organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1102-o1103

Crystal structure of tri­methyl­ammonium 5-(2,4-di­nitro­phen­yl)-1,3-di­methyl-2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-4-olate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

Edited by A. J. Lough, University of Toronto, Canada (Received 24 July 2014; accepted 4 September 2014; online 13 September 2014)

The asymmetric unit of the title mol­ecular salt, C3H10N+·C12H9N4O7 [alternative name: tri­methyl­ammonium 5-(2,4-di­nitro­phen­yl)-1,3-dimethyl barbiturate], contains one anion and two half-occupancy cations. The cations are disordered about inversion centres. The tetra­hydro­pyrimidine ring is essentially planar [maximum deviation = 0.007 (2) Å] and forms a dihedral angle of 41.12 (6)° with the plane of the benzene ring. In the crystal, N—H⋯O hydrogen bonds link the cations to the anions.

1. Related literature

For the biological activity of barbiturates, see: Hueso et al. (2003[Hueso, F., Moreno, M. N., Martinez, J. M. & Ramirez, M. J. (2003). J. Inorg. Biochem. 94, 326-334.]); Kalaivani et al. (2008[Kalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369-373.]); Tripathi (2009[Tripathi, K. D. (2009). In Essentials of Medical Pharmacology, 6th ed. Chennai: Jaypee Brothers.]); Kalaivani & Buvaneswari (2010[Kalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255-260. Cambridge: WSEAS Publications.]). For various types of anionic σ-complexes, see: Terrier (1982[Terrier, F. (1982). Chem. Rev. 82, 77-152.]); Gnanadoss & Kalaivani (1985[Gnanadoss, L. M. & Kalaivani, D. (1985). J. Org. Chem. 50, 1174-1178.]); Al-Kaysi et al. (2005[Al-Kaysi, R. O., Mueller, A. M., Ahn, T. S., Lee, S. & Bardeen, C. J. (2005). Langmuir, 21, 7990-7994.]); For barbiturates as carbon-bonded σ-complexes, see: Kalaivani & Malarvizhi (2009[Kalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.]); Buvaneswari & Kalaivani (2011[Buvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o1433-o1434.]); Kalaivani et al. (2012[Kalaivani, D., Buvaneswari, M. & Rajeswari, S. (2012). Acta Cryst. E68, o29-o30.]); Babykala & Kalaivani (2012[Babykala, R. & Kalaivani, D. (2012). Acta Cryst. E68, o541.], 2013[Babykala, R. & Kalaivani, D. (2013). Acta Cryst. E69, o398-o399.]); Sridevi & Kalaivani (2012[Sridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044.]); Rajamani & Kalaivani (2012[Rajamani, K. & Kalaivani, D. (2012). Acta Cryst. E68, o2395.]). For the crystal structure of a related barbiturate, see: Mangaiyarkarasi & Kalaivani (2013[Mangaiyarkarasi, G. & Kalaivani, D. (2013). Acta Cryst. E69, o592-o593.])

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C3H10N+·C12H9N4O7

  • Mr = 381.35

  • Triclinic, [P \overline 1]

  • a = 9.8417 (5) Å

  • b = 9.9474 (6) Å

  • c = 10.4241 (5) Å

  • α = 103.454 (2)°

  • β = 106.479 (2)°

  • γ = 100.856 (2)°

  • V = 915.66 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.35 × 0.35 × 0.30 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 9536, Tmax = 9865

  • 16319 measured reflections

  • 4271 independent reflections

  • 2922 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.164

  • S = 0.99

  • 4271 reflections

  • 341 parameters

  • 76 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O7 0.91 (2) 1.80 (2) 2.666 (3) 156 (2)
N6—H6A⋯O5 0.92 (2) 1.83 (2) 2.737 (3) 171 (2)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Barbiturates are pyrimidine derivatives and most of them have anticonvulsant activity (Hueso et al., 2003; Kalaivani et al., 2008; Tripathi, 2009; Kalaivani & Buvaneswari, 2010). Various different types of anionic sigma complexes such as carbon-bonded, nitrogen-bonded, oxygen-bonded and Spiro-Meisenheimer complexes have been reported by different groups of scientists (Terrier, 1982; Gnanadoss & Kalaivani, 1985; Al-Kaysi et al., 2005). A number of crystalline barbiturates in the form of carbon-bonded sigma complexes have been prepared and reported by our group (Kalaivani & Malarvizhi, 2009; Buvaneswari & Kalaivani, 2011; Kalaivani et al., 2012; Babykala & Kalaivani, 2012; Sridevi & Kalaivani, 2012; Rajamani & Kalaivani, 2012; Babykala & Kalaivani, 2013). The asymmetric unit of a related barbiturate prepared from 1-chloro-2,4-dinitrobenzene (DNCB) and barbituric acid in the presence of trimethylamine (Mangaiyarkarasi & Kalaivani, 2013) comprises of two cations and two anions. However, in the present investigation, the asymmetric unit of the molecular salt is comprised of one 5-(2,4-dinitrophenyl)-1,3-dimethylbarbiturate anion and two half occupancy trimethylammonium cations. The molecular structure of the title compound is shown in Fig. 1. The cations lie on inversion centres and hence are disordered. In the crystal, N—H···O hydrogen bonds exist between the protonated nitrogen atoms of the cations and oxygen atoms of the carbonyl groups of anions. The tetrahydropyrimidine ring is essentially planar (maximum deviation = 0.007 (2) Å for N3) and forms a dihedral angle of 41.12 (6)Å with the benzene ring. The nitro group which para with respect to the junction of two rings forms a dihedral of -5.7 (2)° with the benzene ring and may be involved to a greater extent in electron delocalization with the benzene than the nitro group ortho to the junction of the two rings which forms a dihedral angle of 38.8 (2)° with the benzene ring.

Related literature top

For the biological activity of barbiturates, see: Hueso et al. (2003); Kalaivani et al. (2008); Tripathi (2009); Kalaivani & Buvaneswari (2010). For various types of anionic σ-complexes, see: Terrier (1982); Gnanadoss & Kalaivani (1985); Al-Kaysi et al. (2005); For barbiturates as carbon-bonded σ-complexes, see: Kalaivani & Malarvizhi (2009); Buvaneswari & Kalaivani (2011); Kalaivani et al. (2012); Babykala & Kalaivani (2012, 2013); Sridevi & Kalaivani (2012); Rajamani & Kalaivani (2012). For the crystal structure of a related barbiturate, see: Mangaiyarkarasi & Kalaivani (2013)

Experimental top

Analytical grade 1-chloro-2,4-dinitrobenzene (2.02 g,0.01 mol) was dissolved in 20 ml of absolute alcohol. 1,3-Dimethylbarbituric acid (1.56 g,0.01 mol) was also dissolved in 30 ml of absolute alcohol separately. These two solutions were then mixed. To this mixture, 4 ml of trimethylamine (0.03 mol) was added and shaken well for 5–6 hrs. The slightly turbid solution obtained was filtered and kept as such at 298K. After a period of three weeks, dark shiny maroon red coloured crystals of the title salt crystallized out from the solution. The crystals were filtered, powdered well using agate mortar and washed with 30 ml of dry ether. The dry solid of the title compound obtained was quickly washed with 1 ml of absolute alcohol to remove unreacted reactants and finally with 25 ml of dry ether. The pure powder was recrystllized from hot etanol (Yield: 80%; m.pt; 513 K). Good quality single crystals, suitable for X-ray diffraction studies, were obtained by slow evaporation of a solution of the title compound in ethanol at room temperature. The crystals obtained were non-hygroscopic and extraordinarily stable at room temperature. Solubility at 298 K: 2.78 g/100 mL(water); 4.58 g/100 mL(Ethanol); 17.78 g/100 mL(DMSO).

Refinement top

The hydrogen atoms boned to the N atoms of the cation were located in a difference Fourier map and refined isotropically with Uiso(H) = 1.2Ueq(N) and restrained to N—H = 0.91 (2)Å. Hydrogen atoms on methyl groups of the trimethyl ammonium cation were located in a difference Fourier map and refined with fixed isotropic displacement parameters with Uiso(H) = 1.5Ueq(C). The C—H and H···H distances were restrained to 0.96 (2)Å and 1.568 (2)Å respectively. All the other hydrogen atoms were geometrically constrained and allowed to ride on their parent atoms. The cations are disordered across inversion centres. There are two cation moieties in the asymmetric unit each with 0.5 site occupancy. The anisotropic displacement parameters of the disordered atoms were restrained with an effective standard deviation of 0.02. The N—C and C···C distances were restrained to 1.45 (2) Å and 2.36 (2) Å respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title compound showing 30% probability displacement ellipsoids. The cations are half occupancy.
Trimethylammonium 5-(2,4-dinitrophenyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate top
Crystal data top
C3H10N+·C12H9N4O7Z = 2
Mr = 381.35F(000) = 400
Triclinic, P1Dx = 1.383 Mg m3
a = 9.8417 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9474 (6) ÅCell parameters from 5386 reflections
c = 10.4241 (5) Åθ = 2.1–27.5°
α = 103.454 (2)°µ = 0.11 mm1
β = 106.479 (2)°T = 293 K
γ = 100.856 (2)°Block, red
V = 915.66 (9) Å30.35 × 0.35 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2922 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
ω and ϕ scanθmax = 27.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 9536, Tmax = 9865k = 1212
16319 measured reflectionsl = 1313
4271 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0891P)2 + 0.1912P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.164(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.23 e Å3
4271 reflectionsΔρmin = 0.20 e Å3
341 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
76 restraintsExtinction coefficient: 0.020 (4)
Crystal data top
C3H10N+·C12H9N4O7γ = 100.856 (2)°
Mr = 381.35V = 915.66 (9) Å3
Triclinic, P1Z = 2
a = 9.8417 (5) ÅMo Kα radiation
b = 9.9474 (6) ŵ = 0.11 mm1
c = 10.4241 (5) ÅT = 293 K
α = 103.454 (2)°0.35 × 0.35 × 0.30 mm
β = 106.479 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4271 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2922 reflections with I > 2σ(I)
Tmin = 9536, Tmax = 9865Rint = 0.026
16319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05176 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.23 e Å3
4271 reflectionsΔρmin = 0.20 e Å3
341 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3976 (2)0.7207 (3)0.07803 (19)0.0655 (6)
C20.2837 (2)0.6256 (2)0.08545 (17)0.0548 (5)
H20.24340.53420.02080.066*
C30.22965 (18)0.66915 (18)0.19261 (16)0.0440 (4)
C40.29063 (16)0.80221 (18)0.29787 (16)0.0424 (4)
C50.40705 (19)0.8947 (2)0.28249 (19)0.0584 (5)
H50.45080.98530.34810.070*
C60.4590 (2)0.8561 (3)0.1734 (2)0.0712 (6)
H60.53470.92080.16440.085*
C70.24320 (16)0.84301 (17)0.41888 (15)0.0415 (4)
C80.21150 (17)0.74090 (18)0.48671 (16)0.0435 (4)
C90.1589 (2)0.9213 (2)0.65492 (18)0.0560 (5)
C100.23385 (19)0.98455 (19)0.46730 (18)0.0507 (4)
C110.1303 (3)0.6789 (3)0.6741 (3)0.0840 (7)
H11A0.14150.58840.62770.126*
H11B0.03010.66740.67040.126*
H11C0.19440.71160.77040.126*
C120.1746 (3)1.1619 (2)0.6375 (2)0.0740 (6)
H12A0.19871.21850.57990.111*
H12B0.24051.20610.73260.111*
H12C0.07521.15590.63420.111*
N10.4546 (2)0.6754 (3)0.0364 (2)0.0970 (8)
N20.09232 (17)0.56946 (15)0.18014 (14)0.0511 (4)
N30.18912 (16)1.01709 (16)0.58517 (15)0.0531 (4)
N40.16852 (17)0.78490 (17)0.60370 (15)0.0529 (4)
O10.4045 (2)0.5528 (3)0.1143 (2)0.1098 (7)
O20.5474 (3)0.7651 (4)0.0482 (3)0.1804 (16)
O30.0792 (2)0.44075 (15)0.13971 (17)0.0812 (5)
O40.00550 (14)0.61913 (14)0.20145 (14)0.0609 (4)
O50.22047 (16)0.61540 (14)0.45327 (13)0.0597 (4)
O60.2581 (2)1.08059 (16)0.41394 (18)0.0814 (5)
O70.1253 (2)0.95645 (19)0.75936 (16)0.0872 (5)
N50.0051 (4)0.9761 (3)0.9524 (3)0.0548 (8)0.5
H5A0.0157 (18)0.9501 (17)0.8715 (19)0.066*0.5
C130.0093 (9)1.1276 (5)0.9872 (7)0.0839 (16)0.5
H13A0.062 (5)1.134 (8)0.905 (4)0.126*0.5
H13B0.106 (3)1.180 (6)0.993 (6)0.126*0.5
H13C0.010 (6)1.166 (6)1.070 (4)0.126*0.5
C140.1578 (5)0.8892 (6)0.9182 (5)0.0772 (12)0.5
H14A0.155 (6)0.791 (3)0.896 (5)0.116*0.5
H14B0.217 (6)0.909 (5)0.841 (3)0.116*0.5
H14C0.188 (6)0.913 (5)0.998 (4)0.116*0.5
C150.0966 (8)0.9352 (8)1.0574 (6)0.0886 (17)0.5
H15A0.094 (7)0.834 (2)1.037 (7)0.133*0.5
H15B0.087 (7)0.966 (6)1.148 (4)0.133*0.5
H15C0.193 (4)0.987 (5)1.062 (7)0.133*0.5
N60.4670 (5)0.5181 (5)0.4932 (5)0.0741 (11)0.5
H6A0.381 (2)0.544 (2)0.4697 (18)0.089*0.5
C160.4046 (7)0.3737 (6)0.3630 (6)0.0930 (15)0.5
H16A0.426 (6)0.307 (6)0.413 (6)0.140*0.5
H16B0.441 (6)0.364 (7)0.288 (5)0.140*0.5
H16C0.302 (3)0.367 (7)0.334 (6)0.140*0.5
C170.5736 (8)0.6071 (8)0.4681 (12)0.117 (3)0.5
H17A0.623 (8)0.537 (7)0.436 (7)0.176*0.5
H17B0.647 (7)0.679 (6)0.551 (4)0.176*0.5
H17C0.545 (4)0.651 (6)0.396 (5)0.176*0.5
C180.4811 (9)0.4741 (12)0.6114 (7)0.111 (3)0.5
H18A0.393 (3)0.443 (7)0.631 (5)0.166*0.5
H18B0.558 (5)0.536 (7)0.695 (5)0.166*0.5
H18C0.510 (8)0.389 (5)0.574 (8)0.166*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0500 (10)0.1118 (17)0.0387 (9)0.0263 (11)0.0228 (8)0.0172 (10)
C20.0573 (10)0.0737 (12)0.0377 (8)0.0300 (9)0.0197 (7)0.0106 (8)
C30.0482 (8)0.0543 (10)0.0350 (8)0.0210 (7)0.0183 (6)0.0129 (7)
C40.0397 (7)0.0541 (9)0.0346 (7)0.0155 (7)0.0139 (6)0.0121 (7)
C50.0464 (9)0.0752 (13)0.0454 (9)0.0029 (8)0.0181 (7)0.0112 (9)
C60.0459 (9)0.1101 (18)0.0544 (11)0.0043 (10)0.0249 (8)0.0231 (12)
C70.0404 (7)0.0468 (9)0.0351 (8)0.0110 (6)0.0152 (6)0.0064 (6)
C80.0445 (8)0.0548 (10)0.0349 (8)0.0194 (7)0.0168 (6)0.0117 (7)
C90.0517 (9)0.0693 (12)0.0403 (9)0.0141 (8)0.0210 (7)0.0002 (8)
C100.0517 (9)0.0468 (10)0.0464 (9)0.0059 (7)0.0196 (7)0.0038 (7)
C110.119 (2)0.0999 (18)0.0632 (13)0.0394 (15)0.0570 (14)0.0414 (13)
C120.0747 (13)0.0577 (12)0.0777 (14)0.0182 (10)0.0309 (11)0.0072 (10)
N10.0689 (12)0.170 (2)0.0540 (11)0.0302 (14)0.0373 (10)0.0186 (14)
N20.0666 (9)0.0447 (8)0.0390 (7)0.0118 (7)0.0222 (6)0.0046 (6)
N30.0530 (8)0.0492 (8)0.0498 (8)0.0115 (6)0.0226 (6)0.0024 (7)
N40.0604 (9)0.0676 (10)0.0393 (7)0.0214 (7)0.0264 (6)0.0172 (7)
O10.1167 (15)0.164 (2)0.0614 (10)0.0629 (14)0.0513 (10)0.0114 (12)
O20.145 (2)0.251 (3)0.1205 (19)0.023 (2)0.1083 (19)0.003 (2)
O30.1220 (13)0.0443 (8)0.0793 (10)0.0157 (8)0.0525 (10)0.0058 (7)
O40.0511 (7)0.0642 (8)0.0588 (8)0.0074 (6)0.0239 (6)0.0030 (6)
O50.0829 (9)0.0629 (8)0.0538 (7)0.0374 (7)0.0356 (7)0.0264 (6)
O60.1232 (13)0.0492 (8)0.0846 (11)0.0192 (8)0.0583 (10)0.0191 (7)
O70.1065 (12)0.1035 (12)0.0624 (9)0.0314 (10)0.0580 (9)0.0071 (8)
N50.086 (2)0.0557 (19)0.0494 (17)0.0395 (17)0.0426 (18)0.0251 (15)
C130.126 (5)0.060 (3)0.094 (4)0.042 (3)0.063 (4)0.031 (3)
C140.082 (3)0.080 (3)0.064 (3)0.016 (2)0.030 (2)0.010 (2)
C150.100 (4)0.117 (5)0.077 (3)0.063 (4)0.032 (3)0.050 (4)
N60.081 (3)0.082 (3)0.104 (3)0.048 (2)0.059 (3)0.055 (2)
C160.106 (4)0.081 (4)0.090 (4)0.026 (3)0.039 (3)0.016 (3)
C170.087 (4)0.076 (4)0.195 (9)0.017 (3)0.042 (5)0.065 (5)
C180.106 (5)0.192 (9)0.083 (4)0.090 (6)0.054 (4)0.067 (5)
Geometric parameters (Å, º) top
C1—C21.358 (3)C13—C14i1.577 (10)
C1—C61.377 (3)C13—H13A0.962 (19)
C1—N11.471 (2)C13—H13B0.971 (19)
C2—C31.385 (2)C13—H13C0.944 (18)
C2—H20.9300C14—C13i1.577 (10)
C3—C41.403 (2)C14—C15i1.669 (9)
C3—N21.471 (2)C14—N5i1.819 (6)
C4—C51.400 (2)C14—H14A0.962 (18)
C4—C71.463 (2)C14—H14B0.938 (18)
C5—C61.379 (3)C14—H14C0.956 (18)
C5—H50.9300C15—C13i1.019 (8)
C6—H60.9300C15—N5i1.375 (6)
C7—C81.403 (2)C15—C14i1.669 (9)
C7—C101.411 (2)C15—H15A0.972 (19)
C8—O51.243 (2)C15—H15B0.960 (19)
C8—N41.404 (2)C15—H15C0.973 (19)
C9—O71.219 (2)N6—N6ii0.796 (6)
C9—N31.365 (3)N6—C18ii1.340 (8)
C9—N41.370 (2)N6—C171.367 (8)
C10—O61.231 (2)N6—C181.381 (7)
C10—N31.408 (2)N6—C17ii1.419 (8)
C11—N41.470 (3)N6—C161.603 (7)
C11—H11A0.9600N6—C16ii1.632 (8)
C11—H11B0.9600N6—H6A0.92 (2)
C11—H11C0.9600C16—C18ii1.621 (12)
C12—N31.466 (2)C16—N6ii1.633 (8)
C12—H12A0.9600C16—C17ii1.673 (13)
C12—H12B0.9600C16—H16A0.955 (19)
C12—H12C0.9600C16—H16B0.938 (19)
N1—O21.206 (3)C16—H16C0.953 (19)
N1—O11.215 (3)C17—C18ii0.949 (9)
N2—O41.2122 (19)C17—N6ii1.419 (8)
N2—O31.2205 (19)C17—C16ii1.673 (13)
N5—N5i0.964 (5)C17—H17A0.98 (2)
N5—C13i1.328 (6)C17—H17B0.97 (2)
N5—C15i1.375 (6)C17—H17C0.955 (18)
N5—C131.435 (6)C18—C17ii0.949 (9)
N5—C151.450 (6)C18—N6ii1.340 (8)
N5—C141.482 (6)C18—C16ii1.621 (12)
N5—C14i1.819 (6)C18—H18A0.957 (18)
N5—H5A0.914 (19)C18—H18B0.956 (19)
C13—C15i1.019 (8)C18—H18C0.971 (19)
C13—N5i1.328 (6)
C2—C1—C6121.79 (16)N5—C14—H14C110 (4)
C2—C1—N1117.9 (2)C13i—C14—H14C90 (3)
C6—C1—N1120.3 (2)C15i—C14—H14C89 (3)
C1—C2—C3117.72 (17)N5i—C14—H14C78 (3)
C1—C2—H2121.1H14A—C14—H14C109 (3)
C3—C2—H2121.1H14B—C14—H14C113 (3)
C2—C3—C4123.94 (16)C13i—C15—N5i72.0 (5)
C2—C3—N2114.20 (15)C13i—C15—N562.2 (4)
C4—C3—N2121.62 (13)N5i—C15—N539.8 (2)
C5—C4—C3114.84 (14)C13i—C15—C14i127.8 (6)
C5—C4—C7121.04 (15)N5i—C15—C14i57.3 (3)
C3—C4—C7124.08 (14)N5—C15—C14i70.9 (4)
C6—C5—C4122.27 (18)C13i—C15—H15A69 (4)
C6—C5—H5118.9N5i—C15—H15A141 (4)
C4—C5—H5118.9N5—C15—H15A117 (5)
C5—C6—C1119.30 (18)C14i—C15—H15A159 (3)
C5—C6—H6120.3C13i—C15—H15B93 (4)
C1—C6—H6120.3N5i—C15—H15B73 (4)
C8—C7—C10121.30 (14)N5—C15—H15B112 (4)
C8—C7—C4119.04 (14)C14i—C15—H15B84 (4)
C10—C7—C4119.64 (15)H15A—C15—H15B108 (3)
O5—C8—N4117.22 (15)C13i—C15—H15C158 (4)
O5—C8—C7125.47 (14)N5i—C15—H15C109 (4)
N4—C8—C7117.30 (15)N5—C15—H15C104 (4)
O7—C9—N3121.10 (19)C14i—C15—H15C53 (4)
O7—C9—N4121.4 (2)H15A—C15—H15C107 (3)
N3—C9—N4117.52 (14)H15B—C15—H15C109 (3)
O6—C10—N3117.41 (16)N6ii—N6—C18ii75.8 (6)
O6—C10—C7125.85 (16)N6ii—N6—C1777.1 (7)
N3—C10—C7116.72 (16)C18ii—N6—C1741.0 (4)
N4—C11—H11A109.5N6ii—N6—C1870.2 (7)
N4—C11—H11B109.5C18ii—N6—C18146.0 (3)
H11A—C11—H11B109.5C17—N6—C18127.1 (6)
N4—C11—H11C109.5N6ii—N6—C17ii69.8 (7)
H11A—C11—H11C109.5C18ii—N6—C17ii126.1 (6)
H11B—C11—H11C109.5C17—N6—C17ii146.9 (3)
N3—C12—H12A109.5C18—N6—C17ii39.6 (4)
N3—C12—H12B109.5N6ii—N6—C1677.8 (7)
H12A—C12—H12B109.5C18ii—N6—C1666.1 (5)
N3—C12—H12C109.5C17—N6—C16106.5 (6)
H12A—C12—H12C109.5C18—N6—C16105.7 (6)
H12B—C12—H12C109.5C17ii—N6—C1666.9 (6)
O2—N1—O1124.0 (2)N6ii—N6—C16ii73.7 (8)
O2—N1—C1116.9 (3)C18ii—N6—C16ii106.1 (5)
O1—N1—C1119.1 (2)C17—N6—C16ii67.1 (6)
O4—N2—O3123.40 (16)C18—N6—C16ii64.5 (5)
O4—N2—C3118.26 (14)C17ii—N6—C16ii102.6 (6)
O3—N2—C3118.14 (15)C16—N6—C16ii151.5 (2)
C9—N3—C10123.73 (15)N6ii—N6—H6A170.3 (15)
C9—N3—C12117.55 (16)C18ii—N6—H6A104.8 (11)
C10—N3—C12118.73 (17)C17—N6—H6A109.9 (11)
C9—N4—C8123.40 (15)C18—N6—H6A108.7 (11)
C9—N4—C11118.16 (15)C17ii—N6—H6A103.0 (11)
C8—N4—C11118.44 (17)C16—N6—H6A93.5 (12)
N5i—N5—C13i75.7 (4)C16ii—N6—H6A114.8 (11)
N5i—N5—C15i74.3 (4)N6—C16—C18ii49.1 (3)
C13i—N5—C15i127.0 (4)N6—C16—N6ii28.5 (2)
N5i—N5—C1363.7 (4)C18ii—C16—N6ii50.2 (3)
C13i—N5—C13139.4 (3)N6—C16—C17ii51.3 (3)
C15i—N5—C1342.4 (3)C18ii—C16—C17ii96.6 (4)
N5i—N5—C1565.9 (4)N6ii—C16—C17ii48.8 (3)
C13i—N5—C1542.7 (4)N6—C16—H16A99 (4)
C15i—N5—C15140.2 (2)C18ii—C16—H16A125 (4)
C13—N5—C15113.9 (4)N6ii—C16—H16A80 (4)
N5i—N5—C1493.7 (4)C17ii—C16—H16A53 (4)
C13i—N5—C1468.1 (4)N6—C16—H16B121 (4)
C15i—N5—C1471.4 (4)C18ii—C16—H16B72 (4)
C13—N5—C14112.9 (4)N6ii—C16—H16B110 (4)
C15—N5—C14110.2 (4)C17ii—C16—H16B152 (4)
N5i—N5—C14i54.4 (4)H16A—C16—H16B112 (3)
C13i—N5—C14i100.0 (4)N6—C16—H16C101 (4)
C15i—N5—C14i96.7 (4)C18ii—C16—H16C119 (4)
C13—N5—C14i56.5 (4)N6ii—C16—H16C127 (4)
C15—N5—C14i60.2 (4)C17ii—C16—H16C96 (4)
C14—N5—C14i148.1 (2)H16A—C16—H16C110 (3)
N5i—N5—H5A161.2 (12)H16B—C16—H16C113 (3)
C13i—N5—H5A111.6 (10)C18ii—C17—N668.0 (6)
C15i—N5—H5A110.8 (10)C18ii—C17—N6ii68.0 (6)
C13—N5—H5A107.2 (11)N6—C17—N6ii33.1 (3)
C15—N5—H5A107.0 (11)C18ii—C17—C16ii128.5 (9)
C14—N5—H5A105.1 (11)N6—C17—C16ii64.0 (5)
C14i—N5—H5A106.8 (11)N6ii—C17—C16ii61.8 (5)
C15i—C13—N5i75.1 (5)C18ii—C17—H17A61 (5)
C15i—C13—N565.6 (5)N6—C17—H17A99 (5)
N5i—C13—N540.6 (3)N6ii—C17—H17A70 (5)
C15i—C13—C14i134.6 (6)C16ii—C17—H17A109 (4)
N5i—C13—C14i60.6 (4)C18ii—C17—H17B167 (4)
N5—C13—C14i74.1 (4)N6—C17—H17B115 (5)
C15i—C13—H13A56 (4)N6ii—C17—H17B107 (4)
N5i—C13—H13A129 (4)C16ii—C17—H17B51 (5)
N5—C13—H13A102 (5)H17A—C17—H17B106 (3)
C14i—C13—H13A159 (4)C18ii—C17—H17C78 (4)
C15i—C13—H13B158 (3)N6—C17—H17C119.0 (18)
N5i—C13—H13B117 (4)N6ii—C17—H17C143 (3)
N5—C13—H13B111 (4)C16ii—C17—H17C142 (4)
C14i—C13—H13B57 (4)H17A—C17—H17C108 (3)
H13A—C13—H13B107 (3)H17B—C17—H17C109 (3)
C15i—C13—H13C89 (3)C17ii—C18—N6ii71.0 (7)
N5i—C13—H13C76 (4)C17ii—C18—N672.4 (7)
N5—C13—H13C114 (4)N6ii—C18—N634.0 (3)
C14i—C13—H13C89 (4)C17ii—C18—C16ii134.5 (9)
H13A—C13—H13C112 (3)N6ii—C18—C16ii64.8 (5)
H13B—C13—H13C111 (3)N6—C18—C16ii65.3 (5)
N5—C14—C13i51.3 (3)C17ii—C18—H18A78 (4)
N5—C14—C15i51.3 (3)N6ii—C18—H18A143 (3)
C13i—C14—C15i96.3 (3)N6—C18—H18A117.4 (17)
N5—C14—N5i31.9 (2)C16ii—C18—H18A136 (4)
C13i—C14—N5i49.4 (3)C17ii—C18—H18B161 (5)
C15i—C14—N5i48.9 (3)N6ii—C18—H18B105 (4)
N5—C14—H14A106 (4)N6—C18—H18B116 (5)
C13i—C14—H14A69 (3)C16ii—C18—H18B50 (5)
C15i—C14—H14A156 (3)H18A—C18—H18B110 (3)
N5i—C14—H14A118 (3)C17ii—C18—H18C51 (5)
N5—C14—H14B107 (4)N6ii—C18—H18C67 (5)
C13i—C14—H14B154 (4)N6—C18—H18C94 (5)
C15i—C14—H14B73 (3)C16ii—C18—H18C116 (4)
N5i—C14—H14B122 (4)H18A—C18—H18C108 (3)
H14A—C14—H14B112 (3)H18B—C18—H18C110 (3)
C6—C1—C2—C30.4 (3)C13i—N5—C14—C15i145.1 (4)
N1—C1—C2—C3179.46 (18)C13—N5—C14—C15i9.2 (4)
C1—C2—C3—C43.7 (3)C15—N5—C14—C15i137.8 (3)
C1—C2—C3—N2170.69 (17)C14i—N5—C14—C15i72.1 (4)
C2—C3—C4—C54.0 (3)C13i—N5—C14—N5i73.0 (4)
N2—C3—C4—C5169.94 (16)C15i—N5—C14—N5i72.1 (4)
C2—C3—C4—C7173.67 (16)C13—N5—C14—N5i62.9 (4)
N2—C3—C4—C712.4 (2)C15—N5—C14—N5i65.6 (4)
C3—C4—C5—C61.2 (3)C14i—N5—C14—N5i0.002 (2)
C7—C4—C5—C6176.58 (18)N5i—N5—C15—C13i95.0 (6)
C4—C5—C6—C11.8 (3)C15i—N5—C15—C13i95.0 (6)
C2—C1—C6—C52.3 (3)C13—N5—C15—C13i138.1 (4)
N1—C1—C6—C5177.9 (2)C14—N5—C15—C13i10.1 (6)
C5—C4—C7—C8136.83 (18)C14i—N5—C15—C13i156.4 (6)
C3—C4—C7—C840.7 (2)C13i—N5—C15—N5i95.0 (6)
C5—C4—C7—C1041.5 (2)C15i—N5—C15—N5i0.000 (1)
C3—C4—C7—C10140.90 (17)C13—N5—C15—N5i43.1 (4)
C10—C7—C8—O5178.11 (16)C14—N5—C15—N5i84.9 (5)
C4—C7—C8—O50.2 (2)C14i—N5—C15—N5i61.4 (4)
C10—C7—C8—N40.7 (2)N5i—N5—C15—C14i61.4 (4)
C4—C7—C8—N4179.05 (14)C13i—N5—C15—C14i156.4 (6)
C8—C7—C10—O6179.24 (18)C15i—N5—C15—C14i61.4 (4)
C4—C7—C10—O62.4 (3)C13—N5—C15—C14i18.3 (4)
C8—C7—C10—N30.9 (2)C14—N5—C15—C14i146.3 (2)
C4—C7—C10—N3179.29 (14)N6ii—N6—C16—C18ii79.7 (6)
C2—C1—N1—O2174.1 (3)C17—N6—C16—C18ii7.4 (6)
C6—C1—N1—O25.7 (4)C18—N6—C16—C18ii144.9 (3)
C2—C1—N1—O14.5 (3)C17ii—N6—C16—C18ii152.8 (6)
C6—C1—N1—O1175.7 (2)C16ii—N6—C16—C18ii79.7 (6)
C2—C3—N2—O4135.67 (17)C18ii—N6—C16—N6ii79.7 (6)
C4—C3—N2—O438.8 (2)C17—N6—C16—N6ii72.4 (7)
C2—C3—N2—O339.5 (2)C18—N6—C16—N6ii65.1 (6)
C4—C3—N2—O3146.01 (17)C17ii—N6—C16—N6ii73.0 (7)
O7—C9—N3—C10177.49 (17)C16ii—N6—C16—N6ii0.004 (2)
N4—C9—N3—C102.1 (3)N6ii—N6—C16—C17ii73.0 (7)
O7—C9—N3—C122.2 (3)C18ii—N6—C16—C17ii152.8 (6)
N4—C9—N3—C12178.26 (16)C17—N6—C16—C17ii145.4 (4)
O6—C10—N3—C9179.88 (18)C18—N6—C16—C17ii7.9 (6)
C7—C10—N3—C91.7 (2)C16ii—N6—C16—C17ii73.0 (7)
O6—C10—N3—C120.2 (3)N6ii—N6—C17—C18ii83.2 (10)
C7—C10—N3—C12178.68 (16)C18—N6—C17—C18ii135.7 (5)
O7—C9—N4—C8177.78 (17)C17ii—N6—C17—C18ii83.2 (10)
N3—C9—N4—C81.8 (3)C16—N6—C17—C18ii10.3 (8)
O7—C9—N4—C112.9 (3)C16ii—N6—C17—C18ii160.8 (9)
N3—C9—N4—C11177.50 (18)C18ii—N6—C17—N6ii83.2 (10)
O5—C8—N4—C9177.77 (15)C18—N6—C17—N6ii52.5 (7)
C7—C8—N4—C91.1 (2)C17ii—N6—C17—N6ii0.001 (2)
O5—C8—N4—C112.9 (2)C16—N6—C17—N6ii72.9 (7)
C7—C8—N4—C11178.16 (17)C16ii—N6—C17—N6ii77.6 (8)
N5i—N5—C13—C15i95.4 (6)N6ii—N6—C17—C16ii77.6 (8)
C13i—N5—C13—C15i95.4 (6)C18ii—N6—C17—C16ii160.8 (9)
C15—N5—C13—C15i139.6 (4)C18—N6—C17—C16ii25.1 (7)
C14—N5—C13—C15i13.0 (6)C17ii—N6—C17—C16ii77.6 (8)
C14i—N5—C13—C15i158.6 (6)C16—N6—C17—C16ii150.5 (3)
C13i—N5—C13—N5i0.000 (1)N6ii—N6—C18—C17ii81.9 (10)
C15i—N5—C13—N5i95.4 (6)C18ii—N6—C18—C17ii81.9 (10)
C15—N5—C13—N5i44.1 (4)C17—N6—C18—C17ii137.2 (5)
C14—N5—C13—N5i82.5 (5)C16—N6—C18—C17ii11.5 (8)
C14i—N5—C13—N5i63.1 (4)C16ii—N6—C18—C17ii162.9 (8)
N5i—N5—C13—C14i63.1 (4)C18ii—N6—C18—N6ii0.002 (2)
C13i—N5—C13—C14i63.1 (4)C17—N6—C18—N6ii55.2 (8)
C15i—N5—C13—C14i158.6 (6)C17ii—N6—C18—N6ii81.9 (10)
C15—N5—C13—C14i19.0 (4)C16—N6—C18—N6ii70.4 (7)
C14—N5—C13—C14i145.6 (3)C16ii—N6—C18—N6ii80.9 (7)
N5i—N5—C14—C13i73.0 (4)N6ii—N6—C18—C16ii80.9 (7)
C15i—N5—C14—C13i145.1 (4)C18ii—N6—C18—C16ii80.9 (7)
C13—N5—C14—C13i135.9 (3)C17—N6—C18—C16ii25.7 (7)
C15—N5—C14—C13i7.4 (4)C17ii—N6—C18—C16ii162.9 (8)
C14i—N5—C14—C13i73.0 (4)C16—N6—C18—C16ii151.4 (3)
N5i—N5—C14—C15i72.1 (4)
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O70.91 (2)1.80 (2)2.666 (3)156 (2)
N6—H6A···O50.92 (2)1.83 (2)2.737 (3)171 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O70.91 (2)1.80 (2)2.666 (3)156.0 (15)
N6—H6A···O50.92 (2)1.83 (2)2.737 (3)170.5 (17)
 

Acknowledgements

The authors are grateful to SERB–DST, New Delhi, for the financial support and SAIF, IIT Madras, for the data collection.

References

First citationAl-Kaysi, R. O., Mueller, A. M., Ahn, T. S., Lee, S. & Bardeen, C. J. (2005). Langmuir, 21, 7990–7994.  Web of Science PubMed CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBabykala, R. & Kalaivani, D. (2012). Acta Cryst. E68, o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBabykala, R. & Kalaivani, D. (2013). Acta Cryst. E69, o398–o399.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o1433–o1434.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGnanadoss, L. M. & Kalaivani, D. (1985). J. Org. Chem. 50, 1174–1178.  CrossRef CAS Web of Science Google Scholar
First citationHueso, F., Moreno, M. N., Martinez, J. M. & Ramirez, M. J. (2003). J. Inorg. Biochem. 94, 326–334.  Web of Science PubMed Google Scholar
First citationKalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255–260. Cambridge: WSEAS Publications.  Google Scholar
First citationKalaivani, D., Buvaneswari, M. & Rajeswari, S. (2012). Acta Cryst. E68, o29–o30.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369–373.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMangaiyarkarasi, G. & Kalaivani, D. (2013). Acta Cryst. E69, o592–o593.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRajamani, K. & Kalaivani, D. (2012). Acta Cryst. E68, o2395.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044.  CSD CrossRef IUCr Journals Google Scholar
First citationTerrier, F. (1982). Chem. Rev. 82, 77–152.  CrossRef CAS Web of Science Google Scholar
First citationTripathi, K. D. (2009). In Essentials of Medical Pharmacology, 6th ed. Chennai: Jaypee Brothers.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1102-o1103
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds