research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 262-264

Crystal structure of 1-(2-chloro­acet­yl)-2,6-bis­­(4-fluoro­phen­yl)-3,3-di­methyl­piperidin-4-one

aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, Chidambaram, Tamil Nadu, India, and bDivision of Life Sciences, Central Instrumentation Facility, Institute of Advanced Study in Science & Technology (IASST), Guwahati 781 035, Assam, India
*Correspondence e-mail: kabilanchem60@rediffmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 8 September 2014; accepted 24 September 2014; online 30 September 2014)

In the title mol­ecule, C21H20ClF2NO2, the piperidine ring adopts a slightly distorted boat conformation. The two benzene rings form a dihedral angle of 87.43 (1)°. A weak intra­molecular C—H⋯π inter­action is observed. In the crystal, weak C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions connect the mol­ecules, forming a three-dimensional network.

1. Chemical context

Piperidones are an important group of heterocyclic compounds in the field of medicinal chemistry due to their biological activities, which include cytotoxic properties (Dimmock et al., 2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]). They are also reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anti­cancer and anti­microbial activities (Perumal et al., 2001[Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]). The present investigation was undertaken to establish the mol­ecular structure, the conformation of the heterocyclic ring and the orientation of the 4-fluoro­phenyl groups with respect to each other.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The sum of the bond angles around atom N1 (359.6°) confirms sp2 hybridization. The N1—C14 [1.356 (2) Å] and C14—O1 [1.221 (2) Å] bond distances indicate the presence electron delocalization in this part of the mol­ecule. The six-membered piperidine ring adopts a slightly distorted boat conformation. The benzene rings form a dihedral angle of 87.43 (1)°. The equatorial and axial orientation of the methyl substituents bonded to atom C2 are described by the N1—C1—C2—C6 and N1—C1—C2—C7 torsion angles of −117.45 (16)° and −57.2 (2)°, respectively. A weak intra­molecular C—H⋯π inter­action is observed, which involves the C8–C13 benzene ring (see Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C16–C21 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.98 2.50 3.453 (2) 165
C15—H15A⋯O1i 0.97 2.46 3.429 (3) 174
C20—H20⋯O2ii 0.93 2.45 3.298 (3) 151
C10—H10⋯Cg1iii 0.93 2.66 3.499 (2) 151
C17—H17⋯Cg2 0.93 2.85 3.771 (2) 170
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 30% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, weak C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions link mol­ecules, forming a three-dimensional network (Fig. 2[link]). Atom O1 acts an acceptor for two weak C—H⋯O hydrogen bonds forming an R21(7) ring.

[Figure 2]
Figure 2
Part of the crystal structure showing weak hydrogen bonds as dashed lines. H atoms not involved in the hydrogen bonds or weak C—H⋯π stacking inter­actions are not shown.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, updates to May 2014; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) revealed four closely related structures in which the dihedral angles between the benzene rings (which are given in square brackets) can be compared to the title compound. These structures are r-2,c-6-bis­(4-fluoro­phen­yl)-t-3,t-5-di­methyl­piperidin-4-one [50.4 (1)°] (Gayathri et al., 2008a[Gayathri, D., Velmurugan, D., Aridoss, G., Kabilan, S. & Ravikumar, K. (2008a). Acta Cryst. E64, o429.]), r-2,c-6-bis­(4-chloro­phen­yl)-c-3,t-3-di­methyl­piperidin-4-one [77.23 (7)°] (Llango et al., 2008[Ilango, S. S., Ponnuswamy, S., Gayathri, P., Thiruvalluvar, A. & Butcher, R. J. (2008). Acta Cryst. E64, o2312.]), r-2,c-6-bis­(4-chloro­phen­yl)-t-3-isopropyl-1-nitro­sopiperidin-4-one [21.56°] (Gayathri et al., 2008b[Gayathri, P., Thiruvalluvar, A., Manimekalai, A., Sivakumar, S. & Butcher, R. J. (2008b). Acta Cryst. E64, o1973.]) and r-2,c-6-bis­(4-chloro­phen­yl)-t-3-iso­propyl­piperidin-4-one [52.4 (1)°] (Thiruval­luvar et al., 2007[Thiruvalluvar, A., Balamurugan, S., Butcher, R. J., Manimekalai, A. & Sivakumar, S. (2007). Acta Cryst. E63, o4482.]).

5. Synthesis and crystallization

The synthesis followed the procedure of Aridoss et al. (2007[Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Spectrochim. Acta A, 68, 1153-1163.]). To a stirred solution of 3,3-dimethyl-2,6-bis­(p-fluoro­phen­yl) piperidin-4-one (1.4 g, 5 mmol), and tri­ethyl­amine (2 ml, 14.4 mmol) in benzene (20 ml), di­chloro­acetyl­chloride (1 ml, 10 mmol) in benzene (20 ml) was added dropwise for about half an hour. Stirring was continued with mild heating using a magnetic stirrer for 7 h. The progress of the reaction was monitored by TLC. After the completion of reaction, it was poured into water and extracted with ether. The collected ether extracts were then washed well with 3% sodium bicarbonate solution and dried over anhydrous Na2SO4. The pasty mass obtained was purified by crystallization from a benzene–petroleum ether solution (333–353 K) in the ratio of 95:5. X-ray quality crystals were grown by slow evaporation of an ethanol solution of the title compound at ambient temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C21H20ClF2NO2
Mr 391.83
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 13.5270 (3), 10.0150 (2), 15.2560 (3)
β (°) 113.803 (1)
V3) 1890.97 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.35 × 0.30 × 0.30
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.914, 0.944
No. of measured, independent and observed [I > 2σ(I)] reflections 17109, 3327, 2643
Rint 0.030
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.02
No. of reflections 3327
No. of parameters 245
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.42
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Piperidones are an important group of heterocyclic compounds in the field of medicinal chemistry due to their biological activities, which include cytotoxic properties (Dimmock et al., 2001). They are also reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anti­cancer and anti­microbial activities (Perumal et al., 2001). The present investigation was undertaken to establish the molecular structure, the conformation of the heterocyclic ring and the orientation of the 4-fluoro­phenyl groups with respect to each other.

Structural commentary top

The molecular structure of the title compound is shown in Fig. 1. The sum of the bond angles around atom N1 (359.6°) confirms sp2 hybridization. The N1—C14 [1.356 (2) Å] and C14—O1 [1.221 (2) Å] bond distances indicate the presence electron delocalization in this part of the molecule. The six-membered piperidine ring adopts a slightly distorted boat conformation. The benzene rings form a dihedral angle of 87.43 (1)°. The equatorial and axial orientation of the methyl substituents bonded to atom C2 are described by the N1—C1—C2—C6 and N1—C1—C2—C7 torsion angles of -117.45 (16)° and -57.2 (2)°, respectively. A weak intra­molecular C—H···π inter­action is observed, which involves the C8–C13 benzene ring (see Table 1).

Supra­molecular features top

In the crystal, weak C—H···O hydrogen bonds and weak C—H···π inter­actions link molecules, forming a three-dimensional network (Fig. 2). Atom O1 acts an acceptor for two weak C—H···O hydrogen bonds forming an R12(7) ring.

Database survey top

A search of the Cambridge Structural Database (Version 5.35, updates to May 2014; Allen, 2002) revealed four closely related structures in which the dihedral angles between the benzene rings (which are given in square brackets) can be compared to the title compound. These structures are r-2,c-6-bis­(4-fluoro­phenyl)-t-3,t-5-di­methyl­piperidin-4-one [50.4 (1)°] (Gayathri et al., 2008a), r-2,c-6-bis­(4-chloro­phenyl)-c-3,t-3-di­methyl­piperidin-4-one [77.23 (7)°] (Llango et al., 2008), r-2,c-6-bis­(4-chloro­phenyl)-t-3-iso­propyl-1-nitro­sopiperidin-4-one [21.56°] (Gayathri et al., 2008b) and r-2,c-6-bis­(4-chloro­phenyl)-t-3-iso­propyl­piperidin-4-one [52.4 (1)°] (Thiruvalluvar et al., 2007).

Synthesis and crystallization top

The synthesis followed the procedure of Aridoss et al. (2007). To a stirred solution of 3,3-di­methyl-2,6-bis­(p-fluoro­phenyl) piperidin-4-one (1.4 g, 5 mmol), and tri­ethyl­amine (2 ml, 14.4 mmol) in benzene (20 ml), di­chloro­acetyl­chloride (1 ml, 10 mmol) in benzene (20 ml) was added dropwise for about half an hour. Stirring was continued with mild heating using a magnetic stirrer for 7 h. The progress of the reaction was monitored by TLC. After the completion of reaction, it was poured into water and extracted with ether. The collected ether extracts were then washed well with 3% sodium bicarbonate solution and dried over anhydrous Na2SO4. The pasty mass obtained was purified by crystallization from a benzene–petroleum ether solution (333–353 K) in the ratio of 95:5. X-ray quality crystals were grown by slow evaporation of an ethanol solution of the title compound at ambient temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Non-hydrogen atoms were refined with anisotropic displacement parameters. All H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Related literature top

For the biological activities of piperidones, see: Perumal et al. (2001); Dimmock et al. (2001); For the synthesis of the title compound, see: Aridoss et al. (2007). For related structures, see: Gayathri et al. (2008a,b); Llango et al. (2008); Thiruvalluvar et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For the synthesis, see: Aridoss et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure showing weak hydrogen bonds as dashed lines. H atoms not involved in the hydrogen bonds or weak C—H···π stacking interactions are not shown.
1-(2-Chloroacetyl)-2,6-bis(4-fluorophenyl)-3,3-dimethylpiperidin-4-one top
Crystal data top
C21H20ClF2NO2F(000) = 816
Mr = 391.83Dx = 1.376 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6438 reflections
a = 13.5270 (3) Åθ = 2.6–27.4°
b = 10.0150 (2) ŵ = 0.24 mm1
c = 15.2560 (3) ÅT = 293 K
β = 113.803 (1)°Block, colourless
V = 1890.97 (7) Å30.35 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3327 independent reflections
Radiation source: fine-focus sealed tube2643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1516
Tmin = 0.914, Tmax = 0.944k = 1111
17109 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0329P)2 + 1.0437P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3327 reflectionsΔρmax = 0.34 e Å3
245 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0104 (10)
Crystal data top
C21H20ClF2NO2V = 1890.97 (7) Å3
Mr = 391.83Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.5270 (3) ŵ = 0.24 mm1
b = 10.0150 (2) ÅT = 293 K
c = 15.2560 (3) Å0.35 × 0.30 × 0.30 mm
β = 113.803 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3327 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2643 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.944Rint = 0.030
17109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
3327 reflectionsΔρmin = 0.42 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.78563 (14)0.24331 (17)0.58593 (12)0.0380 (4)
H10.76380.32110.61290.046*
C20.68341 (15)0.1993 (2)0.49931 (14)0.0480 (5)
C30.70229 (17)0.0678 (2)0.46053 (15)0.0528 (5)
C40.78997 (17)0.0206 (2)0.52812 (14)0.0495 (5)
H4A0.76750.11260.51200.059*
H4B0.85420.00720.51570.059*
C50.82206 (14)0.00286 (17)0.63608 (13)0.0395 (4)
H50.77060.05360.65340.047*
C60.64617 (19)0.3065 (2)0.42125 (16)0.0658 (7)
H6A0.63490.38900.44790.099*
H6B0.70040.31880.39640.099*
H6C0.57980.27890.37050.099*
C70.59232 (17)0.1729 (3)0.53339 (19)0.0726 (7)
H7A0.57670.25370.55930.109*
H7B0.52870.14370.48020.109*
H7C0.61490.10500.58190.109*
C80.88456 (15)0.28756 (17)0.57008 (12)0.0379 (4)
C90.90707 (17)0.2532 (2)0.49221 (14)0.0493 (5)
H90.85740.20260.44300.059*
C101.00201 (19)0.2928 (2)0.48641 (15)0.0560 (6)
H101.01670.26860.43410.067*
C111.07354 (17)0.3676 (2)0.55817 (16)0.0535 (5)
C121.05468 (17)0.4051 (2)0.63625 (15)0.0530 (5)
H121.10470.45660.68460.064*
C130.96006 (15)0.36480 (19)0.64150 (13)0.0440 (5)
H130.94620.38990.69420.053*
C140.82422 (14)0.17695 (19)0.74942 (13)0.0399 (4)
C150.84427 (18)0.0661 (2)0.82215 (14)0.0524 (5)
H15A0.79460.00680.79290.063*
H15B0.91720.03250.84080.063*
C160.93284 (15)0.06468 (18)0.68828 (13)0.0402 (4)
C171.02557 (16)0.0042 (2)0.69010 (15)0.0493 (5)
H171.02170.08190.66610.059*
C181.12403 (17)0.0696 (2)0.72703 (16)0.0586 (6)
H181.18620.02890.72780.070*
C191.12733 (17)0.1957 (2)0.76238 (15)0.0566 (6)
C201.03892 (18)0.2570 (2)0.76548 (15)0.0554 (6)
H201.04430.34140.79250.066*
C210.94109 (17)0.1907 (2)0.72754 (14)0.0483 (5)
H210.87980.23150.72840.058*
N10.81566 (12)0.13914 (14)0.66131 (10)0.0366 (4)
O10.81730 (12)0.29307 (13)0.77065 (9)0.0514 (4)
O20.65146 (16)0.03393 (17)0.37891 (11)0.0883 (6)
F11.22180 (11)0.26360 (14)0.79297 (12)0.0865 (5)
F21.16548 (11)0.40863 (16)0.55128 (10)0.0810 (5)
Cl10.82752 (6)0.12066 (7)0.92455 (4)0.0788 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0399 (10)0.0328 (9)0.0374 (10)0.0039 (8)0.0116 (8)0.0023 (7)
C20.0406 (11)0.0451 (11)0.0462 (11)0.0035 (9)0.0049 (9)0.0039 (9)
C30.0533 (12)0.0460 (12)0.0462 (12)0.0049 (10)0.0068 (10)0.0079 (9)
C40.0551 (12)0.0385 (11)0.0475 (11)0.0011 (9)0.0131 (10)0.0088 (8)
C50.0398 (10)0.0331 (9)0.0450 (10)0.0005 (8)0.0165 (8)0.0021 (8)
C60.0652 (15)0.0552 (14)0.0524 (13)0.0129 (11)0.0017 (11)0.0000 (10)
C70.0391 (12)0.0891 (18)0.0793 (17)0.0016 (12)0.0132 (11)0.0083 (14)
C80.0435 (10)0.0326 (9)0.0356 (9)0.0046 (8)0.0139 (8)0.0030 (7)
C90.0580 (13)0.0489 (12)0.0391 (11)0.0019 (10)0.0177 (10)0.0035 (9)
C100.0683 (14)0.0617 (14)0.0473 (12)0.0067 (11)0.0329 (11)0.0053 (10)
C110.0484 (12)0.0604 (13)0.0554 (13)0.0021 (10)0.0248 (10)0.0176 (11)
C120.0488 (12)0.0577 (13)0.0473 (12)0.0078 (10)0.0138 (10)0.0019 (10)
C130.0481 (11)0.0456 (11)0.0373 (10)0.0021 (9)0.0162 (9)0.0016 (8)
C140.0371 (10)0.0427 (11)0.0434 (10)0.0002 (8)0.0199 (8)0.0021 (8)
C150.0667 (14)0.0494 (12)0.0476 (12)0.0031 (10)0.0299 (11)0.0005 (9)
C160.0444 (11)0.0374 (10)0.0389 (10)0.0043 (8)0.0168 (8)0.0033 (8)
C170.0474 (12)0.0377 (10)0.0588 (13)0.0013 (9)0.0173 (10)0.0013 (9)
C180.0412 (12)0.0545 (13)0.0726 (15)0.0002 (10)0.0152 (11)0.0066 (11)
C190.0460 (12)0.0532 (13)0.0582 (13)0.0159 (10)0.0084 (10)0.0044 (10)
C200.0652 (14)0.0450 (12)0.0548 (13)0.0138 (11)0.0230 (11)0.0084 (9)
C210.0542 (12)0.0440 (11)0.0520 (12)0.0063 (9)0.0268 (10)0.0052 (9)
N10.0377 (8)0.0338 (8)0.0383 (8)0.0020 (6)0.0154 (7)0.0011 (6)
O10.0692 (10)0.0427 (8)0.0495 (8)0.0042 (7)0.0313 (7)0.0050 (6)
O20.1047 (14)0.0628 (11)0.0543 (10)0.0054 (10)0.0126 (9)0.0190 (8)
F10.0524 (8)0.0701 (9)0.1148 (12)0.0234 (7)0.0107 (8)0.0013 (8)
F20.0621 (9)0.1066 (12)0.0843 (10)0.0072 (8)0.0400 (8)0.0227 (8)
Cl10.1233 (6)0.0731 (4)0.0600 (4)0.0112 (4)0.0577 (4)0.0075 (3)
Geometric parameters (Å, º) top
C1—N11.483 (2)C10—C111.357 (3)
C1—C81.519 (3)C10—H100.9300
C1—C21.542 (2)C11—F21.353 (2)
C1—H10.9800C11—C121.368 (3)
C2—C31.507 (3)C12—C131.375 (3)
C2—C61.530 (3)C12—H120.9300
C2—C71.541 (3)C13—H130.9300
C3—O21.203 (2)C14—O11.221 (2)
C3—C41.505 (3)C14—N11.356 (2)
C4—C51.535 (3)C14—C151.515 (3)
C4—H4A0.9700C15—Cl11.754 (2)
C4—H4B0.9700C15—H15A0.9700
C5—N11.485 (2)C15—H15B0.9700
C5—C161.517 (2)C16—C211.382 (3)
C5—H50.9800C16—C171.383 (3)
C6—H6A0.9600C17—C181.384 (3)
C6—H6B0.9600C17—H170.9300
C6—H6C0.9600C18—C191.367 (3)
C7—H7A0.9600C18—H180.9300
C7—H7B0.9600C19—F11.353 (2)
C7—H7C0.9600C19—C201.362 (3)
C8—C91.384 (3)C20—C211.382 (3)
C8—C131.389 (3)C20—H200.9300
C9—C101.381 (3)C21—H210.9300
C9—H90.9300
N1—C1—C8110.21 (14)C8—C9—H9119.5
N1—C1—C2109.50 (14)C11—C10—C9119.07 (19)
C8—C1—C2119.33 (16)C11—C10—H10120.5
N1—C1—H1105.6C9—C10—H10120.5
C8—C1—H1105.6F2—C11—C10118.9 (2)
C2—C1—H1105.6F2—C11—C12119.0 (2)
C3—C2—C6111.25 (17)C10—C11—C12122.1 (2)
C3—C2—C7105.53 (18)C11—C12—C13118.4 (2)
C6—C2—C7109.02 (18)C11—C12—H12120.8
C3—C2—C1110.54 (15)C13—C12—H12120.8
C6—C2—C1111.49 (16)C12—C13—C8121.65 (18)
C7—C2—C1108.80 (17)C12—C13—H13119.2
O2—C3—C4120.44 (19)C8—C13—H13119.2
O2—C3—C2122.40 (19)O1—C14—N1122.96 (17)
C4—C3—C2117.15 (16)O1—C14—C15120.95 (17)
C3—C4—C5118.07 (17)N1—C14—C15116.09 (16)
C3—C4—H4A107.8C14—C15—Cl1112.00 (14)
C5—C4—H4A107.8C14—C15—H15A109.2
C3—C4—H4B107.8Cl1—C15—H15A109.2
C5—C4—H4B107.8C14—C15—H15B109.2
H4A—C4—H4B107.1Cl1—C15—H15B109.2
N1—C5—C16113.80 (14)H15A—C15—H15B107.9
N1—C5—C4111.60 (15)C21—C16—C17118.52 (18)
C16—C5—C4107.94 (15)C21—C16—C5119.36 (17)
N1—C5—H5107.8C17—C16—C5121.83 (17)
C16—C5—H5107.8C16—C17—C18121.11 (19)
C4—C5—H5107.8C16—C17—H17119.4
C2—C6—H6A109.5C18—C17—H17119.4
C2—C6—H6B109.5C19—C18—C17118.1 (2)
H6A—C6—H6B109.5C19—C18—H18121.0
C2—C6—H6C109.5C17—C18—H18121.0
H6A—C6—H6C109.5F1—C19—C20118.8 (2)
H6B—C6—H6C109.5F1—C19—C18118.4 (2)
C2—C7—H7A109.5C20—C19—C18122.8 (2)
C2—C7—H7B109.5C19—C20—C21118.3 (2)
H7A—C7—H7B109.5C19—C20—H20120.8
C2—C7—H7C109.5C21—C20—H20120.8
H7A—C7—H7C109.5C20—C21—C16121.1 (2)
H7B—C7—H7C109.5C20—C21—H21119.4
C9—C8—C13117.70 (18)C16—C21—H21119.4
C9—C8—C1125.28 (17)C14—N1—C1117.35 (14)
C13—C8—C1116.97 (16)C14—N1—C5122.27 (15)
C10—C9—C8121.09 (19)C1—N1—C5119.95 (14)
C10—C9—H9119.5
N1—C1—C2—C358.3 (2)C1—C8—C13—C12177.07 (17)
C8—C1—C2—C370.0 (2)O1—C14—C15—Cl112.3 (2)
N1—C1—C2—C6177.45 (16)N1—C14—C15—Cl1168.29 (14)
C8—C1—C2—C654.3 (2)N1—C5—C16—C21135.35 (17)
N1—C1—C2—C757.2 (2)C4—C5—C16—C21100.2 (2)
C8—C1—C2—C7174.54 (17)N1—C5—C16—C1750.9 (2)
C6—C2—C3—O231.2 (3)C4—C5—C16—C1773.6 (2)
C7—C2—C3—O286.9 (3)C21—C16—C17—C182.4 (3)
C1—C2—C3—O2155.6 (2)C5—C16—C17—C18171.43 (18)
C6—C2—C3—C4147.7 (2)C16—C17—C18—C190.4 (3)
C7—C2—C3—C494.2 (2)C17—C18—C19—F1175.83 (19)
C1—C2—C3—C423.3 (3)C17—C18—C19—C202.2 (3)
O2—C3—C4—C5157.1 (2)F1—C19—C20—C21175.26 (19)
C2—C3—C4—C523.9 (3)C18—C19—C20—C212.8 (3)
C3—C4—C5—N135.1 (2)C19—C20—C21—C160.7 (3)
C3—C4—C5—C16160.89 (18)C17—C16—C21—C201.8 (3)
N1—C1—C8—C9105.5 (2)C5—C16—C21—C20172.16 (18)
C2—C1—C8—C922.4 (3)O1—C14—N1—C16.3 (3)
N1—C1—C8—C1372.05 (19)C15—C14—N1—C1174.27 (16)
C2—C1—C8—C13160.01 (16)O1—C14—N1—C5178.74 (17)
C13—C8—C9—C100.9 (3)C15—C14—N1—C51.8 (2)
C1—C8—C9—C10176.67 (18)C8—C1—N1—C14103.14 (17)
C8—C9—C10—C110.6 (3)C2—C1—N1—C14123.70 (17)
C9—C10—C11—F2178.63 (18)C8—C1—N1—C584.23 (18)
C9—C10—C11—C120.0 (3)C2—C1—N1—C548.9 (2)
F2—C11—C12—C13178.82 (18)C16—C5—N1—C1467.7 (2)
C10—C11—C12—C130.2 (3)C4—C5—N1—C14169.80 (16)
C11—C12—C13—C80.2 (3)C16—C5—N1—C1120.01 (17)
C9—C8—C13—C120.7 (3)C4—C5—N1—C12.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C16–C21 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.982.503.453 (2)165
C15—H15A···O1i0.972.463.429 (3)174
C20—H20···O2ii0.932.453.298 (3)151
C10—H10···Cg1iii0.932.663.499 (2)151
C17—H17···Cg20.932.853.771 (2)170
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C16–C21 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.982.503.453 (2)165
C15—H15A···O1i0.972.463.429 (3)174
C20—H20···O2ii0.932.453.298 (3)151
C10—H10···Cg1iii0.932.663.499 (2)151
C17—H17···Cg20.932.853.771 (2)170
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H20ClF2NO2
Mr391.83
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.5270 (3), 10.0150 (2), 15.2560 (3)
β (°) 113.803 (1)
V3)1890.97 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.914, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
17109, 3327, 2643
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.02
No. of reflections3327
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.42

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

 

Acknowledgements

SJ is thankful to the CSIR, New Delhi, for the award of a Senior Research Fellowship through research grant No. 01/2454/11/EMR-II. The authors would like to acknowledge the SAIF, IIT Madras, for the data collection and the Department of Biotechnology (DBT&NEC), New Delhi, for financial support

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Spectrochim. Acta A, 68, 1153–1163.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGayathri, P., Thiruvalluvar, A., Manimekalai, A., Sivakumar, S. & Butcher, R. J. (2008b). Acta Cryst. E64, o1973.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGayathri, D., Velmurugan, D., Aridoss, G., Kabilan, S. & Ravikumar, K. (2008a). Acta Cryst. E64, o429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIlango, S. S., Ponnuswamy, S., Gayathri, P., Thiruvalluvar, A. & Butcher, R. J. (2008). Acta Cryst. E64, o2312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiruvalluvar, A., Balamurugan, S., Butcher, R. J., Manimekalai, A. & Sivakumar, S. (2007). Acta Cryst. E63, o4482.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 262-264
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds