organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-chloro-1-(6-fluoro-3,4-di­hydro-2H-chromen-2-yl)ethanone

aChangzhou Siyao Pharmacy Limited Company, Changzhou 213004, People's Republic of China
*Correspondence e-mail: maoqiuxia1989919@163.com

Edited by A. J. Lough, University of Toronto, Canada (Received 9 July 2014; accepted 2 September 2014; online 6 September 2014)

In the title mol­ecule, C11H10ClFO2, the benzene ring, the F atom and the O atom of the di­hydro­pyran ring are essentially coplanar, with an r.m.s. deviation of 0.007 Å. The di­hydro­pyran ring is in a half-chair conformation. In the crystal, mol­ecules are linked by pairs of weak C—H⋯π hydrogen bonds, forming inversion dimers.

1. Related literature

For the application of the title compound as a key inter­mediate in the preparation of nebivolol, which is useful in treating essential hypertension, see: Raffaella et al. (2011[Raffaella, V., Paolo, M., Livius, C. & Johnny, F. (2011). US 7960572, B2.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H10ClFO2

  • Mr = 228.64

  • Monoclinic, P 21 /c

  • a = 9.704 (3) Å

  • b = 9.720 (3) Å

  • c = 10.804 (4) Å

  • β = 101.637 (7)°

  • V = 998.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

2.2. Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.983, Tmax = 0.983

  • 5810 measured reflections

  • 1940 independent reflections

  • 1701 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.169

  • S = 1.06

  • 1940 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11BCgi 0.97 2.76 3.457 (3) 129
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is a key intermediate in preparating nebivolol, which is useful in treating essential hypertension (Raffaella, et al., 2011). As part of our interest in these types of materials, we report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig.1. Atoms F1 and O2 atoms are approximately coplanar with the benzene ring, with an r.m.s deviation of 0.007Å. The dihydropyran ring is in a half-chair conformation. In the crystal, molecules are linked by pairs of weak C—H···π hydrogen bonds forming inversion dimers (Fig. 2).

Related literature top

For the application of the title compound as a key intermediate in the preparation of nebivolol (systematic name: 1-(6-fluorochroman-2-yl)-{[2-(6-fluorochroman-2-yl)-2-hydroxy-ethyl]amino}ethanol), which is useful in treating essential hypertension, see: Raffaella et al. (2011).

Experimental top

The title compound was provided by Changzhou Siyao Pham, Ltd (Changzhou, Jiangsu). Crystals of it suitable for X-ray diffraction were obstained by slow evaporation of a methanol solution.

Refinement top

All H atoms were positioned geometrically and treated as riding with C—H = 0.93 Å (aryl), C—H = 0.97 Å (methylene) and C—H = 0.98 Å (methine) with Uiso(H) = 1.2Ueq.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure viewed along the a axis.
2-Chloro-1-(6-fluoro-3,4-dihydro-2H-chromen-2-yl)ethanone top
Crystal data top
C11H10ClFO2F(000) = 472
Mr = 228.64Dx = 1.521 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1940 reflections
a = 9.704 (3) Åθ = 2.1–26.0°
b = 9.720 (3) ŵ = 0.37 mm1
c = 10.804 (4) ÅT = 296 K
β = 101.637 (7)°Prism, colourless
V = 998.2 (6) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1940 independent reflections
Radiation source: fine-focus sealed tube1701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 2.1°
CCD_Profile_fitting scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.983, Tmax = 0.983l = 1213
5810 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.087P)2 + 0.9962P]
where P = (Fo2 + 2Fc2)/3
1940 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C11H10ClFO2V = 998.2 (6) Å3
Mr = 228.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.704 (3) ŵ = 0.37 mm1
b = 9.720 (3) ÅT = 296 K
c = 10.804 (4) Å0.20 × 0.20 × 0.20 mm
β = 101.637 (7)°
Data collection top
Rigaku SCXmini
diffractometer
1940 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1701 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.983Rint = 0.037
5810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.06Δρmax = 0.87 e Å3
1940 reflectionsΔρmin = 0.61 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29999 (8)0.06003 (8)0.46282 (7)0.0520 (3)
O20.6337 (2)0.3728 (2)0.50089 (17)0.0446 (5)
F11.0157 (2)0.7779 (2)0.4805 (2)0.0693 (6)
C50.7331 (3)0.4738 (3)0.5024 (2)0.0370 (6)
C10.9201 (3)0.6183 (3)0.6021 (3)0.0465 (7)
H10.98270.64830.67380.056*
C60.8247 (3)0.5141 (3)0.6117 (3)0.0399 (6)
C40.7381 (3)0.5330 (3)0.3864 (3)0.0415 (6)
H40.67730.50260.31370.050*
C30.8324 (3)0.6361 (3)0.3789 (3)0.0476 (7)
H30.83550.67760.30190.057*
C70.8214 (3)0.4463 (3)0.7360 (3)0.0504 (7)
H7A0.91620.42030.77670.060*
H7B0.78650.51120.79060.060*
C110.4282 (3)0.1895 (3)0.4699 (3)0.0433 (6)
H11A0.49580.16170.41970.052*
H11B0.38340.27350.43350.052*
C100.5040 (3)0.2175 (3)0.6024 (3)0.0458 (7)
C20.9219 (3)0.6765 (3)0.4875 (3)0.0483 (7)
O10.4794 (3)0.1587 (3)0.6926 (2)0.0607 (6)
C90.6086 (4)0.3338 (5)0.6206 (3)0.0700 (11)
H90.55680.41160.64650.084*
C80.7298 (5)0.3218 (5)0.7187 (4)0.0829 (14)
H8A0.78490.24380.70060.099*
H8B0.69990.30280.79740.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0554 (5)0.0483 (5)0.0536 (5)0.0019 (3)0.0140 (3)0.0035 (3)
O20.0478 (11)0.0536 (12)0.0315 (9)0.0070 (9)0.0054 (8)0.0040 (8)
F10.0627 (12)0.0574 (12)0.0896 (15)0.0171 (10)0.0197 (11)0.0058 (11)
C50.0363 (13)0.0358 (13)0.0388 (14)0.0062 (10)0.0070 (11)0.0012 (10)
C10.0396 (14)0.0454 (16)0.0528 (16)0.0045 (12)0.0052 (12)0.0122 (13)
C60.0376 (13)0.0417 (14)0.0398 (14)0.0112 (11)0.0062 (11)0.0056 (11)
C40.0409 (14)0.0452 (15)0.0380 (14)0.0029 (11)0.0073 (11)0.0007 (11)
C30.0486 (16)0.0464 (16)0.0505 (16)0.0062 (13)0.0159 (13)0.0041 (13)
C70.0517 (17)0.0602 (19)0.0357 (14)0.0038 (14)0.0007 (12)0.0048 (13)
C110.0477 (15)0.0429 (14)0.0399 (14)0.0034 (12)0.0100 (12)0.0038 (11)
C100.0455 (15)0.0534 (17)0.0388 (14)0.0048 (13)0.0091 (12)0.0093 (12)
C20.0417 (15)0.0381 (14)0.067 (2)0.0003 (11)0.0159 (14)0.0067 (13)
O10.0602 (13)0.0790 (16)0.0427 (12)0.0096 (12)0.0101 (10)0.0160 (11)
C90.078 (2)0.092 (3)0.0366 (16)0.028 (2)0.0032 (15)0.0125 (17)
C80.088 (3)0.108 (3)0.0448 (19)0.035 (3)0.0046 (18)0.022 (2)
Geometric parameters (Å, º) top
Cl1—C111.761 (3)C3—H30.9300
O2—C51.374 (3)C7—C81.492 (5)
O2—C91.416 (4)C7—H7A0.9700
F1—C21.354 (3)C7—H7B0.9700
C5—C61.383 (4)C11—C101.497 (4)
C5—C41.389 (4)C11—H11A0.9700
C1—C21.364 (5)C11—H11B0.9700
C1—C61.391 (4)C10—O11.194 (4)
C1—H10.9300C10—C91.506 (5)
C6—C71.501 (4)C9—C81.420 (5)
C4—C31.370 (4)C9—H90.9800
C4—H40.9300C8—H8A0.9700
C3—C21.370 (5)C8—H8B0.9700
C5—O2—C9115.5 (2)C10—C11—H11A109.2
O2—C5—C6122.7 (2)Cl1—C11—H11A109.2
O2—C5—C4115.9 (2)C10—C11—H11B109.2
C6—C5—C4121.3 (3)Cl1—C11—H11B109.2
C2—C1—C6120.1 (3)H11A—C11—H11B107.9
C2—C1—H1120.0O1—C10—C11123.6 (3)
C6—C1—H1120.0O1—C10—C9119.5 (3)
C5—C6—C1117.7 (3)C11—C10—C9116.7 (2)
C5—C6—C7120.9 (3)F1—C2—C1119.0 (3)
C1—C6—C7121.4 (3)F1—C2—C3118.6 (3)
C3—C4—C5120.1 (3)C1—C2—C3122.4 (3)
C3—C4—H4119.9O2—C9—C8115.8 (3)
C5—C4—H4119.9O2—C9—C10108.5 (3)
C2—C3—C4118.3 (3)C8—C9—C10118.1 (3)
C2—C3—H3120.8O2—C9—H9104.2
C4—C3—H3120.8C8—C9—H9104.2
C8—C7—C6111.3 (2)C10—C9—H9104.2
C8—C7—H7A109.4C9—C8—C7114.2 (3)
C6—C7—H7A109.4C9—C8—H8A108.7
C8—C7—H7B109.4C7—C8—H8A108.7
C6—C7—H7B109.4C9—C8—H8B108.7
H7A—C7—H7B108.0C7—C8—H8B108.7
C10—C11—Cl1112.2 (2)H8A—C8—H8B107.6
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cgi0.972.763.457 (3)129
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cgi0.972.763.457 (3)129
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRaffaella, V., Paolo, M., Livius, C. & Johnny, F. (2011). US 7960572, B2.  Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds