organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1124-o1125

Crystal structure of 4-((1E)-1-{(2Z)-2-[4-(4-bromo­phen­yl)-3-phenyl-2,3-di­hydro-1,3-thia­zol-2-yl­­idene]hydrazin-1-yl­­idene}eth­yl)phenol hemihydrate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. McArdle, National University of Ireland, Ireland (Received 18 July 2014; accepted 28 August 2014; online 24 September 2014)

In the title compound, C23H18BrN3OS·0.5H2O, the bromo­phenyl, phenyl and phenol rings make dihedral angles of 46.5 (1), 66.78 (8) and 15.4 (2)°, respectively, with the mean squares plane of the thia­zol­idene ring. In the crystal, the lattice water mol­ecule is hydrogen bonded to the phenol group and makes a weaker O—H⋯N connection to an inversion-related mol­ecule, forming a ring while weak pairwise C—H⋯S inter­actions involving inversion-related mol­ecules form a second ring. Both these motifs result in the formation of two-dimensional networks lying parallel to (10-1).

1. Related literature

For the wide spectrum of medicinal applications of thia­zole scaffold compounds, see: Pattan et al. (2009[Pattan, S. R., Dighe, N. S., Nirmal, S. A., Merekar, A. N., Laware, R. B., Shinde, H. V. & Musmade, D. S. (2009). Asian J. R. Chem. 2, 196-201.]); Sharma et al. (2009[Sharma, R. N., Xavier, F. P., Vasu, K. K., Chaturvedi, S. C. & Pancholi, S. S. (2009). J. Enzyme Inhib. Med. Chem. 24, 890-897.]); Argyropoulou et al. (2009[Argyropoulou, I., Geronikaki, A., Vicini, P. & Zanib, F. (2009). Arkivoc, VI, 89-102.]); Trautman & Longe (1948[Trautman, H. D. & Longe, L. M. (1948). J. Am. Chem. Soc. 70, 3436-3439.]); Surray (1949[Surray, A. R. (1949). J. Am. Chem. Soc. 71, 3354-3356.]); Bhattacharya et al. (2005[Bhattacharya, P., Leonard, J. T. & Roy, K. (2005). Bioorg. Med. Chem. 13, 1159-1165.]); Alemagna et al. (1968[Alemagna, A., Bacchetti, T. & Beltrame, P. (1968). Tetrahedron, 24, 3209-3217.]); Spector et al. (1998[Spector, F. C., Liang, L. H., Sivaraja, G. M. & Peterson, M. G. (1998). J. Virol. 72, 6979-6987.]); Karade et al. (2008[Karade, H. N., Acharya, B. N., Sathe, M. & Kaushik, M. P. (2008). Med. Chem. Res. 17, 19-29.]). For a related structure, see: Akkurt et al. (2014[Akkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o478-o479.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H18BrN3OS·0.5H2O

  • Mr = 473.38

  • Triclinic, [P \overline 1]

  • a = 8.485 (2) Å

  • b = 10.336 (2) Å

  • c = 12.057 (3) Å

  • α = 80.515 (3)°

  • β = 88.008 (3)°

  • γ = 86.249 (4)°

  • V = 1040.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 150 K

  • 0.27 × 0.23 × 0.07 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.51, Tmax = 0.86

  • 18957 measured reflections

  • 5211 independent reflections

  • 3834 reflections with I > 2σ(I)

  • Rint = 0.049

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.02

  • 5211 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 1.67 2.511 (5) 173
O2—H2A⋯N2i 0.84 2.45 2.898 (5) 114
C17—H17B⋯S1ii 0.98 3.02 3.925 (3) 154
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Thiazole scaffold compounds are of considerable interest from therapeutic point of view due to their utility as antibacterial and antifungal (Pattan et al., 2009), anti-inflammatory (Sharma et al., 2009), analgesic (Argyropoulou et al., 2009), antitubercular (Trautman & Longe, 1948), central nervous system (CNS) stimulate (Surray, 1949), anti-HIV (Bhattacharya et al., 2005), and algicidol (Alemagna et al., 1968) activities. Some of thiazole derivatives have shown inhibition towards herpes simplex virus (Spector et al., 1998). In addition, thiazole containing N=C=S moiety have been used as antiphychotics (Pattan et al., 2009) and antimalarial (Karade et al., 2008) agents. In this context and as part of our on-going study of bio-active heterocyclic molecules we herein report the synthesis and crystal structure of the title compound. In the title compound, the phenyl rings C1–C6, C10–C15 and C18–C23 make dihedral angles, respectively, of 46.5 (1), 66.78 (8) and 15.4 (2)° with the least squares plane of the thiazolidene ring. The lattice water is hydrogen bonded to the phenol group and makes a weaker connection to N2i (i: 2-x, 1-y, 1-z) to form a ring while weak, pairwise C17—H17B···S1 interactions with the molecule at 1-x, 1-y, 1-z form a second ring (Fig. 2 and Table 1). Both these motifs extend along (101).

Related literature top

For the wide spectrum of medicinal applications of thiazole scaffold compounds, see: Pattan et al. (2009); Sharma et al. (2009); Argyropoulou et al. (2009); Trautman & Longe (1948); Surray (1949); Bhattacharya et al. (2005); Alemagna et al. (1968); Spector et al. (1998); Karade et al. (2008). For a related structure, see: Akkurt et al. (2014).

Experimental top

The title compound has been prepared according to our reported method (Akkurt et al., 2014). Mono-crystals suitable for X-ray diffraction have been obtained by crystallization of the crude product (I) from ethanol.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The crystals of the title compound were quite small and very weakly diffracting.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the b axis showing the rings formed by the O—H···O (red), O—H···N (blue) and C—H···S (black) interactions.
4-((1E)-1-{(2Z)-2-[4-(4-Bromophenyl)-3-phenyl-2,3-dihydro-1,3-thiazol-2-ylidene]hydrazin-1-ylidene}ethyl)phenol hemihydrate top
Crystal data top
C23H18BrN3OS·0.5H2OZ = 2
Mr = 473.38F(000) = 482
Triclinic, P1Dx = 1.511 Mg m3
a = 8.485 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.336 (2) ÅCell parameters from 7895 reflections
c = 12.057 (3) Åθ = 2.4–28.4°
α = 80.515 (3)°µ = 2.10 mm1
β = 88.008 (3)°T = 150 K
γ = 86.249 (4)°Plate, orange
V = 1040.3 (4) Å30.27 × 0.23 × 0.07 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5211 independent reflections
Radiation source: fine-focus sealed tube3834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.3660 pixels mm-1θmax = 28.5°, θmin = 2.0°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1313
Tmin = 0.51, Tmax = 0.86l = 1616
18957 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.126H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.062P)2 + 0.5209P]
where P = (Fo2 + 2Fc2)/3
5211 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C23H18BrN3OS·0.5H2Oγ = 86.249 (4)°
Mr = 473.38V = 1040.3 (4) Å3
Triclinic, P1Z = 2
a = 8.485 (2) ÅMo Kα radiation
b = 10.336 (2) ŵ = 2.10 mm1
c = 12.057 (3) ÅT = 150 K
α = 80.515 (3)°0.27 × 0.23 × 0.07 mm
β = 88.008 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5211 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3834 reflections with I > 2σ(I)
Tmin = 0.51, Tmax = 0.86Rint = 0.049
18957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.02Δρmax = 0.85 e Å3
5211 reflectionsΔρmin = 0.32 e Å3
273 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at ϕ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in ϕ, collected at ω = -30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.12028 (5)0.13286 (3)0.19996 (3)0.05610 (15)
S10.40464 (9)0.58630 (7)0.18323 (6)0.03452 (17)
O10.9721 (3)0.8848 (3)0.5879 (3)0.0730 (8)
H11.03940.85620.63680.110*
N10.3970 (3)0.3403 (2)0.16873 (18)0.0301 (5)
N20.5690 (3)0.3796 (2)0.3070 (2)0.0369 (5)
N30.6250 (3)0.4875 (2)0.34845 (19)0.0354 (5)
C10.1997 (3)0.3384 (3)0.0175 (2)0.0290 (5)
C20.1835 (3)0.3850 (3)0.0973 (2)0.0347 (6)
H20.23820.45930.13130.042*
C30.0891 (3)0.3245 (3)0.1624 (2)0.0370 (6)
H30.07980.35620.24060.044*
C40.0090 (3)0.2178 (3)0.1119 (2)0.0374 (6)
C50.0177 (3)0.1714 (3)0.0027 (2)0.0357 (6)
H50.04170.09990.03660.043*
C60.1144 (3)0.2311 (3)0.0667 (2)0.0343 (6)
H60.12310.19900.14490.041*
C70.2959 (3)0.4075 (3)0.0851 (2)0.0296 (5)
C80.2881 (3)0.5384 (3)0.0827 (2)0.0336 (6)
H80.22560.59850.03140.040*
C90.4677 (3)0.4211 (3)0.2289 (2)0.0319 (6)
C100.4530 (3)0.2040 (3)0.1771 (2)0.0304 (5)
C110.4261 (3)0.1177 (3)0.2750 (3)0.0396 (7)
H110.36730.14640.33590.048*
C120.4863 (4)0.0122 (3)0.2834 (3)0.0457 (8)
H120.46730.07270.35010.055*
C130.5730 (4)0.0532 (3)0.1955 (3)0.0460 (8)
H130.61360.14190.20180.055*
C140.6010 (4)0.0336 (3)0.0988 (3)0.0426 (7)
H140.66190.00520.03880.051*
C150.5403 (3)0.1627 (3)0.0889 (2)0.0369 (6)
H150.55860.22270.02170.044*
C160.6881 (3)0.4600 (3)0.4462 (2)0.0321 (6)
C170.6960 (4)0.3259 (3)0.5167 (2)0.0383 (6)
H17A0.64670.26430.47690.058*
H17B0.63990.32960.58860.058*
H17C0.80670.29630.53050.058*
C180.7578 (3)0.5707 (3)0.4874 (2)0.0332 (6)
C190.7384 (4)0.6989 (3)0.4292 (3)0.0410 (7)
H190.67450.71520.36460.049*
C200.8087 (4)0.8027 (3)0.4621 (3)0.0483 (8)
H200.79390.88860.42010.058*
C210.9007 (4)0.7810 (3)0.5567 (3)0.0483 (8)
C220.9198 (4)0.6557 (3)0.6184 (3)0.0455 (7)
H220.98150.64060.68400.055*
C230.8486 (3)0.5521 (3)0.5839 (2)0.0379 (6)
H230.86200.46660.62700.045*
O21.1835 (4)0.8167 (5)0.7301 (4)0.0451 (11)0.5
H2A1.24510.81440.67430.054*0.5
H2B1.19140.74040.76680.054*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0777 (3)0.0379 (2)0.0543 (2)0.00352 (16)0.03883 (18)0.00462 (14)
S10.0432 (4)0.0256 (3)0.0347 (4)0.0034 (3)0.0061 (3)0.0030 (3)
O10.0642 (17)0.0498 (16)0.114 (3)0.0017 (13)0.0168 (16)0.0361 (16)
N10.0385 (12)0.0249 (11)0.0263 (11)0.0011 (9)0.0074 (9)0.0010 (8)
N20.0451 (13)0.0337 (13)0.0319 (12)0.0062 (10)0.0093 (10)0.0017 (10)
N30.0430 (13)0.0340 (13)0.0296 (12)0.0060 (10)0.0082 (10)0.0032 (9)
C10.0294 (12)0.0261 (13)0.0301 (13)0.0052 (10)0.0044 (10)0.0028 (10)
C20.0343 (14)0.0335 (15)0.0332 (14)0.0016 (11)0.0020 (11)0.0018 (11)
C30.0408 (15)0.0381 (16)0.0303 (14)0.0058 (12)0.0102 (12)0.0014 (11)
C40.0424 (15)0.0304 (15)0.0404 (15)0.0074 (12)0.0170 (12)0.0091 (12)
C50.0437 (15)0.0242 (13)0.0386 (15)0.0005 (11)0.0093 (12)0.0019 (11)
C60.0433 (15)0.0288 (14)0.0294 (13)0.0003 (11)0.0054 (11)0.0008 (10)
C70.0319 (13)0.0263 (13)0.0292 (13)0.0002 (10)0.0031 (10)0.0003 (10)
C80.0357 (14)0.0272 (14)0.0367 (15)0.0005 (11)0.0076 (11)0.0007 (11)
C90.0386 (14)0.0285 (13)0.0278 (13)0.0039 (11)0.0016 (11)0.0012 (10)
C100.0319 (13)0.0246 (13)0.0338 (14)0.0020 (10)0.0096 (11)0.0004 (10)
C110.0404 (15)0.0365 (16)0.0384 (16)0.0003 (12)0.0003 (13)0.0029 (12)
C120.0494 (17)0.0319 (16)0.0494 (18)0.0003 (13)0.0087 (14)0.0127 (13)
C130.0480 (17)0.0315 (16)0.058 (2)0.0078 (13)0.0207 (15)0.0061 (14)
C140.0451 (17)0.0420 (17)0.0427 (17)0.0022 (13)0.0085 (13)0.0134 (13)
C150.0424 (15)0.0361 (15)0.0322 (14)0.0024 (12)0.0048 (12)0.0047 (11)
C160.0351 (13)0.0347 (15)0.0245 (13)0.0028 (11)0.0026 (10)0.0005 (10)
C170.0488 (16)0.0353 (15)0.0297 (14)0.0007 (13)0.0087 (12)0.0013 (11)
C180.0321 (13)0.0376 (15)0.0294 (13)0.0011 (11)0.0031 (11)0.0047 (11)
C190.0455 (16)0.0392 (17)0.0382 (16)0.0023 (13)0.0087 (13)0.0063 (13)
C200.0512 (18)0.0372 (17)0.057 (2)0.0005 (14)0.0099 (15)0.0074 (14)
C210.0410 (16)0.0482 (19)0.061 (2)0.0012 (14)0.0070 (15)0.0239 (16)
C220.0374 (15)0.058 (2)0.0430 (17)0.0024 (14)0.0106 (13)0.0152 (15)
C230.0360 (14)0.0442 (17)0.0332 (15)0.0004 (12)0.0038 (12)0.0057 (12)
O20.0275 (19)0.060 (3)0.057 (3)0.0017 (18)0.0138 (18)0.035 (2)
Geometric parameters (Å, º) top
Br1—C41.902 (3)C11—C121.394 (4)
S1—C81.743 (3)C11—H110.9500
S1—C91.760 (3)C12—C131.377 (5)
O1—C211.376 (4)C12—H120.9500
O1—H10.8400C13—C141.372 (5)
N1—C91.371 (3)C13—H130.9500
N1—C71.409 (3)C14—C151.387 (4)
N1—C101.446 (3)C14—H140.9500
N2—C91.297 (4)C15—H150.9500
N2—N31.411 (3)C16—C181.484 (4)
N3—C161.293 (3)C16—C171.500 (4)
C1—C21.397 (4)C17—H17A0.9800
C1—C61.401 (4)C17—H17B0.9800
C1—C71.467 (4)C17—H17C0.9800
C2—C31.385 (4)C18—C191.396 (4)
C2—H20.9500C18—C231.397 (4)
C3—C41.377 (4)C19—C201.380 (5)
C3—H30.9500C19—H190.9500
C4—C51.388 (4)C20—C211.384 (5)
C5—C61.385 (4)C20—H200.9500
C5—H50.9500C21—C221.386 (5)
C6—H60.9500C22—C231.391 (4)
C7—C81.346 (4)C22—H220.9500
C8—H80.9500C23—H230.9500
C10—C111.379 (4)O2—H2A0.8397
C10—C151.384 (4)O2—H2B0.8384
C8—S1—C990.06 (13)C13—C12—C11120.4 (3)
C21—O1—H1109.5C13—C12—H12119.8
C9—N1—C7114.0 (2)C11—C12—H12119.8
C9—N1—C10119.9 (2)C14—C13—C12120.2 (3)
C7—N1—C10124.7 (2)C14—C13—H13119.9
C9—N2—N3109.8 (2)C12—C13—H13119.9
C16—N3—N2115.3 (2)C13—C14—C15120.0 (3)
C2—C1—C6118.6 (2)C13—C14—H14120.0
C2—C1—C7119.8 (2)C15—C14—H14120.0
C6—C1—C7121.6 (2)C10—C15—C14119.8 (3)
C3—C2—C1121.1 (3)C10—C15—H15120.1
C3—C2—H2119.5C14—C15—H15120.1
C1—C2—H2119.5N3—C16—C18116.0 (2)
C4—C3—C2118.9 (3)N3—C16—C17124.2 (3)
C4—C3—H3120.6C18—C16—C17119.8 (2)
C2—C3—H3120.6C16—C17—H17A109.5
C3—C4—C5121.8 (3)C16—C17—H17B109.5
C3—C4—Br1119.5 (2)H17A—C17—H17B109.5
C5—C4—Br1118.7 (2)C16—C17—H17C109.5
C6—C5—C4118.9 (3)H17A—C17—H17C109.5
C6—C5—H5120.6H17B—C17—H17C109.5
C4—C5—H5120.6C19—C18—C23116.8 (3)
C5—C6—C1120.8 (3)C19—C18—C16121.0 (2)
C5—C6—H6119.6C23—C18—C16122.2 (3)
C1—C6—H6119.6C20—C19—C18122.3 (3)
C8—C7—N1112.4 (2)C20—C19—H19118.9
C8—C7—C1125.0 (2)C18—C19—H19118.9
N1—C7—C1122.4 (2)C19—C20—C21119.7 (3)
C7—C8—S1113.1 (2)C19—C20—H20120.2
C7—C8—H8123.5C21—C20—H20120.2
S1—C8—H8123.5O1—C21—C20119.2 (3)
N2—C9—N1123.9 (2)O1—C21—C22121.0 (3)
N2—C9—S1125.6 (2)C20—C21—C22119.8 (3)
N1—C9—S1110.52 (19)C21—C22—C23119.9 (3)
C11—C10—C15120.5 (3)C21—C22—H22120.1
C11—C10—N1119.8 (2)C23—C22—H22120.1
C15—C10—N1119.6 (2)C22—C23—C18121.5 (3)
C10—C11—C12119.1 (3)C22—C23—H23119.2
C10—C11—H11120.5C18—C23—H23119.2
C12—C11—H11120.5H2A—O2—H2B104.8
C9—N2—N3—C16160.3 (2)C8—S1—C9—N11.1 (2)
C6—C1—C2—C31.9 (4)C9—N1—C10—C1170.7 (3)
C7—C1—C2—C3177.8 (2)C7—N1—C10—C11123.7 (3)
C1—C2—C3—C40.8 (4)C9—N1—C10—C15105.9 (3)
C2—C3—C4—C51.5 (4)C7—N1—C10—C1559.7 (4)
C2—C3—C4—Br1179.6 (2)C15—C10—C11—C120.8 (4)
C3—C4—C5—C62.5 (4)N1—C10—C11—C12177.5 (3)
Br1—C4—C5—C6178.6 (2)C10—C11—C12—C130.8 (5)
C4—C5—C6—C11.3 (4)C11—C12—C13—C140.0 (5)
C2—C1—C6—C50.8 (4)C12—C13—C14—C150.7 (5)
C7—C1—C6—C5176.6 (2)C11—C10—C15—C140.1 (4)
C9—N1—C7—C80.9 (3)N1—C10—C15—C14176.8 (3)
C10—N1—C7—C8167.2 (2)C13—C14—C15—C100.7 (4)
C9—N1—C7—C1175.1 (2)N2—N3—C16—C18175.8 (2)
C10—N1—C7—C118.5 (4)N2—N3—C16—C173.3 (4)
C2—C1—C7—C846.9 (4)N3—C16—C18—C197.3 (4)
C6—C1—C7—C8128.9 (3)C17—C16—C18—C19173.5 (3)
C2—C1—C7—N1139.6 (3)N3—C16—C18—C23171.0 (3)
C6—C1—C7—N144.6 (4)C17—C16—C18—C238.1 (4)
N1—C7—C8—S10.0 (3)C23—C18—C19—C201.9 (4)
C1—C7—C8—S1174.1 (2)C16—C18—C19—C20176.5 (3)
C9—S1—C8—C70.6 (2)C18—C19—C20—C210.7 (5)
N3—N2—C9—N1177.1 (2)C19—C20—C21—O1179.1 (3)
N3—N2—C9—S11.5 (3)C19—C20—C21—C220.9 (5)
C7—N1—C9—N2177.5 (3)O1—C21—C22—C23178.9 (3)
C10—N1—C9—N210.4 (4)C20—C21—C22—C231.0 (5)
C7—N1—C9—S11.3 (3)C21—C22—C23—C180.3 (5)
C10—N1—C9—S1168.41 (19)C19—C18—C23—C221.7 (4)
C8—S1—C9—N2177.7 (3)C16—C18—C23—C22176.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.841.672.511 (5)173
O2—H2A···N2i0.842.452.898 (5)114
C17—H17B···S1ii0.983.023.925 (3)154
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.841.672.511 (5)173
O2—H2A···N2i0.842.452.898 (5)114
C17—H17B···S1ii0.983.023.925 (3)154
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAkkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o478–o479.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAlemagna, A., Bacchetti, T. & Beltrame, P. (1968). Tetrahedron, 24, 3209–3217.  CrossRef CAS Web of Science Google Scholar
First citationArgyropoulou, I., Geronikaki, A., Vicini, P. & Zanib, F. (2009). Arkivoc, VI, 89-102.  CrossRef Google Scholar
First citationBhattacharya, P., Leonard, J. T. & Roy, K. (2005). Bioorg. Med. Chem. 13, 1159–1165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKarade, H. N., Acharya, B. N., Sathe, M. & Kaushik, M. P. (2008). Med. Chem. Res. 17, 19–29.  Web of Science CrossRef CAS Google Scholar
First citationPattan, S. R., Dighe, N. S., Nirmal, S. A., Merekar, A. N., Laware, R. B., Shinde, H. V. & Musmade, D. S. (2009). Asian J. R. Chem. 2, 196–201.  CAS Google Scholar
First citationSharma, R. N., Xavier, F. P., Vasu, K. K., Chaturvedi, S. C. & Pancholi, S. S. (2009). J. Enzyme Inhib. Med. Chem. 24, 890–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpector, F. C., Liang, L. H., Sivaraja, G. M. & Peterson, M. G. (1998). J. Virol. 72, 6979–6987.  Web of Science CAS PubMed Google Scholar
First citationSurray, A. R. (1949). J. Am. Chem. Soc. 71, 3354–3356.  Google Scholar
First citationTrautman, H. D. & Longe, L. M. (1948). J. Am. Chem. Soc. 70, 3436–3439.  PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1124-o1125
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds