metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages m357-m358

Crystal structure of tetra­aquabis(8-chloro-9,10-dioxo-9,10-di­hydroanthracene-1-carboxyl­ato-κO1)cobalt(II) dihydrate

aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
*Correspondence e-mail: kjf416@163.com

Edited by T. J. Prior, University of Hull, England (Received 16 September 2014; accepted 20 September 2014; online 27 September 2014)

In the title complex, [Co(C15H6ClO4)2(H2O)4]·2H2O, the CoII ion is bound by two carboxylate O atoms of two 5-chloro-9,10-anthra­quinone-1-carboxyl­ate anions and four water O atoms in a trans conformation, forming an irregular octa­hedral coordination geometry. This arrangement is stabilized by intra­molecular O—H⋯O hydrogen bonds between water and carboxyl­ate. Further O—H⋯O hydrogen bonds between coordinating and non-coordinating water and carboxyl­ate produce layers of mol­ecules that extend parallel to (001). The organic ligands project above and below the plane. Those ligands of adjacent planes are inter­digitated and there are ππ inter­actions between them with centroid–centroid distances of 3.552 (2) and 3.767 (2) Å that generate a three-dimensional supra­molecular structure.

1. Related literature

For the synthesis of the title complex, see: George et al. (2006[George, T. A., Hammud, H. H. & Isber, S. (2006). Polyhedron, 25, 2721-2729.]). The major advantage of metal-based over organic-based drugs is the ability to vary coordination number, geometry and redox states, and metals can also change the pharmacological properties of organic-based drugs by forming coordination complexes with them, see: Hambley (2007[Hambley, T. W. (2007). Science, 318, 1392-1393.]). Anthra­quinones are highly effective chemotherapeutic agents with a wide spectrum of anti­tumor activity, see: Unverferth et al. (1983[Unverferth, D. V., Unverferth, B. J., Balcerzak, S. P., Bashore, T. A. & Neidhart, J. A. (1983). Cancer Treat. Rep. 67, 343-350.]); Kantrowitz & Bristow (1984[Kantrowitz, N. E. & Bristow, M. R. (1984). Prog. Cardiovasc. Dis. 27, 195-200.]); Stuart et al. (1984[Stuart, H. A., Peason, M., Smith, I. E. & Olsen, E. G. J. (1984). Lancet, 2, 219-220.]); Arcamone (1987[Arcamone, F. (1987). Cancer Treat. Rev. 25, 2721-2729.]). For related compounds, see: Bruijnincx & Sadler (2008[Bruijnincx, P. C. A. & Sadler, P. J. (2008). Curr. Opin. Chem. Biol. 12, 197-206.]); Gruber et al. (2010[Gruber, T., Helas, S. F., Seichter, W. & Weber, E. (2010). Struct. Chem. 21, 1079-1083.]); Neufeind et al. (2011[Neufeind, S., Hülsken, N., Neudörfl, J.-M., Schlörer, N. & Schmalz, H.-G. (2011). Chem. Eur. J. 17, 2633-2641.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Co(C15H6ClO4)2(H2O)4]·2H2O

  • Mr = 738.32

  • Triclinic, [P \overline 1]

  • a = 6.8655 (14) Å

  • b = 8.1623 (16) Å

  • c = 14.285 (3) Å

  • α = 73.97 (3)°

  • β = 88.86 (3)°

  • γ = 73.35 (3)°

  • V = 735.6 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.17 mm

2.2. Data collection

  • Rigaku MM007-HF CCD (Saturn 724+) diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.837, Tmax = 0.870

  • 7246 measured reflections

  • 3329 independent reflections

  • 2171 reflections with I > 2σ(I)

  • Rint = 0.041

  • 2 standard reflections every 150 reflections intensity decay: none

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.179

  • S = 1.12

  • 3329 reflections

  • 235 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O3 0.80 (4) 2.37 (5) 3.121 (5) 157 (8)
O7—H7A⋯O4i 0.82 (3) 2.24 (4) 3.049 (4) 169 (8)
O6—H6B⋯O4 0.82 (3) 1.92 (3) 2.717 (4) 164 (5)
O6—H6A⋯O4ii 0.82 (3) 2.17 (4) 2.916 (4) 152 (6)
O5—H5B⋯O7iii 0.78 (3) 2.08 (4) 2.821 (4) 159 (5)
O5—H5A⋯O2 0.81 (3) 2.22 (4) 2.932 (4) 147 (5)
Symmetry codes: (i) x+1, y, z; (ii) -x, -y, -z+1; (iii) x, y-1, z.

Data collection: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The major advantage of metal-based over organic-based drugs is the ability to vary coordination number, geometry, and redox states and metals can also change the pharmacological properties of organic-based drugs by forming coordination complexes with them. (Hambley et al. 2007) Medicinal inorganic chemistry, covering applications of metals in therapeutics and diagnostics, is a field of increasing prominence (Bruijnincx et al. 2008) after the discovery and successful clinical applications of the Pt-based anticancer drug cisplatin. Anthraquinones are highly effective chemotherapeutic agents with a wide spectrum of antitumor activity. (Unverferth et al. 1983; Kantrowitz et al. 1984; Stuart et al. 1984; Arcamone et al. 1987;). Herein we report the synthesis and structure of the title cobalt(II) anthraquione complex.

The structure of the title complex is shown in Fig. 1, Fig. 2 and hydrogen-bond geometry is given in Table 1. The complex crystallizes in the triclinic space group P1 and the asymmetric unit consists of one crystallographically independent co(II) cation, one 5-cyclo-9,10-anthraquinone-1-carboxylate anion, two coordination water molecules and one free water molecule. As shown in Fig.1, the Co(II) ion is bound by two carboxylate O atom (O3,O3A), four water molecules forming an irregular coordination geometry. Strong hydrogen bonds involving an aqua ligand (as a donor) and carboxy O atoms (as an acceptor) may further stabilize the three-dimensional structure (O5···O2=2.932 (4) Å, O5···O7#1=2.821 (4) Å, O6···O4#2=2.916 (4) Å, O6···O4=2.717 (4) Å, symmetry codes:#1 x, y–1, z #2 –x, –y, –z+1). The interstitial water molecules are attached via hydrogen bonding to carboxylate O atoms (O7···O4#3=3.049 (4) Å, O7···O3=3.121 (5) Å, symmetry code:#3 x+1, y, z) (Table 1 & Fig.2).

Related literature top

For the synthesis of the title complex, see: George et al. (2006). The major advantage of metal-based over organic-based drugs is the ability to vary coordination number, geometry and redox states, and metals can also change the pharmacological properties of organic-based drugs by forming coordination complexes with them, see: Hambley (2007). Anthraquinones are highly effective chemotherapeutic agents with a wide spectrum of antitumor activity, see: Unverferth et al. (1983); Kantrowitz & Bristow (1984); Stuart et al. (1984); Arcamone et al. (1987). For related compounds, see: Bruijnincx & Sadler (2008); Gruber et al. (2010); Neufeind et al. (2011).

Experimental top

An aqueous solution (2 ml) of cobalt(II) chloride hexahydrate (0.1 mmol, 23.7 mg) was mixed with a methanolic solution (2 mL) of 5-cyclo-9,10-anthraquinone-1-carboxylate (0.1 mmol, 28.6 mg) in presence of two drops of aqueous sodium hydroxide (0.1 M). The resulting mixture was allowed to evaporate for one week to yield red crystals, suitable for X-ray work. Yield: 75% (based on the 5-cyclo-9,10-anthraquinone-1-carboxylate)

Refinement top

H atoms attached to carbons were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, and Uiso(H) = 1.2Ueq(C) for other H atoms. For the water molecules, all O—H distances were constrained to be equal within a standard deviation of 0.03Å. Similar H···H distance restraints were applied to restrain the bond angle, but with a larger standard deviation. H atoms of bound water were refined with a single isotropic displacement parameter. Similarly, those of free water were refined with a single, different, Uiso.

Computing details top

Data collection: CrystalStructure (Rigaku/MSC, 2006); cell refinement: CrystalStructure (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30 % probability displacement ellipsoids. Symmetry equivalent atoms labelled with an A (eg O1A) are generated by the symmetry operator 1–x, –y, 1–z.
[Figure 2] Fig. 2. A view of the crystal packing. Hydrogen bonds are shown as brown dashed lines.
Tetraaquabis(8-chloro-9,10-dioxo-9,10-dihydroanthracene-1-carboxylato-κO1)cobalt(II) dihydrate top
Crystal data top
[Co(C15H6ClO4)2(H2O)4]·2H2OZ = 1
Mr = 738.32F(000) = 377
Triclinic, P1Dx = 1.667 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8655 (14) ÅCell parameters from 25 reflections
b = 8.1623 (16) Åθ = 3.1–25.0°
c = 14.285 (3) ŵ = 0.84 mm1
α = 73.97 (3)°T = 293 K
β = 88.86 (3)°Block, red
γ = 73.35 (3)°0.22 × 0.19 × 0.17 mm
V = 735.6 (3) Å3
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
3329 independent reflections
Radiation source: rotating anode2171 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.041
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 78
Tmin = 0.837, Tmax = 0.870k = 1010
7246 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0859P)2 + 0.2785P]
where P = (Fo2 + 2Fc2)/3
3329 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.59 e Å3
9 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Co(C15H6ClO4)2(H2O)4]·2H2Oγ = 73.35 (3)°
Mr = 738.32V = 735.6 (3) Å3
Triclinic, P1Z = 1
a = 6.8655 (14) ÅMo Kα radiation
b = 8.1623 (16) ŵ = 0.84 mm1
c = 14.285 (3) ÅT = 293 K
α = 73.97 (3)°0.22 × 0.19 × 0.17 mm
β = 88.86 (3)°
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
3329 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2171 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.870Rint = 0.041
7246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0529 restraints
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.59 e Å3
3329 reflectionsΔρmin = 0.64 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00000.50000.0521 (3)
O10.2123 (5)0.3055 (4)1.0202 (2)0.0734 (8)
O20.2651 (4)0.0771 (3)0.76542 (19)0.0618 (7)
O30.3637 (4)0.1703 (3)0.58318 (18)0.0565 (6)
O40.0299 (4)0.1985 (4)0.5694 (2)0.0631 (7)
O50.4564 (6)0.2191 (4)0.6077 (2)0.0798 (10)
H5A0.431 (8)0.222 (7)0.663 (3)0.101 (9)*
H5B0.469 (8)0.317 (5)0.607 (4)0.101 (9)*
O60.2118 (5)0.0420 (4)0.4326 (2)0.0664 (8)
H6A0.181 (8)0.050 (6)0.442 (4)0.101 (9)*
H6B0.141 (7)0.079 (7)0.474 (3)0.101 (9)*
O70.6143 (6)0.4206 (5)0.6095 (3)0.0832 (9)
H7A0.724 (7)0.371 (10)0.591 (6)0.16 (2)*
H7B0.527 (8)0.385 (10)0.594 (6)0.16 (2)*
C10.1499 (5)0.3019 (5)0.6896 (3)0.0497 (8)
C20.0846 (6)0.4864 (5)0.6614 (3)0.0624 (10)
H20.06010.54820.59550.075*
C30.0552 (7)0.5804 (5)0.7312 (3)0.0666 (11)
H30.01030.70430.71160.080*
C40.0924 (6)0.4908 (5)0.8284 (3)0.0590 (10)
H40.07150.55410.87460.071*
C50.2727 (5)0.0750 (5)1.0984 (3)0.0506 (8)
C60.3092 (5)0.2598 (5)1.1281 (3)0.0583 (9)
H60.32660.32121.19420.070*
C70.3193 (6)0.3514 (5)1.0589 (3)0.0619 (10)
H70.33900.47381.07830.074*
C80.3001 (6)0.2605 (5)0.9614 (3)0.0562 (9)
H80.31070.32300.91520.067*
C90.2065 (5)0.2169 (5)0.9648 (3)0.0508 (8)
C100.2436 (5)0.0117 (5)0.8235 (3)0.0466 (8)
C110.1858 (5)0.2093 (5)0.7891 (3)0.0476 (8)
C120.1613 (5)0.3057 (5)0.8584 (3)0.0482 (8)
C130.2495 (5)0.0193 (5)1.0001 (2)0.0459 (8)
C140.2651 (5)0.0773 (5)0.9307 (3)0.0477 (8)
C150.1838 (6)0.2122 (5)0.6087 (3)0.0525 (8)
Cl10.25829 (17)0.02230 (15)1.19317 (7)0.0696 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0629 (5)0.0479 (4)0.0531 (4)0.0121 (3)0.0195 (3)0.0316 (3)
O10.106 (2)0.0652 (17)0.0646 (17)0.0219 (16)0.0088 (16)0.0472 (14)
O20.0817 (18)0.0561 (14)0.0632 (16)0.0195 (13)0.0199 (13)0.0434 (12)
O30.0627 (15)0.0581 (15)0.0598 (15)0.0146 (12)0.0214 (12)0.0389 (12)
O40.0655 (16)0.0728 (18)0.0649 (16)0.0171 (14)0.0081 (13)0.0453 (14)
O50.121 (3)0.0548 (16)0.0705 (19)0.0255 (17)0.0424 (19)0.0311 (15)
O60.0744 (19)0.0636 (17)0.0722 (19)0.0160 (14)0.0169 (14)0.0419 (15)
O70.083 (2)0.065 (2)0.104 (3)0.0127 (17)0.012 (2)0.0370 (18)
C10.0487 (18)0.0543 (19)0.055 (2)0.0088 (15)0.0092 (15)0.0359 (16)
C20.076 (3)0.054 (2)0.058 (2)0.0064 (19)0.0075 (19)0.0311 (18)
C30.082 (3)0.050 (2)0.073 (3)0.0062 (19)0.009 (2)0.0377 (19)
C40.067 (2)0.056 (2)0.066 (2)0.0103 (18)0.0129 (19)0.0445 (19)
C50.0410 (17)0.065 (2)0.056 (2)0.0157 (16)0.0121 (15)0.0355 (17)
C60.054 (2)0.063 (2)0.062 (2)0.0151 (18)0.0108 (17)0.0269 (18)
C70.061 (2)0.055 (2)0.075 (3)0.0146 (18)0.0123 (19)0.0302 (19)
C80.055 (2)0.058 (2)0.070 (2)0.0168 (17)0.0136 (18)0.0410 (19)
C90.0468 (18)0.058 (2)0.061 (2)0.0128 (15)0.0140 (16)0.0421 (17)
C100.0423 (17)0.0548 (19)0.057 (2)0.0143 (15)0.0128 (15)0.0385 (16)
C110.0428 (17)0.0524 (18)0.060 (2)0.0111 (15)0.0124 (15)0.0387 (16)
C120.0446 (17)0.0546 (19)0.058 (2)0.0133 (15)0.0136 (15)0.0384 (16)
C130.0394 (16)0.0551 (19)0.0528 (19)0.0117 (14)0.0112 (14)0.0332 (16)
C140.0404 (16)0.0548 (19)0.059 (2)0.0126 (15)0.0102 (15)0.0346 (16)
C150.065 (2)0.0494 (19)0.0489 (19)0.0108 (17)0.0078 (17)0.0300 (15)
Cl10.0773 (7)0.0832 (7)0.0594 (6)0.0203 (6)0.0136 (5)0.0419 (5)
Geometric parameters (Å, º) top
Co1—O3i2.083 (2)C2—H20.9300
Co1—O32.083 (2)C3—C41.369 (6)
Co1—O5i2.104 (3)C3—H30.9300
Co1—O52.104 (3)C4—C121.390 (5)
Co1—O6i2.113 (3)C4—H40.9300
Co1—O62.113 (3)C5—C131.390 (5)
O1—C91.219 (4)C5—C61.397 (5)
O2—C101.225 (4)C5—Cl11.737 (3)
O3—C151.259 (4)C6—C71.385 (5)
O4—C151.253 (4)C6—H60.9300
O5—H5A0.81 (3)C7—C81.373 (6)
O5—H5B0.78 (3)C7—H70.9300
O6—H6A0.82 (3)C8—C141.387 (5)
O6—H6B0.82 (3)C8—H80.9300
O7—H7A0.82 (3)C9—C121.487 (5)
O7—H7B0.80 (4)C9—C131.492 (5)
C1—C21.385 (5)C10—C111.485 (5)
C1—C111.402 (5)C10—C141.493 (5)
C1—C151.511 (4)C11—C121.405 (4)
C2—C31.395 (5)C13—C141.412 (4)
O3i—Co1—O3180.00 (10)C12—C4—H4119.8
O3i—Co1—O5i90.64 (11)C13—C5—C6121.2 (3)
O3—Co1—O5i89.36 (11)C13—C5—Cl1124.1 (3)
O3i—Co1—O589.36 (11)C6—C5—Cl1114.7 (3)
O3—Co1—O590.64 (11)C7—C6—C5119.8 (4)
O5i—Co1—O5180.0C7—C6—H6120.1
O3i—Co1—O6i89.78 (11)C5—C6—H6120.1
O3—Co1—O6i90.22 (11)C8—C7—C6119.7 (4)
O5i—Co1—O6i89.38 (15)C8—C7—H7120.1
O5—Co1—O6i90.62 (15)C6—C7—H7120.1
O3i—Co1—O690.22 (11)C7—C8—C14121.2 (3)
O3—Co1—O689.78 (11)C7—C8—H8119.4
O5i—Co1—O690.62 (15)C14—C8—H8119.4
O5—Co1—O689.38 (15)O1—C9—C12119.7 (3)
O6i—Co1—O6180.0O1—C9—C13121.8 (3)
C15—O3—Co1130.3 (2)C12—C9—C13118.4 (3)
Co1—O5—H5A126 (4)O2—C10—C11120.9 (3)
Co1—O5—H5B131 (4)O2—C10—C14120.3 (3)
H5A—O5—H5B103 (4)C11—C10—C14118.7 (3)
Co1—O6—H6A112 (4)C1—C11—C12119.4 (3)
Co1—O6—H6B98 (4)C1—C11—C10121.7 (3)
H6A—O6—H6B96 (4)C12—C11—C10118.9 (3)
H7A—O7—H7B110 (5)C4—C12—C11120.0 (3)
C2—C1—C11119.5 (3)C4—C12—C9117.6 (3)
C2—C1—C15116.7 (3)C11—C12—C9122.4 (3)
C11—C1—C15123.8 (3)C5—C13—C14118.0 (3)
C1—C2—C3120.6 (4)C5—C13—C9123.2 (3)
C1—C2—H2119.7C14—C13—C9118.8 (3)
C3—C2—H2119.7C8—C14—C13120.1 (3)
C4—C3—C2120.2 (4)C8—C14—C10117.9 (3)
C4—C3—H3119.9C13—C14—C10122.1 (3)
C2—C3—H3119.9O4—C15—O3126.6 (3)
C3—C4—C12120.3 (3)O4—C15—C1117.3 (3)
C3—C4—H4119.8O3—C15—C1115.9 (3)
O3i—Co1—O3—C158 (100)C13—C9—C12—C4170.7 (3)
O5i—Co1—O3—C15115.4 (3)O1—C9—C12—C11169.1 (3)
O5—Co1—O3—C1564.6 (3)C13—C9—C12—C119.3 (5)
O6i—Co1—O3—C15155.2 (3)C6—C5—C13—C140.3 (5)
O6—Co1—O3—C1524.8 (3)Cl1—C5—C13—C14180.0 (2)
C11—C1—C2—C30.3 (6)C6—C5—C13—C9178.8 (3)
C15—C1—C2—C3178.1 (4)Cl1—C5—C13—C90.9 (5)
C1—C2—C3—C40.5 (7)O1—C9—C13—C58.6 (5)
C2—C3—C4—C120.5 (6)C12—C9—C13—C5173.1 (3)
C13—C5—C6—C71.1 (6)O1—C9—C13—C14172.2 (3)
Cl1—C5—C6—C7178.6 (3)C12—C9—C13—C146.1 (5)
C5—C6—C7—C82.1 (6)C7—C8—C14—C130.3 (6)
C6—C7—C8—C141.7 (6)C7—C8—C14—C10179.3 (3)
C2—C1—C11—C122.1 (5)C5—C13—C14—C80.8 (5)
C15—C1—C11—C12176.1 (3)C9—C13—C14—C8178.5 (3)
C2—C1—C11—C10176.2 (3)C5—C13—C14—C10179.7 (3)
C15—C1—C11—C105.6 (5)C9—C13—C14—C101.1 (5)
O2—C10—C11—C11.2 (5)O2—C10—C14—C83.0 (5)
C14—C10—C11—C1175.8 (3)C11—C10—C14—C8174.0 (3)
O2—C10—C11—C12179.5 (3)O2—C10—C14—C13177.4 (3)
C14—C10—C11—C122.5 (5)C11—C10—C14—C135.6 (5)
C3—C4—C12—C112.4 (6)Co1—O3—C15—O420.4 (6)
C3—C4—C12—C9177.6 (4)Co1—O3—C15—C1165.0 (2)
C1—C11—C12—C43.2 (5)C2—C1—C15—O480.0 (5)
C10—C11—C12—C4175.2 (3)C11—C1—C15—O4101.7 (4)
C1—C11—C12—C9176.8 (3)C2—C1—C15—O395.1 (4)
C10—C11—C12—C94.8 (5)C11—C1—C15—O383.2 (4)
O1—C9—C12—C411.0 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O30.80 (4)2.37 (5)3.121 (5)157 (8)
O7—H7A···O4ii0.82 (3)2.24 (4)3.049 (4)169 (8)
O6—H6B···O40.82 (3)1.92 (3)2.717 (4)164 (5)
O6—H6A···O4iii0.82 (3)2.17 (4)2.916 (4)152 (6)
O5—H5B···O7iv0.78 (3)2.08 (4)2.821 (4)159 (5)
O5—H5A···O20.81 (3)2.22 (4)2.932 (4)147 (5)
Symmetry codes: (ii) x+1, y, z; (iii) x, y, z+1; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O30.80 (4)2.37 (5)3.121 (5)157 (8)
O7—H7A···O4i0.82 (3)2.24 (4)3.049 (4)169 (8)
O6—H6B···O40.82 (3)1.92 (3)2.717 (4)164 (5)
O6—H6A···O4ii0.82 (3)2.17 (4)2.916 (4)152 (6)
O5—H5B···O7iii0.78 (3)2.08 (4)2.821 (4)159 (5)
O5—H5A···O20.81 (3)2.22 (4)2.932 (4)147 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y1, z.
 

Acknowledgements

This work was supported by Natural Science Foundation of Yunnan Provice (grant No. 2009CD048), the Applied Basic Research Projects of Yunnan Provine (grant No. 2014fz042) and the Scientific Research Fund of Yunnan Education (grant No. 2013Y431)

References

First citationArcamone, F. (1987). Cancer Treat. Rev. 25, 2721–2729.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruijnincx, P. C. A. & Sadler, P. J. (2008). Curr. Opin. Chem. Biol. 12, 197–206.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGeorge, T. A., Hammud, H. H. & Isber, S. (2006). Polyhedron, 25, 2721–2729.  Web of Science CSD CrossRef CAS Google Scholar
First citationGruber, T., Helas, S. F., Seichter, W. & Weber, E. (2010). Struct. Chem. 21, 1079–1083.  Web of Science CSD CrossRef CAS Google Scholar
First citationHambley, T. W. (2007). Science, 318, 1392–1393.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKantrowitz, N. E. & Bristow, M. R. (1984). Prog. Cardiovasc. Dis. 27, 195–200.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNeufeind, S., Hülsken, N., Neudörfl, J.-M., Schlörer, N. & Schmalz, H.-G. (2011). Chem. Eur. J. 17, 2633–2641.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStuart, H. A., Peason, M., Smith, I. E. & Olsen, E. G. J. (1984). Lancet, 2, 219–220.  Google Scholar
First citationUnverferth, D. V., Unverferth, B. J., Balcerzak, S. P., Bashore, T. A. & Neidhart, J. A. (1983). Cancer Treat. Rep. 67, 343–350.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages m357-m358
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds