metal-organic compounds
κO1)cobalt(II) dihydrate
of tetraaquabis(8-chloro-9,10-dioxo-9,10-dihydroanthracene-1-carboxylato-aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
*Correspondence e-mail: kjf416@163.com
In the title complex, [Co(C15H6ClO4)2(H2O)4]·2H2O, the CoII ion is bound by two carboxylate O atoms of two 5-chloro-9,10-anthraquinone-1-carboxylate anions and four water O atoms in a trans conformation, forming an irregular octahedral coordination geometry. This arrangement is stabilized by intramolecular O—H⋯O hydrogen bonds between water and carboxylate. Further O—H⋯O hydrogen bonds between coordinating and non-coordinating water and carboxylate produce layers of molecules that extend parallel to (001). The organic ligands project above and below the plane. Those ligands of adjacent planes are interdigitated and there are π–π interactions between them with centroid–centroid distances of 3.552 (2) and 3.767 (2) Å that generate a three-dimensional supramolecular structure.
Keywords: crystal structure; cobalt; antitumor; hydrogen bond.
CCDC reference: 1025297
1. Related literature
For the synthesis of the title complex, see: George et al. (2006). The major advantage of metal-based over organic-based drugs is the ability to vary geometry and redox states, and metals can also change the pharmacological properties of organic-based drugs by forming coordination complexes with them, see: Hambley (2007). Anthraquinones are highly effective chemotherapeutic agents with a wide spectrum of antitumor activity, see: Unverferth et al. (1983); Kantrowitz & Bristow (1984); Stuart et al. (1984); Arcamone (1987). For related compounds, see: Bruijnincx & Sadler (2008); Gruber et al. (2010); Neufeind et al. (2011).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
2.3. Refinement
|
Data collection: CrystalStructure (Rigaku/MSC, 2006); cell CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
CCDC reference: 1025297
10.1107/S1600536814020972/pj2015sup1.cif
contains datablocks I, new_global_publ_block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814020972/pj2015Isup2.hkl
An aqueous solution (2 ml) of cobalt(II) chloride hexahydrate (0.1 mmol, 23.7 mg) was mixed with a methanolic solution (2 mL) of 5-cyclo-9,10-anthraquinone-1-carboxylate (0.1 mmol, 28.6 mg) in presence of two drops of aqueous sodium hydroxide (0.1 M). The resulting mixture was allowed to evaporate for one week to yield red crystals, suitable for X-ray work. Yield: 75% (based on the 5-cyclo-9,10-anthraquinone-1-carboxylate)
H atoms attached to carbons were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, and Uiso(H) = 1.2Ueq(C) for other H atoms. For the water molecules, all O—H distances were constrained to be equal within a standard deviation of 0.03Å. Similar H···H distance restraints were applied to restrain the bond angle, but with a larger standard deviation. H atoms of bound water were refined with a single isotropic displacement parameter. Similarly, those of free water were refined with a single, different, Uiso.
Data collection: CrystalStructure (Rigaku/MSC, 2006); cell
CrystalStructure (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, with atom labels and 30 % probability displacement ellipsoids. Symmetry equivalent atoms labelled with an A (eg O1A) are generated by the symmetry operator 1–x, –y, 1–z. | |
Fig. 2. A view of the crystal packing. Hydrogen bonds are shown as brown dashed lines. |
[Co(C15H6ClO4)2(H2O)4]·2H2O | Z = 1 |
Mr = 738.32 | F(000) = 377 |
Triclinic, P1 | Dx = 1.667 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8655 (14) Å | Cell parameters from 25 reflections |
b = 8.1623 (16) Å | θ = 3.1–25.0° |
c = 14.285 (3) Å | µ = 0.84 mm−1 |
α = 73.97 (3)° | T = 293 K |
β = 88.86 (3)° | Block, red |
γ = 73.35 (3)° | 0.22 × 0.19 × 0.17 mm |
V = 735.6 (3) Å3 |
Rigaku MM007-HF CCD (Saturn 724+) diffractometer | 3329 independent reflections |
Radiation source: rotating anode | 2171 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.041 |
ω scans at fixed χ = 45° | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −7→8 |
Tmin = 0.837, Tmax = 0.870 | k = −10→10 |
7246 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.179 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0859P)2 + 0.2785P] where P = (Fo2 + 2Fc2)/3 |
3329 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.59 e Å−3 |
9 restraints | Δρmin = −0.64 e Å−3 |
[Co(C15H6ClO4)2(H2O)4]·2H2O | γ = 73.35 (3)° |
Mr = 738.32 | V = 735.6 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.8655 (14) Å | Mo Kα radiation |
b = 8.1623 (16) Å | µ = 0.84 mm−1 |
c = 14.285 (3) Å | T = 293 K |
α = 73.97 (3)° | 0.22 × 0.19 × 0.17 mm |
β = 88.86 (3)° |
Rigaku MM007-HF CCD (Saturn 724+) diffractometer | 3329 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2171 reflections with I > 2σ(I) |
Tmin = 0.837, Tmax = 0.870 | Rint = 0.041 |
7246 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 9 restraints |
wR(F2) = 0.179 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 0.59 e Å−3 |
3329 reflections | Δρmin = −0.64 e Å−3 |
235 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5000 | 0.0000 | 0.5000 | 0.0521 (3) | |
O1 | 0.2123 (5) | 0.3055 (4) | 1.0202 (2) | 0.0734 (8) | |
O2 | 0.2651 (4) | −0.0771 (3) | 0.76542 (19) | 0.0618 (7) | |
O3 | 0.3637 (4) | 0.1703 (3) | 0.58318 (18) | 0.0565 (6) | |
O4 | 0.0299 (4) | 0.1985 (4) | 0.5694 (2) | 0.0631 (7) | |
O5 | 0.4564 (6) | −0.2191 (4) | 0.6077 (2) | 0.0798 (10) | |
H5A | 0.431 (8) | −0.222 (7) | 0.663 (3) | 0.101 (9)* | |
H5B | 0.469 (8) | −0.317 (5) | 0.607 (4) | 0.101 (9)* | |
O6 | 0.2118 (5) | 0.0420 (4) | 0.4326 (2) | 0.0664 (8) | |
H6A | 0.181 (8) | −0.050 (6) | 0.442 (4) | 0.101 (9)* | |
H6B | 0.141 (7) | 0.079 (7) | 0.474 (3) | 0.101 (9)* | |
O7 | 0.6143 (6) | 0.4206 (5) | 0.6095 (3) | 0.0832 (9) | |
H7A | 0.724 (7) | 0.371 (10) | 0.591 (6) | 0.16 (2)* | |
H7B | 0.527 (8) | 0.385 (10) | 0.594 (6) | 0.16 (2)* | |
C1 | 0.1499 (5) | 0.3019 (5) | 0.6896 (3) | 0.0497 (8) | |
C2 | 0.0846 (6) | 0.4864 (5) | 0.6614 (3) | 0.0624 (10) | |
H2 | 0.0601 | 0.5482 | 0.5955 | 0.075* | |
C3 | 0.0552 (7) | 0.5804 (5) | 0.7312 (3) | 0.0666 (11) | |
H3 | 0.0103 | 0.7043 | 0.7116 | 0.080* | |
C4 | 0.0924 (6) | 0.4908 (5) | 0.8284 (3) | 0.0590 (10) | |
H4 | 0.0715 | 0.5541 | 0.8746 | 0.071* | |
C5 | 0.2727 (5) | −0.0750 (5) | 1.0984 (3) | 0.0506 (8) | |
C6 | 0.3092 (5) | −0.2598 (5) | 1.1281 (3) | 0.0583 (9) | |
H6 | 0.3266 | −0.3212 | 1.1942 | 0.070* | |
C7 | 0.3193 (6) | −0.3514 (5) | 1.0589 (3) | 0.0619 (10) | |
H7 | 0.3390 | −0.4738 | 1.0783 | 0.074* | |
C8 | 0.3001 (6) | −0.2605 (5) | 0.9614 (3) | 0.0562 (9) | |
H8 | 0.3107 | −0.3230 | 0.9152 | 0.067* | |
C9 | 0.2065 (5) | 0.2169 (5) | 0.9648 (3) | 0.0508 (8) | |
C10 | 0.2436 (5) | 0.0117 (5) | 0.8235 (3) | 0.0466 (8) | |
C11 | 0.1858 (5) | 0.2093 (5) | 0.7891 (3) | 0.0476 (8) | |
C12 | 0.1613 (5) | 0.3057 (5) | 0.8584 (3) | 0.0482 (8) | |
C13 | 0.2495 (5) | 0.0193 (5) | 1.0001 (2) | 0.0459 (8) | |
C14 | 0.2651 (5) | −0.0773 (5) | 0.9307 (3) | 0.0477 (8) | |
C15 | 0.1838 (6) | 0.2122 (5) | 0.6087 (3) | 0.0525 (8) | |
Cl1 | 0.25829 (17) | 0.02230 (15) | 1.19317 (7) | 0.0696 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0629 (5) | 0.0479 (4) | 0.0531 (4) | −0.0121 (3) | 0.0195 (3) | −0.0316 (3) |
O1 | 0.106 (2) | 0.0652 (17) | 0.0646 (17) | −0.0219 (16) | 0.0088 (16) | −0.0472 (14) |
O2 | 0.0817 (18) | 0.0561 (14) | 0.0632 (16) | −0.0195 (13) | 0.0199 (13) | −0.0434 (12) |
O3 | 0.0627 (15) | 0.0581 (15) | 0.0598 (15) | −0.0146 (12) | 0.0214 (12) | −0.0389 (12) |
O4 | 0.0655 (16) | 0.0728 (18) | 0.0649 (16) | −0.0171 (14) | 0.0081 (13) | −0.0453 (14) |
O5 | 0.121 (3) | 0.0548 (16) | 0.0705 (19) | −0.0255 (17) | 0.0424 (19) | −0.0311 (15) |
O6 | 0.0744 (19) | 0.0636 (17) | 0.0722 (19) | −0.0160 (14) | 0.0169 (14) | −0.0419 (15) |
O7 | 0.083 (2) | 0.065 (2) | 0.104 (3) | −0.0127 (17) | 0.012 (2) | −0.0370 (18) |
C1 | 0.0487 (18) | 0.0543 (19) | 0.055 (2) | −0.0088 (15) | 0.0092 (15) | −0.0359 (16) |
C2 | 0.076 (3) | 0.054 (2) | 0.058 (2) | −0.0064 (19) | 0.0075 (19) | −0.0311 (18) |
C3 | 0.082 (3) | 0.050 (2) | 0.073 (3) | −0.0062 (19) | 0.009 (2) | −0.0377 (19) |
C4 | 0.067 (2) | 0.056 (2) | 0.066 (2) | −0.0103 (18) | 0.0129 (19) | −0.0445 (19) |
C5 | 0.0410 (17) | 0.065 (2) | 0.056 (2) | −0.0157 (16) | 0.0121 (15) | −0.0355 (17) |
C6 | 0.054 (2) | 0.063 (2) | 0.062 (2) | −0.0151 (18) | 0.0108 (17) | −0.0269 (18) |
C7 | 0.061 (2) | 0.055 (2) | 0.075 (3) | −0.0146 (18) | 0.0123 (19) | −0.0302 (19) |
C8 | 0.055 (2) | 0.058 (2) | 0.070 (2) | −0.0168 (17) | 0.0136 (18) | −0.0410 (19) |
C9 | 0.0468 (18) | 0.058 (2) | 0.061 (2) | −0.0128 (15) | 0.0140 (16) | −0.0421 (17) |
C10 | 0.0423 (17) | 0.0548 (19) | 0.057 (2) | −0.0143 (15) | 0.0128 (15) | −0.0385 (16) |
C11 | 0.0428 (17) | 0.0524 (18) | 0.060 (2) | −0.0111 (15) | 0.0124 (15) | −0.0387 (16) |
C12 | 0.0446 (17) | 0.0546 (19) | 0.058 (2) | −0.0133 (15) | 0.0136 (15) | −0.0384 (16) |
C13 | 0.0394 (16) | 0.0551 (19) | 0.0528 (19) | −0.0117 (14) | 0.0112 (14) | −0.0332 (16) |
C14 | 0.0404 (16) | 0.0548 (19) | 0.059 (2) | −0.0126 (15) | 0.0102 (15) | −0.0346 (16) |
C15 | 0.065 (2) | 0.0494 (19) | 0.0489 (19) | −0.0108 (17) | 0.0078 (17) | −0.0300 (15) |
Cl1 | 0.0773 (7) | 0.0832 (7) | 0.0594 (6) | −0.0203 (6) | 0.0136 (5) | −0.0419 (5) |
Co1—O3i | 2.083 (2) | C2—H2 | 0.9300 |
Co1—O3 | 2.083 (2) | C3—C4 | 1.369 (6) |
Co1—O5i | 2.104 (3) | C3—H3 | 0.9300 |
Co1—O5 | 2.104 (3) | C4—C12 | 1.390 (5) |
Co1—O6i | 2.113 (3) | C4—H4 | 0.9300 |
Co1—O6 | 2.113 (3) | C5—C13 | 1.390 (5) |
O1—C9 | 1.219 (4) | C5—C6 | 1.397 (5) |
O2—C10 | 1.225 (4) | C5—Cl1 | 1.737 (3) |
O3—C15 | 1.259 (4) | C6—C7 | 1.385 (5) |
O4—C15 | 1.253 (4) | C6—H6 | 0.9300 |
O5—H5A | 0.81 (3) | C7—C8 | 1.373 (6) |
O5—H5B | 0.78 (3) | C7—H7 | 0.9300 |
O6—H6A | 0.82 (3) | C8—C14 | 1.387 (5) |
O6—H6B | 0.82 (3) | C8—H8 | 0.9300 |
O7—H7A | 0.82 (3) | C9—C12 | 1.487 (5) |
O7—H7B | 0.80 (4) | C9—C13 | 1.492 (5) |
C1—C2 | 1.385 (5) | C10—C11 | 1.485 (5) |
C1—C11 | 1.402 (5) | C10—C14 | 1.493 (5) |
C1—C15 | 1.511 (4) | C11—C12 | 1.405 (4) |
C2—C3 | 1.395 (5) | C13—C14 | 1.412 (4) |
O3i—Co1—O3 | 180.00 (10) | C12—C4—H4 | 119.8 |
O3i—Co1—O5i | 90.64 (11) | C13—C5—C6 | 121.2 (3) |
O3—Co1—O5i | 89.36 (11) | C13—C5—Cl1 | 124.1 (3) |
O3i—Co1—O5 | 89.36 (11) | C6—C5—Cl1 | 114.7 (3) |
O3—Co1—O5 | 90.64 (11) | C7—C6—C5 | 119.8 (4) |
O5i—Co1—O5 | 180.0 | C7—C6—H6 | 120.1 |
O3i—Co1—O6i | 89.78 (11) | C5—C6—H6 | 120.1 |
O3—Co1—O6i | 90.22 (11) | C8—C7—C6 | 119.7 (4) |
O5i—Co1—O6i | 89.38 (15) | C8—C7—H7 | 120.1 |
O5—Co1—O6i | 90.62 (15) | C6—C7—H7 | 120.1 |
O3i—Co1—O6 | 90.22 (11) | C7—C8—C14 | 121.2 (3) |
O3—Co1—O6 | 89.78 (11) | C7—C8—H8 | 119.4 |
O5i—Co1—O6 | 90.62 (15) | C14—C8—H8 | 119.4 |
O5—Co1—O6 | 89.38 (15) | O1—C9—C12 | 119.7 (3) |
O6i—Co1—O6 | 180.0 | O1—C9—C13 | 121.8 (3) |
C15—O3—Co1 | 130.3 (2) | C12—C9—C13 | 118.4 (3) |
Co1—O5—H5A | 126 (4) | O2—C10—C11 | 120.9 (3) |
Co1—O5—H5B | 131 (4) | O2—C10—C14 | 120.3 (3) |
H5A—O5—H5B | 103 (4) | C11—C10—C14 | 118.7 (3) |
Co1—O6—H6A | 112 (4) | C1—C11—C12 | 119.4 (3) |
Co1—O6—H6B | 98 (4) | C1—C11—C10 | 121.7 (3) |
H6A—O6—H6B | 96 (4) | C12—C11—C10 | 118.9 (3) |
H7A—O7—H7B | 110 (5) | C4—C12—C11 | 120.0 (3) |
C2—C1—C11 | 119.5 (3) | C4—C12—C9 | 117.6 (3) |
C2—C1—C15 | 116.7 (3) | C11—C12—C9 | 122.4 (3) |
C11—C1—C15 | 123.8 (3) | C5—C13—C14 | 118.0 (3) |
C1—C2—C3 | 120.6 (4) | C5—C13—C9 | 123.2 (3) |
C1—C2—H2 | 119.7 | C14—C13—C9 | 118.8 (3) |
C3—C2—H2 | 119.7 | C8—C14—C13 | 120.1 (3) |
C4—C3—C2 | 120.2 (4) | C8—C14—C10 | 117.9 (3) |
C4—C3—H3 | 119.9 | C13—C14—C10 | 122.1 (3) |
C2—C3—H3 | 119.9 | O4—C15—O3 | 126.6 (3) |
C3—C4—C12 | 120.3 (3) | O4—C15—C1 | 117.3 (3) |
C3—C4—H4 | 119.8 | O3—C15—C1 | 115.9 (3) |
O3i—Co1—O3—C15 | −8 (100) | C13—C9—C12—C4 | 170.7 (3) |
O5i—Co1—O3—C15 | 115.4 (3) | O1—C9—C12—C11 | 169.1 (3) |
O5—Co1—O3—C15 | −64.6 (3) | C13—C9—C12—C11 | −9.3 (5) |
O6i—Co1—O3—C15 | −155.2 (3) | C6—C5—C13—C14 | −0.3 (5) |
O6—Co1—O3—C15 | 24.8 (3) | Cl1—C5—C13—C14 | 180.0 (2) |
C11—C1—C2—C3 | 0.3 (6) | C6—C5—C13—C9 | 178.8 (3) |
C15—C1—C2—C3 | −178.1 (4) | Cl1—C5—C13—C9 | −0.9 (5) |
C1—C2—C3—C4 | 0.5 (7) | O1—C9—C13—C5 | 8.6 (5) |
C2—C3—C4—C12 | 0.5 (6) | C12—C9—C13—C5 | −173.1 (3) |
C13—C5—C6—C7 | −1.1 (6) | O1—C9—C13—C14 | −172.2 (3) |
Cl1—C5—C6—C7 | 178.6 (3) | C12—C9—C13—C14 | 6.1 (5) |
C5—C6—C7—C8 | 2.1 (6) | C7—C8—C14—C13 | 0.3 (6) |
C6—C7—C8—C14 | −1.7 (6) | C7—C8—C14—C10 | −179.3 (3) |
C2—C1—C11—C12 | −2.1 (5) | C5—C13—C14—C8 | 0.8 (5) |
C15—C1—C11—C12 | 176.1 (3) | C9—C13—C14—C8 | −178.5 (3) |
C2—C1—C11—C10 | 176.2 (3) | C5—C13—C14—C10 | −179.7 (3) |
C15—C1—C11—C10 | −5.6 (5) | C9—C13—C14—C10 | 1.1 (5) |
O2—C10—C11—C1 | 1.2 (5) | O2—C10—C14—C8 | −3.0 (5) |
C14—C10—C11—C1 | −175.8 (3) | C11—C10—C14—C8 | 174.0 (3) |
O2—C10—C11—C12 | 179.5 (3) | O2—C10—C14—C13 | 177.4 (3) |
C14—C10—C11—C12 | 2.5 (5) | C11—C10—C14—C13 | −5.6 (5) |
C3—C4—C12—C11 | −2.4 (6) | Co1—O3—C15—O4 | −20.4 (6) |
C3—C4—C12—C9 | 177.6 (4) | Co1—O3—C15—C1 | 165.0 (2) |
C1—C11—C12—C4 | 3.2 (5) | C2—C1—C15—O4 | −80.0 (5) |
C10—C11—C12—C4 | −175.2 (3) | C11—C1—C15—O4 | 101.7 (4) |
C1—C11—C12—C9 | −176.8 (3) | C2—C1—C15—O3 | 95.1 (4) |
C10—C11—C12—C9 | 4.8 (5) | C11—C1—C15—O3 | −83.2 (4) |
O1—C9—C12—C4 | −11.0 (5) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7B···O3 | 0.80 (4) | 2.37 (5) | 3.121 (5) | 157 (8) |
O7—H7A···O4ii | 0.82 (3) | 2.24 (4) | 3.049 (4) | 169 (8) |
O6—H6B···O4 | 0.82 (3) | 1.92 (3) | 2.717 (4) | 164 (5) |
O6—H6A···O4iii | 0.82 (3) | 2.17 (4) | 2.916 (4) | 152 (6) |
O5—H5B···O7iv | 0.78 (3) | 2.08 (4) | 2.821 (4) | 159 (5) |
O5—H5A···O2 | 0.81 (3) | 2.22 (4) | 2.932 (4) | 147 (5) |
Symmetry codes: (ii) x+1, y, z; (iii) −x, −y, −z+1; (iv) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7B···O3 | 0.80 (4) | 2.37 (5) | 3.121 (5) | 157 (8) |
O7—H7A···O4i | 0.82 (3) | 2.24 (4) | 3.049 (4) | 169 (8) |
O6—H6B···O4 | 0.82 (3) | 1.92 (3) | 2.717 (4) | 164 (5) |
O6—H6A···O4ii | 0.82 (3) | 2.17 (4) | 2.916 (4) | 152 (6) |
O5—H5B···O7iii | 0.78 (3) | 2.08 (4) | 2.821 (4) | 159 (5) |
O5—H5A···O2 | 0.81 (3) | 2.22 (4) | 2.932 (4) | 147 (5) |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y, −z+1; (iii) x, y−1, z. |
Acknowledgements
This work was supported by Natural Science Foundation of Yunnan Provice (grant No. 2009CD048), the Applied Basic Research Projects of Yunnan Provine (grant No. 2014fz042) and the Scientific Research Fund of Yunnan Education (grant No. 2013Y431)
References
Arcamone, F. (1987). Cancer Treat. Rev. 25, 2721–2729. Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruijnincx, P. C. A. & Sadler, P. J. (2008). Curr. Opin. Chem. Biol. 12, 197–206. Web of Science CrossRef PubMed CAS Google Scholar
George, T. A., Hammud, H. H. & Isber, S. (2006). Polyhedron, 25, 2721–2729. Web of Science CSD CrossRef CAS Google Scholar
Gruber, T., Helas, S. F., Seichter, W. & Weber, E. (2010). Struct. Chem. 21, 1079–1083. Web of Science CSD CrossRef CAS Google Scholar
Hambley, T. W. (2007). Science, 318, 1392–1393. Web of Science CrossRef PubMed CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kantrowitz, N. E. & Bristow, M. R. (1984). Prog. Cardiovasc. Dis. 27, 195–200. CrossRef CAS PubMed Web of Science Google Scholar
Neufeind, S., Hülsken, N., Neudörfl, J.-M., Schlörer, N. & Schmalz, H.-G. (2011). Chem. Eur. J. 17, 2633–2641. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stuart, H. A., Peason, M., Smith, I. E. & Olsen, E. G. J. (1984). Lancet, 2, 219–220. Google Scholar
Unverferth, D. V., Unverferth, B. J., Balcerzak, S. P., Bashore, T. A. & Neidhart, J. A. (1983). Cancer Treat. Rep. 67, 343–350. CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The major advantage of metal-based over organic-based drugs is the ability to vary coordination number, geometry, and redox states and metals can also change the pharmacological properties of organic-based drugs by forming coordination complexes with them. (Hambley et al. 2007) Medicinal inorganic chemistry, covering applications of metals in therapeutics and diagnostics, is a field of increasing prominence (Bruijnincx et al. 2008) after the discovery and successful clinical applications of the Pt-based anticancer drug cisplatin. Anthraquinones are highly effective chemotherapeutic agents with a wide spectrum of antitumor activity. (Unverferth et al. 1983; Kantrowitz et al. 1984; Stuart et al. 1984; Arcamone et al. 1987;). Herein we report the synthesis and structure of the title cobalt(II) anthraquione complex.
The structure of the title complex is shown in Fig. 1, Fig. 2 and hydrogen-bond geometry is given in Table 1. The complex crystallizes in the triclinic space group P1 and the asymmetric unit consists of one crystallographically independent co(II) cation, one 5-cyclo-9,10-anthraquinone-1-carboxylate anion, two coordination water molecules and one free water molecule. As shown in Fig.1, the Co(II) ion is bound by two carboxylate O atom (O3,O3A), four water molecules forming an irregular coordination geometry. Strong hydrogen bonds involving an aqua ligand (as a donor) and carboxy O atoms (as an acceptor) may further stabilize the three-dimensional structure (O5···O2=2.932 (4) Å, O5···O7#1=2.821 (4) Å, O6···O4#2=2.916 (4) Å, O6···O4=2.717 (4) Å, symmetry codes:#1 x, y–1, z #2 –x, –y, –z+1). The interstitial water molecules are attached via hydrogen bonding to carboxylate O atoms (O7···O4#3=3.049 (4) Å, O7···O3=3.121 (5) Å, symmetry code:#3 x+1, y, z) (Table 1 & Fig.2).