organic compounds
H,3H)-dione]
of 5,5′-[(4-fluorophenyl)methylene]bis[6-amino-1,3-dimethylpyrimidine-2,4(1aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bLaboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati University, Santiniketan 731 235, West Bengal, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com
In the title molecule, C19H21FN6O4, the dihedral angles between the benzene ring and essentially planar pyrimidine rings [maximum deviations of 0.036 (2) and 0.056 (2) Å] are 73.32 (7) and 63.81 (8)°. The dihedral angle between the mean planes of the pyrimidine rings is 61.43 (6)°. In the crystal, N—H⋯O hydrogen bonds link molecules, forming a two-dimensional network parallel to (001) and in combination with weak C—H⋯O hydrogen bonds, a three-dimensional network is formed. Weak C—H⋯π interactions and π–π interactions, with a centroid–centroid distance of 3.599 (2) Å are also observed.
Keywords: crystal structure; uracil derivatives; biological activity; pyrimidine scaffolds; bis-uracil derivatives.
CCDC reference: 973485
1. Related literature
For the biological activity of uracil derivatives, see: Muller et al. (1993); Buckle et al. (1994). For drugs containing purine moieties, see: Zhi et al. (2003); Devi & Bhuyan (2005). For the biological activity of pyrimidine scaffolds, see: Makarov et al. (2005); Deshmukh et al. (2009); Ibrahim & El-Metwally (2010). For the synthesis of bis-uracil derivatives, see: Karimi et al. (2013). For a related structure, see: Das et al. (2009).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
CCDC reference: 973485
10.1107/S1600536814019886/lh5725sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814019886/lh5725Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814019886/lh5725Isup3.cml
Uracil derivatives represent a "privileged" structural motif in a wide variety of natural and synthetic compounds with a broad spectrum of significant biological activities (Muller et al., 1993). 6-Aminouracils are the important starting compounds for the synthesis of medicinally useful xanthines and theophyllines, which are now routinely used as a phosphodiesterase inhibitor for the treatment of asthma (Buckle et al., 1994). 6-Aminouracils are regarded as the key intermediates for the synthesis of purine-based drugs, such as penciclovir, caffeine, theophylline, and theobromine (Zhi et al., (2003); Devi & Bhuyan, 2005). In addition, pyrimidine scaffolds are reported to exhibit diverse biological and pharmaceutical activities (Ibrahim & El-Metwally, 2010; Deshmukh et al., 2009), Makarov et al., 2005). Herein, we report the synthesis and
of a new arylmethylene-bis uracil derivative, namely 5,5'-((4-fluorophenyl)methylene) bis(6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) synthesized via one-pot pseudo multicomponent reaction at room temperature using iodine as inexpensive and eco-friendly catalyst.The molecular structure of the title compound is shown in Fig. 1. The distances are in the normal ranges and correspond to those observed in a related structure (Das et al., 2009). The pyrimidine rings are essentially planar with maximum deviations of 0.036 (2) and 0.056 (2) Å for C6 and N1', respectively. The dihedral angle between the mean plane of benzene ring [C7—C12] and pyrimidine rings-A and B are 73.32 (7) ° and 63.81 (8) ° respectively. The dihedral angle between the two pyrimidine rings is 61.43 (6) °. The planarity of the phenyl group confirms its aromatic character. From the least-squares plane calculations of the phenyl moiety, the maximum deviation observed is 0.014 (2) Å for atom C8. The double bond distances C2—O2 = 1.220 (4) Å, C3—O3A = 1.257 (3) Å (ring-A) and C2'- O2' = 1.217 (4) Å, C3A'- O3A' = 1.261 (4) Å (ring-B), are significantly larger than the standard value for carbonyl group (1.192 Å) and lengthening of the C═O double bond is due their involvment in N—H···O and C—H···O hydrogen bonds. In the crystal, N—H···O hydrogen bonds link molecules forming a two-dimensional network parallel to (001) (Fig. 2) and in combination with weak C—H···O hydrogen bonds a three-dimensional network is formed. Weak C—H···π interactions and π–π interactions with a centroid–centroid distance of 3.599 (2) Å between pyrimidine ring-B and benzene ring-C at (1/2 - x, -1/2 + y, z) are also observed.
An oven-dried screw cap test tube was charged with a magnetic stir bar, 6-amino-1,3-dimethyluracil (0.155 g, 1.0 mmol), 4-fluorobenzaldehyde (0.062 g, 0.5 mmol), iodine (0.025 g, 10 mol % as catalyst), and EtOH:H2O (1:1 v/v; 4 ml) in a sequential manner. The reaction mixture was then stirred vigorously at room temperature and the stirring was continued for 4 h; the progress of the reaction was monitored by TLC. On completion of the reaction, a solid mass precipitated out, which was filtered, and washed with aqueous ethanol to obtain the crude product that was purified just by recrystallization from ethanol without carrying out νmax cm-1: 3430, 3104, 2956, 1690, 1603, 1498, 1247, 1216, 1142, 1070, 870, 789, 756. 1H NMR (400 MHz, DMSO-d6) δ/p.p.m.: 7.42 (4H, s, –NH2), 7.11 (2H, dd, J = 8.4 & 5.6 Hz, aromatic H), 6.99 (2H, t, J = 8.8 Hz, aromatic H), 5.56 (1H, s, –CH–), 3.32 (6H, s, 2 × NCH3), 3.14 (6H, s, 2 × NCH3). TOF-MS: 439.1513 [M+Na]+. The structure of 5,5'-((4-fluorophenyl)methylene)bis(6-amino-1, 3-dimethylpyrimidine-2,4(1H,3H)-dione) was characterized by means of spectral studies including FT—IR, 1H NMR, and TOF-MS. Crystals suitable for X-ray diffraction were grown by dissolving 50 mg of the title compound in 5 ml DMSO and after several days at ambient temperature colourless block-shaped crystals were formed.
(72% yield). The title compound forms as a White solid. Yield 72%. Mp: 537–539 K. IR (KBr)Crystal data, data collection and structure
details are summarized in Table 1. Atoms H30, H40 attached to N15 and H50, H60 attached to N18 were located in a difference Fourier map and refined isotropically. All the remaining H atoms were geometrically fixed and allowed to ride on their parent C atoms, with C—H distances of 0.93–0.98 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl group where Uiso(H) = 1.5Ueq(C).Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular structure with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii. | |
Fig. 2. Part of the crystal structure viewed along the a axis. Hydrogen bonds are shown as dashed lines. |
C19H21FN6O4 | F(000) = 1744 |
Mr = 416.42 | Dx = 1.475 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2766 reflections |
a = 14.6208 (6) Å | θ = 4.0–29.0° |
b = 11.3324 (7) Å | µ = 0.11 mm−1 |
c = 22.6410 (12) Å | T = 293 K |
V = 3751.4 (3) Å3 | Rectangular, white |
Z = 8 | 0.30 × 0.20 × 0.20 mm |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 3665 independent reflections |
Radiation source: fine-focus sealed tube | 2208 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
Detector resolution: 16.1049 pixels mm-1 | θmax = 26.0°, θmin = 3.4° |
ω scans | h = −17→18 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | k = −13→10 |
Tmin = 0.862, Tmax = 1.000 | l = −27→27 |
9655 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0402P)2 + 0.280P] where P = (Fo2 + 2Fc2)/3 |
3665 reflections | (Δ/σ)max < 0.001 |
291 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C19H21FN6O4 | V = 3751.4 (3) Å3 |
Mr = 416.42 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 14.6208 (6) Å | µ = 0.11 mm−1 |
b = 11.3324 (7) Å | T = 293 K |
c = 22.6410 (12) Å | 0.30 × 0.20 × 0.20 mm |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 3665 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | 2208 reflections with I > 2σ(I) |
Tmin = 0.862, Tmax = 1.000 | Rint = 0.047 |
9655 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.130 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.19 e Å−3 |
3665 reflections | Δρmin = −0.20 e Å−3 |
291 parameters |
Experimental. CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01–02-2013 CrysAlis171. NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O3A | 0.12040 (11) | 0.70286 (16) | 0.47999 (8) | 0.0448 (5) | |
O3A' | 0.41972 (12) | 0.90382 (17) | 0.35851 (8) | 0.0481 (5) | |
N3 | 0.21150 (13) | 0.67789 (19) | 0.56011 (9) | 0.0385 (5) | |
N1' | 0.27279 (15) | 0.63863 (19) | 0.28860 (9) | 0.0445 (6) | |
C5' | 0.28708 (16) | 0.7846 (2) | 0.36460 (10) | 0.0336 (6) | |
N1 | 0.35782 (12) | 0.7609 (2) | 0.56448 (9) | 0.0388 (5) | |
C5 | 0.26609 (15) | 0.7945 (2) | 0.47801 (10) | 0.0317 (6) | |
N18 | 0.16272 (16) | 0.6468 (2) | 0.36253 (12) | 0.0445 (6) | |
O2 | 0.29971 (14) | 0.6586 (2) | 0.64250 (9) | 0.0697 (7) | |
C4 | 0.25464 (16) | 0.8542 (2) | 0.41822 (10) | 0.0337 (6) | |
H4 | 0.2992 | 0.9187 | 0.4203 | 0.040* | |
C6 | 0.34765 (15) | 0.8050 (2) | 0.50801 (10) | 0.0328 (6) | |
C6' | 0.24099 (18) | 0.6903 (2) | 0.34020 (11) | 0.0374 (6) | |
N15 | 0.42224 (15) | 0.8593 (2) | 0.48533 (11) | 0.0410 (6) | |
C7 | 0.16385 (16) | 0.9204 (2) | 0.41091 (11) | 0.0323 (6) | |
C3A' | 0.37186 (18) | 0.8189 (2) | 0.34004 (11) | 0.0393 (6) | |
N3' | 0.40473 (15) | 0.7555 (2) | 0.29207 (9) | 0.0465 (6) | |
C3A | 0.19584 (17) | 0.7257 (2) | 0.50409 (11) | 0.0366 (6) | |
F20 | −0.06866 (11) | 1.12341 (16) | 0.39325 (9) | 0.0834 (7) | |
C2 | 0.28952 (18) | 0.6969 (3) | 0.59256 (12) | 0.0437 (7) | |
O2' | 0.39032 (16) | 0.60699 (19) | 0.22495 (9) | 0.0746 (7) | |
C2' | 0.3585 (2) | 0.6640 (3) | 0.26558 (12) | 0.0503 (8) | |
C13 | 0.44207 (17) | 0.7825 (3) | 0.59804 (11) | 0.0499 (8) | |
H13A | 0.4918 | 0.7404 | 0.5801 | 0.075* | |
H13B | 0.4341 | 0.7558 | 0.6380 | 0.075* | |
H13C | 0.4554 | 0.8655 | 0.5980 | 0.075* | |
C12 | 0.13307 (17) | 0.9921 (2) | 0.45682 (12) | 0.0441 (7) | |
H12 | 0.1651 | 0.9932 | 0.4923 | 0.053* | |
C8 | 0.11561 (17) | 0.9230 (2) | 0.35843 (12) | 0.0405 (7) | |
H8 | 0.1362 | 0.8786 | 0.3265 | 0.049* | |
C10 | 0.00938 (18) | 1.0575 (2) | 0.39853 (15) | 0.0505 (8) | |
C11 | 0.05596 (19) | 1.0616 (3) | 0.45075 (14) | 0.0510 (8) | |
H11 | 0.0363 | 1.1098 | 0.4815 | 0.061* | |
C9 | 0.03704 (18) | 0.9907 (2) | 0.35245 (14) | 0.0502 (8) | |
H9 | 0.0040 | 0.9900 | 0.3174 | 0.060* | |
C14 | 0.14123 (18) | 0.6033 (3) | 0.58682 (13) | 0.0536 (8) | |
H14A | 0.1677 | 0.5579 | 0.6183 | 0.080* | |
H14B | 0.1167 | 0.5509 | 0.5575 | 0.080* | |
H14C | 0.0931 | 0.6519 | 0.6022 | 0.080* | |
C17 | 0.4962 (2) | 0.7837 (3) | 0.26916 (14) | 0.0683 (10) | |
H17A | 0.5409 | 0.7351 | 0.2885 | 0.102* | |
H17B | 0.5096 | 0.8653 | 0.2766 | 0.102* | |
H17C | 0.4979 | 0.7690 | 0.2274 | 0.102* | |
C16 | 0.2188 (2) | 0.5502 (3) | 0.25638 (13) | 0.0626 (9) | |
H16A | 0.2378 | 0.5486 | 0.2158 | 0.094* | |
H16B | 0.1551 | 0.5704 | 0.2585 | 0.094* | |
H16C | 0.2283 | 0.4739 | 0.2738 | 0.094* | |
H60 | 0.1393 (18) | 0.576 (3) | 0.3509 (12) | 0.057 (9)* | |
H50 | 0.1483 (16) | 0.675 (2) | 0.4000 (13) | 0.049 (8)* | |
H40 | 0.4206 (17) | 0.880 (2) | 0.4441 (13) | 0.060 (9)* | |
H30 | 0.476 (2) | 0.856 (3) | 0.5011 (13) | 0.069 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3A | 0.0359 (10) | 0.0609 (13) | 0.0376 (10) | −0.0095 (9) | −0.0013 (8) | 0.0047 (10) |
O3A' | 0.0439 (10) | 0.0557 (12) | 0.0446 (11) | −0.0059 (10) | 0.0066 (9) | 0.0039 (11) |
N3 | 0.0360 (11) | 0.0470 (14) | 0.0326 (11) | −0.0023 (10) | 0.0028 (10) | 0.0068 (12) |
N1' | 0.0635 (15) | 0.0365 (13) | 0.0335 (12) | 0.0040 (11) | 0.0064 (11) | 0.0008 (11) |
C5' | 0.0385 (14) | 0.0364 (15) | 0.0259 (12) | 0.0042 (12) | 0.0025 (11) | 0.0036 (12) |
N1 | 0.0311 (11) | 0.0530 (15) | 0.0322 (11) | 0.0047 (10) | −0.0026 (9) | 0.0040 (12) |
C5 | 0.0263 (12) | 0.0375 (15) | 0.0313 (12) | 0.0021 (11) | 0.0015 (11) | 0.0023 (12) |
N18 | 0.0511 (15) | 0.0398 (15) | 0.0424 (14) | −0.0043 (12) | 0.0052 (13) | −0.0045 (13) |
O2 | 0.0658 (14) | 0.1013 (19) | 0.0420 (12) | −0.0168 (13) | −0.0105 (11) | 0.0299 (13) |
C4 | 0.0340 (13) | 0.0350 (15) | 0.0320 (13) | 0.0015 (12) | −0.0005 (11) | 0.0012 (12) |
C6 | 0.0320 (13) | 0.0355 (14) | 0.0310 (13) | 0.0041 (11) | −0.0008 (11) | −0.0001 (12) |
C6' | 0.0450 (15) | 0.0349 (15) | 0.0324 (13) | 0.0090 (13) | 0.0004 (12) | 0.0048 (13) |
N15 | 0.0305 (12) | 0.0565 (15) | 0.0361 (13) | −0.0035 (11) | −0.0025 (11) | 0.0055 (12) |
C7 | 0.0302 (13) | 0.0315 (14) | 0.0352 (14) | 0.0001 (11) | 0.0000 (11) | 0.0043 (12) |
C3A' | 0.0466 (16) | 0.0409 (16) | 0.0306 (13) | 0.0059 (13) | 0.0038 (13) | 0.0092 (14) |
N3' | 0.0534 (14) | 0.0510 (15) | 0.0349 (12) | 0.0043 (12) | 0.0139 (11) | 0.0073 (12) |
C3A | 0.0380 (14) | 0.0399 (16) | 0.0320 (13) | 0.0041 (12) | 0.0000 (12) | −0.0005 (13) |
F20 | 0.0666 (12) | 0.0682 (13) | 0.1154 (17) | 0.0373 (10) | −0.0044 (11) | 0.0026 (13) |
C2 | 0.0443 (16) | 0.0500 (18) | 0.0366 (15) | 0.0012 (14) | 0.0019 (13) | 0.0050 (15) |
O2' | 0.1086 (18) | 0.0632 (15) | 0.0521 (13) | 0.0067 (13) | 0.0384 (13) | −0.0086 (13) |
C2' | 0.071 (2) | 0.0446 (18) | 0.0354 (15) | 0.0101 (16) | 0.0139 (15) | 0.0097 (15) |
C13 | 0.0360 (14) | 0.078 (2) | 0.0360 (14) | 0.0019 (15) | −0.0102 (12) | 0.0074 (16) |
C12 | 0.0468 (16) | 0.0436 (17) | 0.0420 (16) | 0.0021 (13) | 0.0006 (13) | −0.0035 (14) |
C8 | 0.0459 (15) | 0.0344 (15) | 0.0414 (15) | 0.0067 (12) | −0.0041 (13) | 0.0006 (13) |
C10 | 0.0418 (16) | 0.0333 (16) | 0.076 (2) | 0.0096 (13) | 0.0004 (16) | 0.0073 (17) |
C11 | 0.0578 (18) | 0.0398 (17) | 0.0554 (19) | 0.0045 (14) | 0.0075 (16) | −0.0067 (16) |
C9 | 0.0519 (17) | 0.0431 (17) | 0.0556 (18) | 0.0095 (14) | −0.0143 (15) | 0.0051 (16) |
C14 | 0.0539 (18) | 0.060 (2) | 0.0474 (17) | −0.0143 (15) | 0.0038 (14) | 0.0125 (17) |
C17 | 0.0648 (19) | 0.082 (3) | 0.0577 (18) | 0.0027 (18) | 0.0337 (16) | 0.008 (2) |
C16 | 0.095 (3) | 0.0499 (19) | 0.0431 (17) | −0.0025 (18) | 0.0072 (17) | −0.0099 (17) |
O3A—C3A | 1.257 (3) | C7—C12 | 1.394 (3) |
O3A'—C3A' | 1.261 (3) | C3A'—N3' | 1.388 (3) |
N3—C2 | 1.374 (3) | N3'—C2' | 1.376 (3) |
N3—C3A | 1.398 (3) | N3'—C17 | 1.470 (3) |
N3—C14 | 1.462 (3) | F20—C10 | 1.369 (3) |
N1'—C2' | 1.387 (3) | O2'—C2' | 1.217 (3) |
N1'—C6' | 1.387 (3) | C13—H13A | 0.9600 |
N1'—C16 | 1.469 (3) | C13—H13B | 0.9600 |
C5'—C6' | 1.379 (3) | C13—H13C | 0.9600 |
C5'—C3A' | 1.413 (3) | C12—C11 | 1.382 (4) |
C5'—C4 | 1.523 (3) | C12—H12 | 0.9300 |
N1—C6 | 1.381 (3) | C8—C9 | 1.388 (3) |
N1—C2 | 1.388 (3) | C8—H8 | 0.9300 |
N1—C13 | 1.468 (3) | C10—C9 | 1.351 (4) |
C5—C6 | 1.377 (3) | C10—C11 | 1.365 (4) |
C5—C3A | 1.419 (3) | C11—H11 | 0.9300 |
C5—C4 | 1.522 (3) | C9—H9 | 0.9300 |
N18—C6' | 1.345 (3) | C14—H14A | 0.9600 |
N18—H60 | 0.91 (3) | C14—H14B | 0.9600 |
N18—H50 | 0.93 (3) | C14—H14C | 0.9600 |
O2—C2 | 1.220 (3) | C17—H17A | 0.9600 |
C4—C7 | 1.533 (3) | C17—H17B | 0.9600 |
C4—H4 | 0.9800 | C17—H17C | 0.9600 |
C6—N15 | 1.354 (3) | C16—H16A | 0.9600 |
N15—H40 | 0.96 (3) | C16—H16B | 0.9600 |
N15—H30 | 0.87 (3) | C16—H16C | 0.9600 |
C7—C8 | 1.382 (3) | ||
C2—N3—C3A | 124.1 (2) | O2—C2—N3 | 122.8 (3) |
C2—N3—C14 | 116.9 (2) | O2—C2—N1 | 121.5 (3) |
C3A—N3—C14 | 119.0 (2) | N3—C2—N1 | 115.7 (2) |
C2'—N1'—C6' | 122.1 (2) | O2'—C2'—N3' | 122.8 (3) |
C2'—N1'—C16 | 116.1 (2) | O2'—C2'—N1' | 121.3 (3) |
C6'—N1'—C16 | 121.8 (2) | N3'—C2'—N1' | 115.9 (2) |
C6'—C5'—C3A' | 119.0 (2) | N1—C13—H13A | 109.5 |
C6'—C5'—C4 | 124.6 (2) | N1—C13—H13B | 109.5 |
C3A'—C5'—C4 | 116.4 (2) | H13A—C13—H13B | 109.5 |
C6—N1—C2 | 122.4 (2) | N1—C13—H13C | 109.5 |
C6—N1—C13 | 120.6 (2) | H13A—C13—H13C | 109.5 |
C2—N1—C13 | 117.0 (2) | H13B—C13—H13C | 109.5 |
C6—C5—C3A | 118.0 (2) | C11—C12—C7 | 121.4 (3) |
C6—C5—C4 | 119.7 (2) | C11—C12—H12 | 119.3 |
C3A—C5—C4 | 122.3 (2) | C7—C12—H12 | 119.3 |
C6'—N18—H60 | 122.2 (17) | C7—C8—C9 | 121.2 (3) |
C6'—N18—H50 | 114.3 (16) | C7—C8—H8 | 119.4 |
H60—N18—H50 | 119 (2) | C9—C8—H8 | 119.4 |
C5—C4—C5' | 116.4 (2) | C9—C10—C11 | 122.6 (3) |
C5—C4—C7 | 114.11 (19) | C9—C10—F20 | 119.2 (3) |
C5'—C4—C7 | 115.9 (2) | C11—C10—F20 | 118.2 (3) |
C5—C4—H4 | 102.5 | C10—C11—C12 | 118.3 (3) |
C5'—C4—H4 | 102.5 | C10—C11—H11 | 120.9 |
C7—C4—H4 | 102.5 | C12—C11—H11 | 120.9 |
N15—C6—C5 | 123.3 (2) | C10—C9—C8 | 118.8 (3) |
N15—C6—N1 | 115.4 (2) | C10—C9—H9 | 120.6 |
C5—C6—N1 | 121.2 (2) | C8—C9—H9 | 120.6 |
N18—C6'—C5' | 123.3 (2) | N3—C14—H14A | 109.5 |
N18—C6'—N1' | 116.6 (2) | N3—C14—H14B | 109.5 |
C5'—C6'—N1' | 120.1 (2) | H14A—C14—H14B | 109.5 |
C6—N15—H40 | 117.4 (16) | N3—C14—H14C | 109.5 |
C6—N15—H30 | 124 (2) | H14A—C14—H14C | 109.5 |
H40—N15—H30 | 116 (3) | H14B—C14—H14C | 109.5 |
C8—C7—C12 | 117.6 (2) | N3'—C17—H17A | 109.5 |
C8—C7—C4 | 123.0 (2) | N3'—C17—H17B | 109.5 |
C12—C7—C4 | 119.0 (2) | H17A—C17—H17B | 109.5 |
O3A'—C3A'—N3' | 117.6 (2) | N3'—C17—H17C | 109.5 |
O3A'—C3A'—C5' | 124.5 (2) | H17A—C17—H17C | 109.5 |
N3'—C3A'—C5' | 118.0 (2) | H17B—C17—H17C | 109.5 |
C2'—N3'—C3A' | 124.1 (2) | N1'—C16—H16A | 109.5 |
C2'—N3'—C17 | 117.2 (2) | N1'—C16—H16B | 109.5 |
C3A'—N3'—C17 | 118.6 (2) | H16A—C16—H16B | 109.5 |
O3A—C3A—N3 | 117.2 (2) | N1'—C16—H16C | 109.5 |
O3A—C3A—C5 | 124.6 (2) | H16A—C16—H16C | 109.5 |
N3—C3A—C5 | 118.2 (2) | H16B—C16—H16C | 109.5 |
C6—C5—C4—C5' | 86.2 (3) | C5'—C3A'—N3'—C17 | −175.0 (2) |
C3A—C5—C4—C5' | −92.6 (3) | C2—N3—C3A—O3A | −178.5 (2) |
C6—C5—C4—C7 | −134.7 (2) | C14—N3—C3A—O3A | 1.2 (4) |
C3A—C5—C4—C7 | 46.5 (3) | C2—N3—C3A—C5 | 2.5 (4) |
C6'—C5'—C4—C5 | 75.3 (3) | C14—N3—C3A—C5 | −177.9 (2) |
C3A'—C5'—C4—C5 | −102.8 (3) | C6—C5—C3A—O3A | −175.5 (2) |
C6'—C5'—C4—C7 | −63.1 (3) | C4—C5—C3A—O3A | 3.4 (4) |
C3A'—C5'—C4—C7 | 118.8 (2) | C6—C5—C3A—N3 | 3.5 (4) |
C3A—C5—C6—N15 | 173.9 (2) | C4—C5—C3A—N3 | −177.7 (2) |
C4—C5—C6—N15 | −4.9 (4) | C3A—N3—C2—O2 | 176.5 (3) |
C3A—C5—C6—N1 | −6.9 (4) | C14—N3—C2—O2 | −3.2 (4) |
C4—C5—C6—N1 | 174.3 (2) | C3A—N3—C2—N1 | −4.8 (4) |
C2—N1—C6—N15 | −176.2 (2) | C14—N3—C2—N1 | 175.5 (2) |
C13—N1—C6—N15 | 5.1 (3) | C6—N1—C2—O2 | −180.0 (3) |
C2—N1—C6—C5 | 4.6 (4) | C13—N1—C2—O2 | −1.3 (4) |
C13—N1—C6—C5 | −174.1 (2) | C6—N1—C2—N3 | 1.3 (4) |
C3A'—C5'—C6'—N18 | 176.0 (2) | C13—N1—C2—N3 | −179.9 (2) |
C4—C5'—C6'—N18 | −2.1 (4) | C3A'—N3'—C2'—O2' | −177.2 (3) |
C3A'—C5'—C6'—N1' | −6.9 (4) | C17—N3'—C2'—O2' | 0.2 (4) |
C4—C5'—C6'—N1' | 175.0 (2) | C3A'—N3'—C2'—N1' | 1.8 (4) |
C2'—N1'—C6'—N18 | −171.0 (2) | C17—N3'—C2'—N1' | 179.3 (2) |
C16—N1'—C6'—N18 | 6.6 (4) | C6'—N1'—C2'—O2' | 170.1 (2) |
C2'—N1'—C6'—C5' | 11.7 (4) | C16—N1'—C2'—O2' | −7.6 (4) |
C16—N1'—C6'—C5' | −170.7 (2) | C6'—N1'—C2'—N3' | −8.9 (4) |
C5—C4—C7—C8 | −142.5 (2) | C16—N1'—C2'—N3' | 173.4 (2) |
C5'—C4—C7—C8 | −3.2 (3) | C8—C7—C12—C11 | 1.4 (4) |
C5—C4—C7—C12 | 44.9 (3) | C4—C7—C12—C11 | 174.4 (2) |
C5'—C4—C7—C12 | −175.8 (2) | C12—C7—C8—C9 | −2.7 (4) |
C6'—C5'—C3A'—O3A' | 179.7 (2) | C4—C7—C8—C9 | −175.4 (2) |
C4—C5'—C3A'—O3A' | −2.0 (4) | C9—C10—C11—C12 | −1.6 (4) |
C6'—C5'—C3A'—N3' | 0.1 (4) | F20—C10—C11—C12 | 177.9 (2) |
C4—C5'—C3A'—N3' | 178.3 (2) | C7—C12—C11—C10 | 0.7 (4) |
O3A'—C3A'—N3'—C2' | −177.2 (2) | C11—C10—C9—C8 | 0.3 (4) |
C5'—C3A'—N3'—C2' | 2.4 (4) | F20—C10—C9—C8 | −179.2 (2) |
O3A'—C3A'—N3'—C17 | 5.4 (3) | C7—C8—C9—C10 | 1.9 (4) |
Cg is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N15—H40···O3A′ | 0.96 (3) | 1.96 (3) | 2.916 (3) | 174 (2) |
N18—H50···O3A | 0.93 (3) | 1.88 (3) | 2.803 (3) | 170 (2) |
N15—H30···O3Ai | 0.86 (3) | 2.26 (3) | 3.083 (3) | 161 (3) |
N18—H60···O3A′ii | 0.91 (3) | 2.14 (3) | 3.007 (3) | 159 (2) |
C13—H13A···O3Ai | 0.96 | 2.41 | 3.154 (3) | 134 |
C13—H13A···Cgiii | 0.96 | 2.98 | 3.744 (3) | 138 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+1/2, y−1/2, z; (iii) x−1/2, −y+3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C19H21FN6O4 |
Mr | 416.42 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 14.6208 (6), 11.3324 (7), 22.6410 (12) |
V (Å3) | 3751.4 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.862, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9655, 3665, 2208 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.130, 1.04 |
No. of reflections | 3665 |
No. of parameters | 291 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.20 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).
Cg is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N15—H40···O3A' | 0.96 (3) | 1.96 (3) | 2.916 (3) | 174 (2) |
N18—H50···O3A | 0.93 (3) | 1.88 (3) | 2.803 (3) | 170 (2) |
N15—H30···O3Ai | 0.86 (3) | 2.26 (3) | 3.083 (3) | 161 (3) |
N18—H60···O3A'ii | 0.91 (3) | 2.14 (3) | 3.007 (3) | 159 (2) |
C13—H13A···O3Ai | 0.96 | 2.41 | 3.154 (3) | 134 |
C13—H13A···Cgiii | 0.96 | 2.98 | 3.744 (3) | 138 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+1/2, y−1/2, z; (iii) x−1/2, −y+3/2, −z+1. |
Acknowledgements
RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. GB is thankful to the CSIR, New Delhi, for financial support [grant No. 02 (110)/12/EMR-II]. BB is grateful to the UGC, New Delhi, for the award of a Senior Research Fellowship.
References
Buckle, D. R., Arch, J. R. S., Connolly, B. J., Fenwick, A. E., Foster, K. A., Murray, K. J., Readshaw, S. A., Smallridge, M. & Smith, D. G. (1994). J. Med. Chem. 37, 476–480. CrossRef CAS PubMed Web of Science Google Scholar
Das, S., Saikia, B. K., Das, B., Saikia, L. & Thakur, A. J. (2009). Acta Cryst. E65, o2416–o2417. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Deshmukh, M. B., Salunkhe, S. M., Patil, D. R. & Anbhule, P. V. (2009). Eur. J. Med. Chem. 44, 2651–2654. Web of Science CrossRef PubMed CAS Google Scholar
Devi, I. & Bhuyan, P. J. (2005). Tetrahedron Lett. 46, 5727–5729. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ibrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem. 45, 1158–1166. Web of Science CrossRef CAS PubMed Google Scholar
Karimi, A. R., Dalirnasab, Z., Karimi, M. & Bagherian, F. (2013). Synthesis, 45, 3300–3304. Web of Science CrossRef CAS Google Scholar
Makarov, V. A., Riabova, O. B., Granik, V. G., Dahse, H., -, M., Stelzner, A., Wutzlerc, P. & Schmidtke, M. (2005). Bioorg. Med. Chem. Lett. 15, 37–39. Web of Science CrossRef PubMed CAS Google Scholar
Muller, C. E., Shi, D., Manning, M. & Daly, J. W. (1993). J. Med. Chem. 36, 3341–3349. CAS PubMed Web of Science Google Scholar
Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhi, C., Long, Z.-Y., Gambino, J., Xu, W.-C., Brown, N. C., Barnes, M., Butler, M., LaMarr, W. & Wright, G. E. (2003). J. Med. Chem. 46, 2731–2739. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.