research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 210-212

Crystal structure of bis­­(1,3-bis­­{[(1H-pyrrol-2-yl)methyl­­idene]amino-κN}propan-2-olato-κO)manganese(III) nitrate methanol monosolvate

aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and bBeamline Department, Pohang Accelerator Laboratory/POSTECH 80, Pohang 790-784, South Korea
*Correspondence e-mail: dmoon@postech.ac.kr

Edited by H. Ishida, Okayama University, Japan (Received 4 September 2014; accepted 11 September 2014; online 17 September 2014)

The asymmetric unit of the title compound, [Mn(C13H15N4O)2]NO3·CH3OH, contains two independent complex cations, in each of which the MnIII ion is located on an inversion centre. The MnIII ion is coordinated by four N and two O atoms from two 1,3-bis­{[(1H-pyrrol-2-yl)methyl­idene]amino}­propan-2-olate ligands, resulting in a distorted octa­hedral geometry. The average Mn—ligand bond lengths in the two complex mol­ecules are 2.074 and 2.079 Å. In the crystal, inter­molecular N—H⋯O hydrogen bonds between the pyrrole group of the ligand and the non-coordinating nitrate ion give rise to a chain structure along [10-1]. The methanol solvent mol­ecule and the nitrate ion are connected by an O—H⋯O hydrogen bond.

1. Chemical context

Pyrrolyl derivatives ligands have attracted considerable attention in chemistry and materials science because they can easily be used for the preparation of multifunctional metal complexes with various transition metal ions. These complexes have potential applications in catalysis, and as luminescent materials (Goff & Cosnier, 2011[Goff, A. L. & Cosnier, S. (2011). J. Mater. Chem. 21, 3910-3915.]). For example, a CrI,III complex with a 2,5-di­methyl­pyrrole ligand has been investigated as a potential ethyl­ene trimerization catalyst (Yang et al., 2014[Yang, Y., Liu, Z., Cheng, R., He, X. & Liu, B. (2014). Organometallics, 33, 2599-2607.]). Furthermore, zinc complexes containing various pyrrolyl substituents exhibit excellent luminescence properties due to the nπ* transitions in the electronic spectra of the pyrrolyl ligand precursors (Gomes et al., 2009[Gomes, C. S. B., Gomes, P. T., Duarte, M. T., Paolo, R. E., MaÇanita, A. L. & Calhorda, M. J. (2009). Inorg. Chem. 48, 11176-11186.]). Here, we report the synthesis and the crystal structure of an MnIII complex with the metal octahedrally coordinated by two anions of 1,3-bis­{[(1H-pyrrol-2-yl)methyl­idene]amino}­prop­an-2-ol (Hbpmap), the title compound [Mn(bpmap)2]NO3·CH3OH.

[Scheme 1]

2. Structural commentary

The title compound crystallizes with two crystallographically independent complex mol­ecules in the asymmetric unit (Fig. 1[link]). Each MnIII ion is located on an inversion centre and is six-coordinated in a distorted octa­hedral geometry. Two bpmap ligands are coordinated to the MnIII ion in a tridentate and fac-type manner (Berends et al., 2012[Berends, H.-M., Manke, A.-M., Näther, C., Tuczek, F. & Kurz, P. (2012). Dalton Trans. 41, 6215-6224.]). That is, one O atom and one imine N of each bpmap ligand occupy in the equatorial plane and the other imine N atom is in the axial position. The pyrrole groups of both ligands are non-coordin­ating. Inter­estingly, the geometry of pyrrole groups, which results from different bpmap ligands, displays a trans conformation in the axial positions (Jeong et al., 2014[Jeong, A. R., Shin, J. W., Kim, B. G. & Min, K. S. (2014). Bull. Korean Chem. Soc. 35, 273-276.]). The average equatorial bond lengths, Mn1—Leq and Mn2—Leq, are 1.952 and 1.918 Å, respectively. The axial bond lengths, Mn1—N2 and Mn2—N6, are 2.318 (3) and 2.345 (3) Å, respectively. The axial bond lengths are much longer than the equatorial bond lengths, which can be attributed to a rather large Jahn–Teller distortion of the MnIII ion (Halcrow, 2013[Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784-1795.]). The bite distance (O1⋯N2) and the bite angle (N2—Mn1—O1) of the five-membered chelate ring are 2.590 (4) Å and 83.07 (10)°, respectively, while O2⋯N6 and O2—Mn2—N6 are 2.715 (3) Å and 79.26 (9)°. There are intra­molecular N—H⋯O hydrogen bonds between the pyrrole groups and the O atoms of the bpmap ligands (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.88 1.96 2.800 (5) 160
N8—H8⋯O5 0.88 2.27 3.025 (5) 144
N4—H4⋯O1i 0.88 1.87 2.743 (4) 174
N5—H5A⋯O2ii 0.88 1.85 2.723 (3) 172
O6—H6⋯O3iii 0.84 2.05 2.781 (6) 145
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z; (iii) x, y+1, z.
[Figure 1]
Figure 1
The structure of the two independent MnIII complex cations in the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms bonded to C atoms have been omitted for clarity. Intra­molecular N—H⋯O hydrogen bonds are shown as red dashed lines. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 2, −y + 1, −z.]

3. Supra­molecular features

The packing in the structure involves N—H⋯O hydrogen bonds between the pyrrole groups and the non-coordinating nitrate anions (Table 1[link]), giving chains along [10[\overline{1}]]. The hy­droxy group of methanol and the nitrate ion are also connected by an O—H⋯O hydrogen bond (Fig. 2[link]).

[Figure 2]
Figure 2
A view of the crystal packing structure of the title compound, with N—H⋯O hydrogen bonds drawn as red (intra­molecular) and blue (inter­molecular) dashed lines, and O—H⋯O hydrogen bonds drawn as black dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, November 2013 with 3 updates; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) indicates that only one CuII complex with the bpmap ligand has been reported (Borer & Sinn, 1998[Borer, L. L. & Sinn, E. (1998). Inorg. Chim. Acta, 142, 197-199.]). This paper elucidates the synthesis of various pyrrole, imidazole, and salicyl­aldehyde derivatives and investigates the magnetic properties and chelating effects of Cu complexes.

4.1. Synthesis and crystallization

The bpmap ligand was prepared by a slight modification of the reported method (Borer & Sinn, 1998[Borer, L. L. & Sinn, E. (1998). Inorg. Chim. Acta, 142, 197-199.]). 1,3-Di­amino­propan-2-ol (1.50 g, 0.0166 mol) was dissolved in MeOH (40 mL) followed by the addition of pyrrole-2-carbaldehyde (3.17 g, 0.0333 mol). The resulting mixture was stirred overnight at room temperature. The solvent was evaporated and the residue was dissolved in CHCl3. The solution was washed by concentrated brine and dried with MgSO4. After evaporation of the solvents under reduced pressure, an orange powder was obtained and used for the preparation of the title compound without further purification (yield: 2.98 g, 73%). 1H NMR (400 MHz, DMSO-d6, 293 K): δ 3.40–3.44 (m, 4H), 3.65 (ddd, J = 0.8, 5.1, 11.7 Hz, 2H, pyr-NH), 3.87–3.93 (m, 1H), 6.10 (dd, J = 3.6, 6.4 Hz, 1H, pyr), 6.44 (dd, J = 1.52, 3.4 Hz, 1H, pyr), 6.87 (t, J = 1.8 Hz, 1H, pyr), 8.05 (s, 2H), 11.32 (s, 1H, –OH). The title compound was prepared as follows: to an MeOH solution (3 mL) of Mn(NO3)2·4H2O (102 mg, 0.406 mmol) was added dropwise an MeOH solution (3 mL) of bpmap (50 mg, 0.205 mmol). The colour became dark orange, and then the solution was stirred for 30 min at room temperature. Black crystals of the title compound were obtained by diffusion of diethyl ether into the dark-orange solution for several days, and were collected by filtration and washed with diethyl ether and dried in air (yield: 80 mg, 33%). IR (ATR, cm−1): 3341, 2948, 1614, 1385, 1306.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) and 0.95–0.99 Å (open-chain H atoms), N—H distances of 0.88 Å (ring H atoms) and O—H distances of 0.84 Å, and with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Mn(C13H15N4O)2]NO3·CH4O
Mr 635.57
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.516 (2), 10.887 (2), 14.981 (3)
α, β, γ (°) 76.05 (3), 82.51 (3), 61.22 (3)
V3) 1458.7 (7)
Z 2
Radiation type Synchrotron, λ = 0.62998 Å
μ (mm−1) 0.37
Crystal size (mm) 0.08 × 0.02 × 0.02
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL-3000 SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press, New York.])
Tmin, Tmax 0.971, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 15140, 7679, 4716
Rint 0.037
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.223, 1.04
No. of reflections 7679
No. of parameters 394
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.35, −0.69
Computer programs: PAL ADSC Quantum-210 ADX Program (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press, New York.]), SHELXS2013/1 and SHELXL2014/6 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

Pyrrolyl derivatives ligands have attracted considerable attention in chemistry and materials science because they can easily be used for the preparation of multifunctional metal complexes with various transition metal ions. These complexes have potential applications in catalysis, and as luminescent materials (Goff & Cosnier, 2011). For example, a CrI,III complex with a 2,5-di­methyl­pyrrole ligand has been investigated as a potential ethyl­ene trimerization catalyst (Yang et al., 2014). Furthermore, zinc complexes containing various pyrrolyl substituents exhibit excellent luminescence properties due to the nπ* transitions in the electronic spectra of the pyrrolyl ligand precursors (Gomes et al., 2009). Here, we report the synthesis and the crystal structure of a six-coordinated MnIII complex with 1,3-bis­{[(1H-pyrrol-2-yl)methyl­idene]amino}­propan-2-ol (Hbpmap), the title compound [Mn(bpmap)2]NO3·CH3OH.

Structural commentary top

The title compound crystallized with two crystallographically independent complex molecules in the asymmetric unit (Fig. 1). Each MnIII ion is located on an inversion centre and is six-coordinated in a distorted o­cta­hedral geometry. Two bpmap ligands are coordinated to the MnIII ion in a tridentate and fac-type manner (Berends et al., 2012). That is, one O atom and one imine N of each bpmap ligand occupy in the equatorial plane and the other imine N atom is in the axial position. The pyrrole groups of both ligands are not coordinated. Inter­estingly, the geometry of pyrrole groups, which results from different bpmap ligands, displays a trans conformation in the axial positions (Jeong et al., 2014). The average equatorial bond lengths, Mn1—Leq and Mn2—Leq, are 1.952 (2) and 1.918 (2) Å, respectively. The axial bond lengths, Mn1—N2 and Mn2—N6, are 2.318 (3) and 2.345 (3) Å, respectively. The axial bond lengths are much longer than the equatorial bond lengths, which can be attributed to a rather large Jahn–Teller distortion of the MnIII ion (Halcrow, 2013). The bite distance (O1···N2) and the bite angle (N2—Mn1—O1) of the five-membered chelate ring are 2.667 (1) Å [please check – PLATON gives 2.590 (4) Å] and 83.07 (10)°, respectively, while O2···N6 and O2—Mn2—N6 are 2.610 (1) Å [please check – PLATON gives 2.715 (3) Å] and 79.26 (9)°. There are intra­molecular N—H···O hydrogen bonds between the pyrrole groups and the O atoms of the bpmap ligands (Fig. 1 and Table 1).

Supra­molecular features top

The packing structure involves N—H···O hydrogen bonds between the pyrrole groups and the uncoordinated nitrate anions (Table 1), giving chains along [101]. The hy­droxy group of methanol and the nitrate ion are also connected by an O—H···O hydrogen bond (Fig. 2).

Database survey top

A search of the Cambridge Structural Database (Version 5.35, November 2013 with 3 updates; Allen, 2002) indicates that only one CuII complex with the bpmap ligand has been reported (Borer & Sinn, 1998). This paper elucidates the synthesis of various pyrrole, imidazole, and salicyl­aldehyde derivatives and investigates the magnetic property and chelating effects of Cu complexes.

Synthesis and crystallization top

The bpmap ligand was prepared by a slight modification of the reported method (Borer & Sinn, 1998). 1,3-Di­amino­propan-2-ol (1.50 g, 0.0166 mol) was dissolved in MeOH (40 ml) followed by the addition of pyrrole-2-carbaldehyde (3.17 g, 0.0333 mol). The resulting mixture was stirred overnight at room temperature. The solvent was evaporated and the residue was dissolved in CHCl3. The solution was washed by concentrated brine and dried with MgSO4. After evaporation of the solvents under reduced pressure, an orange powder was obtained and used for the preparation of the title compound without further purification (yield: 2.98 g, 73%). 1H NMR (400 MHz, DMSO, 293 K): δ 3.40–3.44 (m, 4H), 3.65 (ddd, J = 0.8, 5.1, 11.7 Hz, 2H, pyr-NH), 3.87–3.93 (m, 1H), 6.10 (dd, J = 3.6, 6.4 Hz, 1H, pyr), 6.44 (dd, J = 1.52, 3.4 Hz, 1H, pyr), 6.87 (t, J = 1.8 Hz, 1H, pyr), 8.05 (s, 2H), 11.32 (s, 1H, –OH). The title compound was prepared as follows: to an MeOH solution (3 ml) of Mn(NO3)2·4H2O (102 mg, 0.406 mmol) was added dropwise an MeOH solution (3 ml) of bpmap (50 mg, 0.205 mmol). The colour became dark orange, and then the solution was stirred for 30 min at room temperature. Black crystals of the title compound were obtained by diffusion of di­ethyl ether into the dark-orange solution for several days, and were collected by filtration and washed with di­ethyl ether and dried in air (yield: 80 mg, 33%). IR (ATR, cm-1): 3341, 2948, 1614, 1385, 1306.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) and 0.95–0.99 Å (open-chain H atoms), N—H distances of 0.88 Å (ring H atoms) and O—H distances of 0.84 Å, and with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms.

Related literature top

For related literature, see: Berends et al. (2012); Goff & Cosnier (2011); Gomes et al. (2009); Halcrow (2013); Jeong et al. (2014); Yang et al. (2014).

Computing details top

Data collection: PAL ADSC Quantum-210 ADX Program (Arvai & Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS2013/1 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structure of the two independent MnIII complex cations in the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms bonded to C atoms have been omitted for clarity. Intramolecular N—H···O hydrogen bonds are shown as red dashed lines. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z.]
[Figure 2] Fig. 2. A view of the crystal packing structure of the title compound, with N—H···O hydrogen bonds drawn as red (intramolecular) and blue (intermolecular) dashed lines, and O—H···O hydrogen bonds drawn as black dashed lines.
Bis(1,3-bis{[(1H-pyrrol-2-yl)methylidene]amino-κN}propan-2-olato-κO)manganese(III) nitrate methanol monosolvate top
Crystal data top
[Mn(C13H15N4O)2]NO3·CH4OZ = 2
Mr = 635.57F(000) = 664
Triclinic, P1Dx = 1.447 Mg m3
a = 10.516 (2) ÅSynchrotron radiation, λ = 0.62998 Å
b = 10.887 (2) ÅCell parameters from 36688 reflections
c = 14.981 (3) Åθ = 0.4–33.6°
α = 76.05 (3)°µ = 0.37 mm1
β = 82.51 (3)°T = 100 K
γ = 61.22 (3)°Needle, black
V = 1458.7 (7) Å30.08 × 0.02 × 0.02 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
4716 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.037
ω scanθmax = 26.0°, θmin = 2.0°
Absorption correction: empirical (using intensity measurements)
(HKL-3000 SCALEPACK; Otwinowski & Minor, 1997)
h = 1414
Tmin = 0.971, Tmax = 0.993k = 1414
15140 measured reflectionsl = 2020
7679 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.068 w = 1/[σ2(Fo2) + (0.1401P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.223(Δ/σ)max < 0.001
S = 1.04Δρmax = 1.35 e Å3
7679 reflectionsΔρmin = 0.69 e Å3
394 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.023 (6)
Crystal data top
[Mn(C13H15N4O)2]NO3·CH4Oγ = 61.22 (3)°
Mr = 635.57V = 1458.7 (7) Å3
Triclinic, P1Z = 2
a = 10.516 (2) ÅSynchrotron radiation, λ = 0.62998 Å
b = 10.887 (2) ŵ = 0.37 mm1
c = 14.981 (3) ÅT = 100 K
α = 76.05 (3)°0.08 × 0.02 × 0.02 mm
β = 82.51 (3)°
Data collection top
ADSC Q210 CCD area detector
diffractometer
7679 independent reflections
Absorption correction: empirical (using intensity measurements)
(HKL-3000 SCALEPACK; Otwinowski & Minor, 1997)
4716 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.993Rint = 0.037
15140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 1.04Δρmax = 1.35 e Å3
7679 reflectionsΔρmin = 0.69 e Å3
394 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.0337 (2)
Mn21.00000.50000.00000.0370 (2)
N10.3876 (3)0.1435 (3)0.3766 (2)0.0470 (7)
H1A0.43050.16410.32490.056*
N20.4163 (3)0.3654 (3)0.51136 (17)0.0374 (6)
N30.2623 (3)0.6564 (3)0.53278 (18)0.0425 (6)
N40.2438 (3)0.7984 (3)0.3331 (2)0.0432 (6)
H40.32860.72120.34130.052*
N51.0374 (3)0.5081 (3)0.23664 (18)0.0399 (6)
H5A1.04440.45580.19790.048*
N60.9404 (3)0.7068 (3)0.05388 (18)0.0392 (6)
N70.7813 (3)0.5863 (3)0.00379 (19)0.0403 (6)
N80.4871 (3)0.5318 (3)0.1303 (2)0.0497 (7)
H80.53620.45460.17190.060*
O10.4992 (3)0.4489 (3)0.63029 (15)0.0420 (5)
O20.9660 (2)0.6340 (2)0.11102 (15)0.0406 (5)
C10.3287 (4)0.0528 (4)0.3925 (3)0.0530 (9)
H10.32680.00210.34970.064*
C20.2728 (4)0.0467 (4)0.4801 (3)0.0543 (9)
H20.22590.00900.50880.065*
C30.2972 (4)0.1374 (4)0.5201 (3)0.0501 (8)
H30.26960.15450.58070.060*
C40.3697 (4)0.1984 (3)0.4542 (2)0.0411 (7)
C50.4203 (3)0.2987 (3)0.4509 (2)0.0394 (7)
H50.46470.32000.39400.047*
C60.3538 (4)0.3449 (4)0.6050 (2)0.0476 (8)
H6A0.40840.24430.63800.057*
H6B0.25110.36790.60140.057*
C70.3654 (4)0.4475 (4)0.6559 (2)0.0439 (7)
H70.36290.41170.72380.053*
C80.2444 (4)0.5988 (4)0.6308 (2)0.0460 (8)
H8A0.14920.59940.64130.055*
H8B0.24830.65890.66950.055*
C90.1474 (4)0.7678 (4)0.4932 (2)0.0448 (8)
H90.06160.80300.52980.054*
C100.1401 (4)0.8415 (4)0.3988 (2)0.0418 (7)
C110.0259 (4)0.9673 (4)0.3590 (3)0.0494 (8)
H110.06181.02170.38940.059*
C120.0602 (4)1.0018 (4)0.2666 (3)0.0514 (9)
H120.00191.08330.22220.062*
C130.1962 (4)0.8930 (4)0.2529 (2)0.0506 (9)
H130.24830.88590.19590.061*
C141.0783 (4)0.4581 (4)0.3259 (2)0.0440 (8)
H141.11920.36050.35670.053*
C151.0514 (4)0.5702 (4)0.3644 (2)0.0478 (8)
H151.06980.56460.42600.057*
C160.9909 (4)0.6960 (4)0.2954 (2)0.0436 (7)
H160.96140.79080.30200.052*
C170.9829 (3)0.6557 (3)0.2167 (2)0.0391 (7)
C180.9344 (3)0.7474 (3)0.1285 (2)0.0390 (7)
H180.89410.84740.12510.047*
C190.8833 (4)0.8196 (3)0.0296 (2)0.0448 (8)
H19A0.95790.84850.05780.054*
H19B0.79710.90480.01370.054*
C200.8422 (4)0.7605 (3)0.0969 (2)0.0431 (7)
H200.81450.83150.15670.052*
C210.7186 (4)0.7242 (3)0.0626 (2)0.0426 (7)
H21A0.64170.79990.03240.051*
H21B0.67570.71620.11460.051*
C220.7018 (4)0.5366 (3)0.0565 (2)0.0413 (7)
H220.75320.44720.09710.050*
C230.5464 (4)0.5981 (4)0.0621 (2)0.0435 (7)
C240.4318 (4)0.7159 (4)0.0125 (3)0.0488 (8)
H240.43950.78340.03860.059*
C250.3023 (4)0.7167 (4)0.0518 (3)0.0542 (9)
H250.20650.78350.03180.065*
C260.3408 (4)0.6038 (5)0.1238 (3)0.0587 (10)
H260.27510.57890.16370.070*
N90.6664 (4)0.1756 (3)0.2130 (2)0.0536 (8)
O30.7146 (4)0.0487 (3)0.2126 (3)0.0847 (10)
O40.5335 (4)0.2489 (3)0.2351 (2)0.0736 (9)
O50.7396 (4)0.2393 (3)0.1937 (2)0.0816 (10)
C270.5483 (5)0.8915 (5)0.1434 (3)0.0647 (11)
H27A0.56120.94970.08550.097*
H27B0.47760.86090.13510.097*
H27C0.64140.80700.16160.097*
O60.4984 (4)0.9716 (4)0.2111 (2)0.0767 (9)
H60.56890.96920.23350.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0435 (4)0.0353 (4)0.0310 (3)0.0242 (3)0.0070 (3)0.0055 (2)
Mn20.0459 (4)0.0355 (4)0.0377 (4)0.0254 (3)0.0034 (3)0.0060 (3)
N10.0617 (18)0.0434 (16)0.0475 (16)0.0297 (14)0.0076 (13)0.0146 (12)
N20.0460 (15)0.0404 (14)0.0355 (13)0.0270 (12)0.0055 (11)0.0069 (10)
N30.0583 (17)0.0484 (16)0.0352 (14)0.0351 (14)0.0027 (12)0.0098 (11)
N40.0473 (15)0.0349 (14)0.0526 (16)0.0219 (12)0.0139 (13)0.0054 (11)
N50.0443 (15)0.0419 (15)0.0417 (14)0.0248 (12)0.0028 (11)0.0116 (11)
N60.0475 (15)0.0378 (14)0.0406 (14)0.0263 (12)0.0022 (11)0.0074 (11)
N70.0485 (15)0.0392 (14)0.0425 (14)0.0268 (12)0.0022 (12)0.0099 (11)
N80.0544 (18)0.0510 (18)0.0534 (17)0.0321 (15)0.0050 (14)0.0145 (14)
O10.0514 (13)0.0506 (13)0.0365 (11)0.0325 (11)0.0047 (10)0.0092 (9)
O20.0518 (13)0.0394 (12)0.0390 (11)0.0280 (11)0.0031 (10)0.0068 (9)
C10.056 (2)0.046 (2)0.070 (2)0.0280 (17)0.0115 (18)0.0204 (17)
C20.054 (2)0.051 (2)0.076 (3)0.0359 (18)0.0054 (18)0.0225 (18)
C30.053 (2)0.047 (2)0.063 (2)0.0301 (17)0.0031 (17)0.0195 (16)
C40.0455 (17)0.0372 (16)0.0471 (18)0.0219 (14)0.0083 (14)0.0103 (13)
C50.0455 (17)0.0408 (17)0.0385 (16)0.0242 (14)0.0054 (13)0.0082 (13)
C60.061 (2)0.051 (2)0.0452 (18)0.0369 (18)0.0021 (16)0.0125 (15)
C70.0526 (19)0.0461 (18)0.0409 (17)0.0294 (16)0.0019 (14)0.0075 (14)
C80.058 (2)0.051 (2)0.0369 (17)0.0315 (17)0.0039 (14)0.0056 (14)
C90.052 (2)0.0451 (19)0.0491 (19)0.0303 (16)0.0017 (15)0.0136 (15)
C100.058 (2)0.0419 (17)0.0392 (16)0.0331 (16)0.0110 (14)0.0049 (13)
C110.0506 (19)0.048 (2)0.060 (2)0.0288 (17)0.0009 (16)0.0181 (16)
C120.062 (2)0.0414 (19)0.054 (2)0.0277 (17)0.0198 (17)0.0022 (15)
C130.066 (2)0.059 (2)0.0411 (18)0.042 (2)0.0040 (16)0.0065 (15)
C140.0443 (18)0.0463 (19)0.0465 (18)0.0240 (15)0.0103 (14)0.0067 (14)
C150.055 (2)0.057 (2)0.0446 (18)0.0347 (18)0.0076 (15)0.0107 (15)
C160.0478 (18)0.0464 (19)0.0471 (18)0.0272 (15)0.0020 (14)0.0158 (14)
C170.0416 (16)0.0408 (17)0.0445 (17)0.0262 (14)0.0005 (13)0.0102 (13)
C180.0435 (17)0.0384 (16)0.0450 (17)0.0249 (14)0.0028 (13)0.0118 (13)
C190.061 (2)0.0343 (16)0.0458 (18)0.0278 (16)0.0096 (15)0.0033 (13)
C200.057 (2)0.0350 (16)0.0403 (17)0.0245 (15)0.0095 (15)0.0026 (13)
C210.0502 (19)0.0370 (17)0.0445 (18)0.0231 (15)0.0075 (14)0.0052 (13)
C220.0516 (19)0.0383 (17)0.0437 (17)0.0270 (15)0.0043 (14)0.0102 (13)
C230.0526 (19)0.0488 (19)0.0453 (18)0.0334 (16)0.0038 (14)0.0186 (14)
C240.053 (2)0.053 (2)0.0489 (19)0.0288 (17)0.0054 (16)0.0147 (15)
C250.047 (2)0.060 (2)0.065 (2)0.0272 (18)0.0007 (17)0.0254 (19)
C260.052 (2)0.064 (3)0.077 (3)0.036 (2)0.0161 (19)0.033 (2)
N90.060 (2)0.0422 (17)0.062 (2)0.0288 (16)0.0171 (16)0.0033 (14)
O30.091 (2)0.0600 (19)0.115 (3)0.0362 (18)0.017 (2)0.0284 (19)
O40.106 (3)0.0543 (17)0.0586 (18)0.0387 (18)0.0115 (17)0.0116 (13)
O50.091 (2)0.0552 (18)0.104 (3)0.0405 (18)0.040 (2)0.0090 (16)
C270.061 (2)0.077 (3)0.067 (3)0.032 (2)0.005 (2)0.038 (2)
O60.086 (2)0.082 (2)0.075 (2)0.045 (2)0.0010 (18)0.0264 (17)
Geometric parameters (Å, º) top
Mn1—O11.896 (2)C8—H8A0.9900
Mn1—N22.008 (2)C8—H8B0.9900
Mn1—N32.318 (3)C9—C101.440 (5)
Mn2—O21.872 (2)C9—H90.9500
Mn2—N72.021 (3)C10—C111.372 (5)
Mn2—N62.345 (3)C11—C121.391 (5)
N1—C11.361 (4)C11—H110.9500
N1—C41.383 (4)C12—C131.379 (6)
N1—H1A0.8800C12—H120.9500
N2—C51.276 (4)C13—H130.9500
N2—C61.483 (4)C14—C151.366 (5)
N3—C91.309 (4)C14—H140.9500
N3—C81.477 (4)C15—C161.414 (5)
N4—C131.348 (4)C15—H150.9500
N4—C101.352 (5)C16—C171.379 (4)
N4—H40.8800C16—H160.9500
N5—C141.357 (4)C17—C181.432 (4)
N5—C171.387 (4)C18—H180.9500
N5—H5A0.8800C19—C201.520 (4)
N6—C181.282 (4)C19—H19A0.9900
N6—C191.476 (4)C19—H19B0.9900
N7—C221.294 (4)C20—C211.528 (5)
N7—C211.474 (4)C20—H201.0000
N8—C261.353 (5)C21—H21A0.9900
N8—C231.366 (4)C21—H21B0.9900
N8—H80.8800C22—C231.436 (5)
O1—C71.416 (4)C22—H220.9500
O2—C201.407 (4)C23—C241.391 (5)
C1—C21.366 (6)C24—C251.409 (5)
C1—H10.9500C24—H240.9500
C2—C31.404 (5)C25—C261.354 (6)
C2—H20.9500C25—H250.9500
C3—C41.405 (5)C26—H260.9500
C3—H30.9500N9—O31.223 (4)
C4—C51.416 (4)N9—O51.231 (4)
C5—H50.9500N9—O41.278 (4)
C6—C71.553 (4)C27—O61.382 (5)
C6—H6A0.9900C27—H27A0.9800
C6—H6B0.9900C27—H27B0.9800
C7—C81.511 (5)C27—H27C0.9800
C7—H71.0000O6—H60.8400
O1i—Mn1—O1180.0C7—C8—H8B110.0
O1i—Mn1—N296.93 (10)H8A—C8—H8B108.4
O1—Mn1—N283.07 (10)N3—C9—C10125.5 (3)
N2—Mn1—N2i180.0N3—C9—H9117.2
O1i—Mn1—N3100.41 (10)C10—C9—H9117.2
O1—Mn1—N379.59 (10)N4—C10—C11107.7 (3)
N2—Mn1—N382.41 (10)N4—C10—C9126.2 (3)
N2i—Mn1—N397.59 (10)C11—C10—C9126.1 (3)
N3—Mn1—N3i180.0C10—C11—C12108.5 (3)
O2ii—Mn2—O2180.0C10—C11—H11125.8
O2ii—Mn2—N796.98 (11)C12—C11—H11125.8
O2—Mn2—N783.02 (11)C13—C12—C11105.6 (3)
N7—Mn2—N7ii180.0C13—C12—H12127.2
O2ii—Mn2—N6100.74 (9)C11—C12—H12127.2
O2—Mn2—N679.26 (9)N4—C13—C12109.2 (3)
N7—Mn2—N680.35 (10)N4—C13—H13125.4
N7ii—Mn2—N699.65 (10)C12—C13—H13125.4
N6—Mn2—N6ii180.0N5—C14—C15109.3 (3)
C1—N1—C4109.4 (3)N5—C14—H14125.4
C1—N1—H1A125.3C15—C14—H14125.4
C4—N1—H1A125.3C14—C15—C16107.2 (3)
C5—N2—C6122.7 (3)C14—C15—H15126.4
C5—N2—Mn1127.1 (2)C16—C15—H15126.4
C6—N2—Mn1110.10 (19)C17—C16—C15107.2 (3)
C9—N3—C8116.0 (3)C17—C16—H16126.4
C9—N3—Mn1141.1 (2)C15—C16—H16126.4
C8—N3—Mn1102.9 (2)C16—C17—N5107.7 (3)
C13—N4—C10109.0 (3)C16—C17—C18126.6 (3)
C13—N4—H4125.5N5—C17—C18125.6 (3)
C10—N4—H4125.5N6—C18—C17125.9 (3)
C14—N5—C17108.5 (3)N6—C18—H18117.0
C14—N5—H5A125.7C17—C18—H18117.0
C17—N5—H5A125.7N6—C19—C20108.3 (3)
C18—N6—C19117.2 (3)N6—C19—H19A110.0
C18—N6—Mn2140.8 (2)C20—C19—H19A110.0
C19—N6—Mn2101.82 (18)N6—C19—H19B110.0
C22—N7—C21122.4 (3)C20—C19—H19B110.0
C22—N7—Mn2128.0 (2)H19A—C19—H19B108.4
C21—N7—Mn2109.6 (2)O2—C20—C19107.1 (3)
C26—N8—C23109.2 (3)O2—C20—C21108.2 (2)
C26—N8—H8125.4C19—C20—C21113.9 (3)
C23—N8—H8125.4O2—C20—H20109.2
C7—O1—Mn1105.75 (18)C19—C20—H20109.2
C20—O2—Mn2106.92 (19)C21—C20—H20109.2
N1—C1—C2108.9 (3)N7—C21—C20107.0 (3)
N1—C1—H1125.5N7—C21—H21A110.3
C2—C1—H1125.5C20—C21—H21A110.3
C1—C2—C3107.7 (3)N7—C21—H21B110.3
C1—C2—H2126.2C20—C21—H21B110.3
C3—C2—H2126.2H21A—C21—H21B108.6
C2—C3—C4107.4 (3)N7—C22—C23128.8 (3)
C2—C3—H3126.3N7—C22—H22115.6
C4—C3—H3126.3C23—C22—H22115.6
N1—C4—C3106.5 (3)N8—C23—C24106.9 (3)
N1—C4—C5118.3 (3)N8—C23—C22117.8 (3)
C3—C4—C5135.1 (3)C24—C23—C22135.3 (3)
N2—C5—C4130.9 (3)C23—C24—C25107.5 (4)
N2—C5—H5114.6C23—C24—H24126.3
C4—C5—H5114.6C25—C24—H24126.3
N2—C6—C7106.8 (3)C26—C25—C24106.7 (4)
N2—C6—H6A110.4C26—C25—H25126.6
C7—C6—H6A110.4C24—C25—H25126.6
N2—C6—H6B110.4N8—C26—C25109.7 (4)
C7—C6—H6B110.4N8—C26—H26125.2
H6A—C6—H6B108.6C25—C26—H26125.2
O1—C7—C8108.4 (3)O3—N9—O5123.6 (4)
O1—C7—C6108.2 (3)O3—N9—O4119.8 (3)
C8—C7—C6112.0 (3)O5—N9—O4116.6 (3)
O1—C7—H7109.4O6—C27—H27A109.5
C8—C7—H7109.4O6—C27—H27B109.5
C6—C7—H7109.4H27A—C27—H27B109.5
N3—C8—C7108.4 (3)O6—C27—H27C109.5
N3—C8—H8A110.0H27A—C27—H27C109.5
C7—C8—H8A110.0H27B—C27—H27C109.5
N3—C8—H8B110.0C27—O6—H6109.5
N2—Mn1—O1—C741.9 (2)C9—C10—C11—C12179.0 (3)
N2i—Mn1—O1—C7138.1 (2)C10—C11—C12—C130.5 (4)
N3—Mn1—O1—C741.56 (19)C10—N4—C13—C121.3 (4)
N3i—Mn1—O1—C7138.44 (19)C11—C12—C13—N41.1 (4)
N7—Mn2—O2—C2039.63 (19)C17—N5—C14—C150.0 (4)
N7ii—Mn2—O2—C20140.37 (19)N5—C14—C15—C160.1 (4)
N6—Mn2—O2—C2041.82 (18)C14—C15—C16—C170.1 (4)
N6ii—Mn2—O2—C20138.18 (18)C15—C16—C17—N50.1 (4)
C4—N1—C1—C20.3 (4)C15—C16—C17—C18177.1 (3)
N1—C1—C2—C30.3 (4)C14—N5—C17—C160.1 (4)
C1—C2—C3—C40.1 (4)C14—N5—C17—C18177.1 (3)
C1—N1—C4—C30.3 (4)C19—N6—C18—C17179.6 (3)
C1—N1—C4—C5178.3 (3)Mn2—N6—C18—C176.1 (6)
C2—C3—C4—N10.1 (4)C16—C17—C18—N6172.9 (3)
C2—C3—C4—C5178.1 (4)N5—C17—C18—N63.6 (5)
C6—N2—C5—C41.1 (6)C18—N6—C19—C20156.8 (3)
Mn1—N2—C5—C4177.2 (3)Mn2—N6—C19—C2019.0 (3)
N1—C4—C5—N2179.3 (3)Mn2—O2—C20—C1967.7 (3)
C3—C4—C5—N21.4 (7)Mn2—O2—C20—C2155.4 (3)
C5—N2—C6—C7178.4 (3)N6—C19—C20—O255.2 (4)
Mn1—N2—C6—C75.0 (3)N6—C19—C20—C2164.3 (4)
Mn1—O1—C7—C866.4 (3)C22—N7—C21—C20168.6 (3)
Mn1—O1—C7—C655.3 (3)Mn2—N7—C21—C209.4 (3)
N2—C6—C7—O138.4 (4)O2—C20—C21—N741.0 (3)
N2—C6—C7—C881.0 (3)C19—C20—C21—N777.9 (3)
C9—N3—C8—C7161.2 (3)C21—N7—C22—C230.4 (5)
Mn1—N3—C8—C716.6 (3)Mn2—N7—C22—C23178.1 (2)
O1—C7—C8—N353.1 (3)C26—N8—C23—C240.5 (4)
C6—C7—C8—N366.2 (3)C26—N8—C23—C22179.2 (3)
C8—N3—C9—C10179.7 (3)N7—C22—C23—N8173.4 (3)
Mn1—N3—C9—C103.6 (6)N7—C22—C23—C247.0 (6)
C13—N4—C10—C111.0 (4)N8—C23—C24—C251.1 (4)
C13—N4—C10—C9178.3 (3)C22—C23—C24—C25178.6 (3)
N3—C9—C10—N48.5 (5)C23—C24—C25—C261.2 (4)
N3—C9—C10—C11172.3 (3)C23—N8—C26—C250.3 (4)
N4—C10—C11—C120.3 (4)C24—C25—C26—N80.9 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.881.962.800 (5)160
N8—H8···O50.882.273.025 (5)144
N4—H4···O1i0.881.872.743 (4)174
N5—H5A···O2ii0.881.852.723 (3)172
O6—H6···O3iii0.842.052.781 (6)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.881.962.800 (5)160
N8—H8···O50.882.273.025 (5)144
N4—H4···O1i0.881.872.743 (4)174
N5—H5A···O2ii0.881.852.723 (3)172
O6—H6···O3iii0.842.052.781 (6)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(C13H15N4O)2]NO3·CH4O
Mr635.57
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.516 (2), 10.887 (2), 14.981 (3)
α, β, γ (°)76.05 (3), 82.51 (3), 61.22 (3)
V3)1458.7 (7)
Z2
Radiation typeSynchrotron, λ = 0.62998 Å
µ (mm1)0.37
Crystal size (mm)0.08 × 0.02 × 0.02
Data collection
DiffractometerADSC Q210 CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(HKL-3000 SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.971, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
15140, 7679, 4716
Rint0.037
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.223, 1.04
No. of reflections7679
No. of parameters394
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.35, 0.69

Computer programs: PAL ADSC Quantum-210 ADX Program (Arvai & Nielsen, 1983), HKL3000sm (Otwinowski & Minor, 1997), SHELXS2013/1 (Sheldrick, 2008), SHELXL2014/6 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2002507) and supported by the Institute for Basic Science (IBS, IBS-R007-D1-2013-a01). X-ray crystallography at the PLS-II 2 D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationBerends, H.-M., Manke, A.-M., Näther, C., Tuczek, F. & Kurz, P. (2012). Dalton Trans. 41, 6215–6224.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBorer, L. L. & Sinn, E. (1998). Inorg. Chim. Acta, 142, 197–199.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoff, A. L. & Cosnier, S. (2011). J. Mater. Chem. 21, 3910–3915.  Google Scholar
First citationGomes, C. S. B., Gomes, P. T., Duarte, M. T., Paolo, R. E., MaÇanita, A. L. & Calhorda, M. J. (2009). Inorg. Chem. 48, 11176–11186.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHalcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784–1795.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJeong, A. R., Shin, J. W., Kim, B. G. & Min, K. S. (2014). Bull. Korean Chem. Soc. 35, 273–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press, New York.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Liu, Z., Cheng, R., He, X. & Liu, B. (2014). Organometallics, 33, 2599–2607.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 210-212
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds