.1 (6) |
C2—C3—C4—N1 | −0.1 (4) | C16—C17—C18—N6 | 172.9 (3) |
C2—C3—C4—C5 | 178.1 (4) | N5—C17—C18—N6 | −3.6 (5) |
C6—N2—C5—C4 | 1.1 (6) | C18—N6—C19—C20 | −156.8 (3) |
Mn1—N2—C5—C4 | 177.2 (3) | Mn2—N6—C19—C20 | 19.0 (3) |
N1—C4—C5—N2 | 179.3 (3) | Mn2—O2—C20—C19 | 67.7 (3) |
C3—C4—C5—N2 | 1.4 (7) | Mn2—O2—C20—C21 | −55.4 (3) |
C5—N2—C6—C7 | −178.4 (3) | N6—C19—C20—O2 | −55.2 (4) |
Mn1—N2—C6—C7 | 5.0 (3) | N6—C19—C20—C21 | 64.3 (4) |
Mn1—O1—C7—C8 | −66.4 (3) | C22—N7—C21—C20 | 168.6 (3) |
Mn1—O1—C7—C6 | 55.3 (3) | Mn2—N7—C21—C20 | −9.4 (3) |
N2—C6—C7—O1 | −38.4 (4) | O2—C20—C21—N7 | 41.0 (3) |
N2—C6—C7—C8 | 81.0 (3) | C19—C20—C21—N7 | −77.9 (3) |
C9—N3—C8—C7 | 161.2 (3) | C21—N7—C22—C23 | 0.4 (5) |
Mn1—N3—C8—C7 | −16.6 (3) | Mn2—N7—C22—C23 | 178.1 (2) |
O1—C7—C8—N3 | 53.1 (3) | C26—N8—C23—C24 | 0.5 (4) |
C6—C7—C8—N3 | −66.2 (3) | C26—N8—C23—C22 | −179.2 (3) |
C8—N3—C9—C10 | 179.7 (3) | N7—C22—C23—N8 | −173.4 (3) |
Mn1—N3—C9—C10 | −3.6 (6) | N7—C22—C23—C24 | 7.0 (6) |
C13—N4—C10—C11 | −1.0 (4) | N8—C23—C24—C25 | −1.1 (4) |
C13—N4—C10—C9 | 178.3 (3) | C22—C23—C24—C25 | 178.6 (3) |
N3—C9—C10—N4 | 8.5 (5) | C23—C24—C25—C26 | 1.2 (4) |
N3—C9—C10—C11 | −172.3 (3) | C23—N8—C26—C25 | 0.3 (4) |
N4—C10—C11—C12 | 0.3 (4) | C24—C25—C26—N8 | −0.9 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4 | 0.88 | 1.96 | 2.800 (5) | 160 |
N8—H8···O5 | 0.88 | 2.27 | 3.025 (5) | 144 |
N4—H4···O1i | 0.88 | 1.87 | 2.743 (4) | 174 |
N5—H5A···O2ii | 0.88 | 1.85 | 2.723 (3) | 172 |
O6—H6···O3iii | 0.84 | 2.05 | 2.781 (6) | 145 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z; (iii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4 | 0.88 | 1.96 | 2.800 (5) | 160 |
N8—H8···O5 | 0.88 | 2.27 | 3.025 (5) | 144 |
N4—H4···O1i | 0.88 | 1.87 | 2.743 (4) | 174 |
N5—H5A···O2ii | 0.88 | 1.85 | 2.723 (3) | 172 |
O6—H6···O3iii | 0.84 | 2.05 | 2.781 (6) | 145 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C13H15N4O)2]NO3·CH4O |
Mr | 635.57 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 10.516 (2), 10.887 (2), 14.981 (3) |
α, β, γ (°) | 76.05 (3), 82.51 (3), 61.22 (3) |
V (Å3) | 1458.7 (7) |
Z | 2 |
Radiation type | Synchrotron, λ = 0.62998 Å |
µ (mm−1) | 0.37 |
Crystal size (mm) | 0.08 × 0.02 × 0.02 |
Data collection | |
Diffractometer | ADSC Q210 CCD area detector diffractometer |
Absorption correction | Empirical (using intensity measurements) (HKL-3000 SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.971, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15140, 7679, 4716 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.696 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.068, 0.223, 1.04 |
No. of reflections | 7679 |
No. of parameters | 394 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.35, −0.69 |
Computer programs: PAL ADSC Quantum-210 ADX Program (Arvai & Nielsen, 1983), HKL3000sm (Otwinowski & Minor, 1997), SHELXS2013/1 (Sheldrick, 2008), SHELXL2014/6 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).
Acknowledgements
This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2002507) and supported by the Institute for Basic Science (IBS, IBS-R007-D1-2013-a01). X-ray crystallography at the PLS-II 2 D-SMC beamline was supported in part by MSIP and POSTECH.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA. Google Scholar
Berends, H.-M., Manke, A.-M., Näther, C., Tuczek, F. & Kurz, P. (2012). Dalton Trans. 41, 6215–6224. Web of Science CSD CrossRef CAS PubMed Google Scholar
Borer, L. L. & Sinn, E. (1998). Inorg. Chim. Acta, 142, 197–199. CSD CrossRef Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goff, A. L. & Cosnier, S. (2011). J. Mater. Chem. 21, 3910–3915. Google Scholar
Gomes, C. S. B., Gomes, P. T., Duarte, M. T., Paolo, R. E., MaÇanita, A. L. & Calhorda, M. J. (2009). Inorg. Chem. 48, 11176–11186. Web of Science CSD CrossRef PubMed CAS Google Scholar
Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784–1795. Web of Science CrossRef CAS PubMed Google Scholar
Jeong, A. R., Shin, J. W., Kim, B. G. & Min, K. S. (2014). Bull. Korean Chem. Soc. 35, 273–276. Web of Science CSD CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press, New York. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, Y., Liu, Z., Cheng, R., He, X. & Liu, B. (2014). Organometallics, 33, 2599–2607. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.