organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1111-o1112

Crystal structure of 6-(4-chloro­phen­yl)-6a-nitro-6,6a,6b,7,9,11a-hexa­hydro­spiro[chromeno[3′,4′:3,4]pyrrolo­[1,2-c]thia­zole-11,11′-indeno­[1,2-b]quinoxaline] chloro­form monosolvate

aMission San Jose High School, Palm AVE, Fremont, CA 94539, USA, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

Edited by G. M. Rosair, Heriot-Watt University, Scotland (Received 20 August 2014; accepted 14 September 2014; online 20 September 2014)

In the title compound, C33H23ClN4O3S·CHCl3, the thia­zole ring adopts an envelope conformation with the N atom as the flap, and the pyrrolidine ring adopts a half-chair conformation. The thia­zole ring mean plane makes a dihedral angle of 59.31 (1)° with the pyrrolidine ring mean plane, 71.67 (1)° with the chromene ring and 82.59 (1)° with the chloro­benzene ring. An intra­molecular C—H⋯N hydrogen bond occurs. In the crystal, a second C—H⋯N hydrogen bond links the main and solvent mol­ecules. The solvent chloroform molecule is disordered about two positions with an occupancy ratio of 0.508 (14):0.492 (14).

1. Related literature

For the biological activity of thia­zole derivatives, see: Shao et al. (2004[Shao, L., Jin, Z., Liu, J.-B., Zhou, X., Zhang, Q., Hu, Y. & Fang, J.-X. (2004). Acta Cryst. E60, o2517-o2519.]); Hökelek et al. (2006[Hökelek, T., Seferoğlu, Z. & Ertan, N. (2006). Acta Cryst. E62, o1609-o1611.]); Muralikrishna et al.(2013[Muralikrishna, S., Raveendrareddy, P., Ravindranath, L. K., Harikrishna, S. & Jagadeeswara, R. P. (2013). Pharma Chem. 5, 87-93.]); Shruthy & Shakkeela (2014[Shruthy, V. S. & Shakkeela, Y. (2014). Int. J. Pharm Pharm Sci. 6, 271-275.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C33H23ClN4O3S·CHCl3

  • Mr = 710.43

  • Triclinic, [P \overline 1]

  • a = 8.983 (5) Å

  • b = 13.241 (5) Å

  • c = 14.269 (5) Å

  • α = 99.890 (5)°

  • β = 99.204 (5)°

  • γ = 105.519 (5)°

  • V = 1572.7 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

2.2. Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.909, Tmax = 0.953

  • 24128 measured reflections

  • 6440 independent reflections

  • 5331 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.04

  • 6440 reflections

  • 443 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C34—H34⋯N1 0.98 2.59 3.401 (3) 140
C27—H27⋯N2 0.98 2.27 3.200 (3) 158

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiazole and its derivatives play an important role in medicinal chemistry as herbicidal, fungicidal, bacterial, antitumor agents (Muralikrishna et al.,2013). Thiazole derivatives have a wide range of pharmacological applications, such as anticancer, antiviral, antibacterial, antifungal, and anti-inflammatory activities (Shruthy et al.,2014). Thiazoles and their annelated derivatives are reported to exhibit diverse biological activities as antituberculous, bacteriostatic and fungistatic agents (Shao et al., 2004). The bioactivity of S,N-thiazoles is mainly due to their structural similarities with protein imidazolyl entities as well as their biological, structural, electronic and spectroscopic properties (Hökelek et al., 2006)

The ORTEP plot of the molecule is shown in Fig. 1. In the title compound, C33H23N4O3S1Cl1.CHCl3, the thiazole ring adopts an envelope conformation and pyrrolidine ring adopts a half chair conformation and quinoxaline ring adopts a planar conformation. The thiazole ring makes a dihedral angle of 59.31 (1) ° with the pyrrolidine ring (C15-N3-C18-C19-C20), 71.67 (1) ° with the chromene ring (C19-C20-C21-C22-C23-C24-C25-C26-O1-C27) and 82.59 (1) ° with the chlorobenzene (C28-C29-C30-C31-C32-C33-CL1). The pyrrolidine ring makes a dihedral angle of 51.98 (1) ° with the chromene ring and 23.49 (1) ° with the chlorobenzene ring. The nitro group makes a dihedral angle of 27.93 (3) ° with the pyrrolidine ring. In the chlorobenzene molecule, the chlorine atom deviates by 0.050 (1)Å from the benzene ring.

In the crystal, the molecular structure has an intramolecular C—H···N hydrogen bond. The crystal packing of the title compound viewed down the 'a' axis is shown in Fig. 2. The solvent molecule (CHCl3) has an intermolecular C—H···N hydrogen bond (Table. 1.).

Related literature top

For the biological activity of thiazole derivatives, see: Shao et al. (2004); Hökelek et al. (2006); Muralikrishna et al.(2013); Shruthy & Shakkeela (2014). Scheme faint

Experimental top

To a solution of indenoquinoxalinone (1.0 mmol) and thiazolidine-4-carboxylic acid (1.5 mmol) in dry toluene, was added 2-(4-chlorophenyl)-3-nitro- 2H-chromene (1 mmol) under nitrogen atmosphere. The solution was refluxed for 20 h in Dean-Stark apparatus to give the corresponding cycloadduct. After completion of the reaction as indicated by TLC, the solvent was evaporated under reduced pressure.The crude product obtained was purifed by column chromatography using hexane/EtOAc (8:2) as eluent (Yield: 87%).

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93Å to 0.98Å, refined in the riding model with fixed isotropic displacement parameters:Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups. In solvent molecules the chlorine atoms Cl2, Cl3 & Cl4 are disordered over two orientations 0.508 (14) : 0.492 (14). The bond distance between the carbon and chlorine atom was restrained to 1.782 (1) Å.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level. For the sake of clarity, the solvent molecule CHCl3 is omitted.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the 'a' axis. H-atoms not involved in H-bonds have been excluded for clarity.
6-(4-Chlorophenyl)-6a-nitro-6,6a,6b,7,9,11a-hexahydrospiro[chromeno[3',4':3,4]pyrrolo[1,2-c]thiazole-11,11'-indeno[1,2-b]quinoxaline] chloroform monosolvate top
Crystal data top
C33H23ClN4O3S·CHCl3Z = 2
Mr = 710.43F(000) = 728
Triclinic, P1Dx = 1.500 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.983 (5) ÅCell parameters from 6441 reflections
b = 13.241 (5) Åθ = 1.5–26.5°
c = 14.269 (5) ŵ = 0.49 mm1
α = 99.890 (5)°T = 293 K
β = 99.204 (5)°Block, colourless
γ = 105.519 (5)°0.20 × 0.15 × 0.10 mm
V = 1572.7 (12) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6440 independent reflections
Radiation source: fine-focus sealed tube5331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 26.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1110
Tmin = 0.909, Tmax = 0.953k = 1616
24128 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.7757P]
where P = (Fo2 + 2Fc2)/3
6440 reflections(Δ/σ)max < 0.001
443 parametersΔρmax = 0.26 e Å3
10 restraintsΔρmin = 0.35 e Å3
Crystal data top
C33H23ClN4O3S·CHCl3γ = 105.519 (5)°
Mr = 710.43V = 1572.7 (12) Å3
Triclinic, P1Z = 2
a = 8.983 (5) ÅMo Kα radiation
b = 13.241 (5) ŵ = 0.49 mm1
c = 14.269 (5) ÅT = 293 K
α = 99.890 (5)°0.20 × 0.15 × 0.10 mm
β = 99.204 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6440 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5331 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.953Rint = 0.027
24128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04310 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
6440 reflectionsΔρmin = 0.35 e Å3
443 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9558 (2)0.24923 (14)0.26430 (14)0.0378 (4)
C21.1139 (2)0.28740 (17)0.26134 (16)0.0462 (5)
H21.14290.30900.20650.055*
C31.2286 (3)0.29292 (18)0.34150 (17)0.0514 (5)
H31.33490.31680.33930.062*
C41.1875 (3)0.26356 (18)0.42414 (16)0.0506 (5)
H41.26620.26820.47710.061*
C51.0308 (3)0.22736 (17)0.42910 (15)0.0472 (5)
H51.00290.20850.48520.057*
C60.9154 (2)0.21967 (15)0.34866 (14)0.0392 (4)
C70.7434 (2)0.17972 (15)0.33296 (13)0.0368 (4)
C80.4989 (2)0.10010 (16)0.35382 (14)0.0398 (4)
C90.3958 (3)0.05880 (19)0.41235 (16)0.0507 (5)
H90.43500.06470.47810.061*
C100.2389 (3)0.01025 (19)0.37270 (18)0.0554 (6)
H100.17180.01710.41180.067*
C110.1773 (3)0.0009 (2)0.27431 (18)0.0559 (6)
H110.07040.03440.24810.067*
C120.2726 (2)0.04310 (18)0.21622 (16)0.0484 (5)
H120.23020.03800.15110.058*
C130.4351 (2)0.09437 (15)0.25498 (14)0.0380 (4)
C140.6781 (2)0.18146 (14)0.23578 (13)0.0336 (4)
C150.8081 (2)0.23515 (14)0.18649 (13)0.0342 (4)
C160.8824 (3)0.09580 (17)0.07376 (16)0.0453 (5)
H16A0.81580.02690.03320.054*
H16B0.92820.08430.13590.054*
C170.9659 (3)0.26781 (19)0.00076 (17)0.0502 (5)
H17A1.02850.33250.04760.060*
H17B0.96730.28190.06520.060*
C180.7948 (2)0.23140 (15)0.01383 (14)0.0386 (4)
H180.72340.18770.04750.046*
C190.7302 (2)0.32069 (14)0.05635 (13)0.0364 (4)
C200.8000 (2)0.34680 (14)0.16582 (13)0.0364 (4)
H200.90860.39460.17790.044*
C210.7101 (2)0.40258 (14)0.22642 (14)0.0402 (4)
C220.7699 (3)0.44626 (16)0.32546 (16)0.0524 (5)
H220.86420.43790.35560.063*
C230.6907 (4)0.50206 (19)0.37954 (18)0.0629 (7)
H230.73070.52980.44600.075*
C240.5537 (3)0.51652 (19)0.33561 (19)0.0623 (7)
H240.50220.55540.37220.075*
C250.4912 (3)0.47420 (17)0.23767 (18)0.0531 (5)
H250.39790.48430.20800.064*
C260.5690 (2)0.41621 (15)0.18371 (15)0.0417 (4)
C270.5473 (2)0.28777 (15)0.04070 (14)0.0380 (4)
H270.51560.23050.07540.046*
C280.4524 (2)0.24729 (15)0.06206 (14)0.0376 (4)
C290.4170 (3)0.13901 (16)0.10564 (15)0.0449 (5)
H290.45080.09330.07040.054*
C300.3326 (3)0.09856 (17)0.20035 (16)0.0487 (5)
H300.31030.02620.22940.058*
C310.2816 (2)0.16635 (18)0.25153 (15)0.0456 (5)
C320.3109 (3)0.27288 (18)0.20948 (16)0.0502 (5)
H320.27360.31750.24440.060*
C330.3965 (2)0.31317 (16)0.11469 (16)0.0452 (5)
H330.41690.38540.08590.054*
N10.6585 (2)0.14220 (14)0.39299 (12)0.0429 (4)
N20.52868 (19)0.13826 (12)0.19513 (11)0.0370 (3)
N30.79030 (19)0.16833 (12)0.08831 (11)0.0363 (3)
N40.7818 (2)0.41753 (14)0.01250 (14)0.0459 (4)
O10.50296 (17)0.37741 (11)0.08576 (10)0.0462 (3)
O20.8318 (2)0.50626 (13)0.06648 (14)0.0721 (5)
O30.7643 (2)0.40034 (15)0.07547 (12)0.0647 (5)
Cl10.18217 (8)0.11507 (6)0.37305 (4)0.0697 (2)
S11.04129 (7)0.15659 (5)0.01349 (5)0.05568 (17)
C340.7767 (3)0.2814 (2)0.6293 (2)0.0704 (7)
H340.76250.21720.57880.084*
Cl20.6187 (6)0.2425 (5)0.6852 (5)0.1032 (16)0.508 (14)
Cl30.9474 (6)0.2911 (5)0.7085 (4)0.0962 (11)0.508 (14)
Cl40.7716 (6)0.3776 (3)0.5647 (2)0.0990 (11)0.508 (14)
Cl4'0.7955 (7)0.4117 (9)0.6045 (12)0.168 (3)0.492 (14)
Cl3'0.9441 (7)0.3240 (10)0.7237 (5)0.133 (2)0.492 (14)
Cl2'0.6026 (7)0.2434 (3)0.6676 (6)0.0987 (15)0.492 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0394 (10)0.0330 (9)0.0414 (10)0.0128 (8)0.0062 (8)0.0090 (7)
C20.0401 (11)0.0457 (11)0.0516 (12)0.0111 (9)0.0071 (9)0.0138 (9)
C30.0363 (11)0.0480 (12)0.0642 (14)0.0097 (9)0.0032 (10)0.0101 (10)
C40.0463 (12)0.0497 (12)0.0495 (12)0.0163 (10)0.0046 (9)0.0059 (9)
C50.0491 (12)0.0534 (12)0.0385 (10)0.0190 (10)0.0020 (9)0.0102 (9)
C60.0424 (11)0.0359 (9)0.0393 (10)0.0155 (8)0.0047 (8)0.0068 (8)
C70.0412 (10)0.0355 (9)0.0355 (9)0.0155 (8)0.0076 (8)0.0074 (7)
C80.0422 (11)0.0411 (10)0.0400 (10)0.0158 (8)0.0107 (8)0.0129 (8)
C90.0537 (13)0.0610 (13)0.0460 (11)0.0205 (11)0.0172 (10)0.0238 (10)
C100.0523 (13)0.0624 (14)0.0604 (14)0.0165 (11)0.0249 (11)0.0268 (11)
C110.0402 (12)0.0619 (14)0.0651 (14)0.0091 (10)0.0135 (10)0.0217 (11)
C120.0414 (11)0.0565 (12)0.0472 (11)0.0133 (9)0.0077 (9)0.0159 (9)
C130.0397 (10)0.0372 (9)0.0409 (10)0.0145 (8)0.0113 (8)0.0121 (8)
C140.0389 (10)0.0299 (8)0.0349 (9)0.0143 (7)0.0082 (7)0.0083 (7)
C150.0365 (10)0.0329 (9)0.0351 (9)0.0124 (7)0.0079 (7)0.0094 (7)
C160.0530 (12)0.0427 (11)0.0488 (11)0.0237 (9)0.0165 (9)0.0132 (9)
C170.0502 (12)0.0583 (13)0.0578 (13)0.0256 (10)0.0245 (10)0.0273 (10)
C180.0424 (10)0.0431 (10)0.0371 (9)0.0190 (8)0.0126 (8)0.0139 (8)
C190.0394 (10)0.0352 (9)0.0406 (10)0.0144 (8)0.0116 (8)0.0164 (8)
C200.0369 (10)0.0319 (9)0.0413 (10)0.0108 (7)0.0076 (8)0.0111 (7)
C210.0489 (11)0.0280 (9)0.0453 (10)0.0121 (8)0.0130 (9)0.0090 (7)
C220.0690 (15)0.0371 (10)0.0485 (12)0.0188 (10)0.0070 (10)0.0044 (9)
C230.096 (2)0.0442 (12)0.0483 (12)0.0250 (13)0.0170 (13)0.0011 (10)
C240.0866 (19)0.0445 (12)0.0661 (15)0.0280 (12)0.0358 (14)0.0091 (11)
C250.0581 (14)0.0441 (11)0.0673 (14)0.0228 (10)0.0262 (11)0.0162 (10)
C260.0482 (11)0.0329 (9)0.0477 (11)0.0131 (8)0.0166 (9)0.0119 (8)
C270.0416 (10)0.0363 (9)0.0413 (10)0.0157 (8)0.0110 (8)0.0142 (8)
C280.0353 (10)0.0386 (10)0.0433 (10)0.0127 (8)0.0099 (8)0.0169 (8)
C290.0498 (12)0.0388 (10)0.0505 (11)0.0166 (9)0.0083 (9)0.0187 (9)
C300.0511 (12)0.0414 (11)0.0507 (12)0.0116 (9)0.0089 (9)0.0089 (9)
C310.0351 (10)0.0568 (12)0.0423 (10)0.0076 (9)0.0067 (8)0.0160 (9)
C320.0441 (11)0.0514 (12)0.0577 (13)0.0144 (9)0.0030 (10)0.0272 (10)
C330.0447 (11)0.0373 (10)0.0552 (12)0.0147 (8)0.0050 (9)0.0165 (9)
N10.0461 (10)0.0496 (9)0.0365 (8)0.0175 (8)0.0095 (7)0.0140 (7)
N20.0371 (8)0.0394 (8)0.0368 (8)0.0128 (7)0.0081 (6)0.0123 (6)
N30.0429 (9)0.0350 (8)0.0361 (8)0.0175 (7)0.0110 (7)0.0106 (6)
N40.0445 (10)0.0473 (10)0.0564 (11)0.0190 (8)0.0156 (8)0.0270 (8)
O10.0474 (8)0.0479 (8)0.0500 (8)0.0256 (7)0.0110 (6)0.0107 (6)
O20.0983 (14)0.0397 (9)0.0797 (12)0.0129 (9)0.0248 (11)0.0246 (8)
O30.0767 (12)0.0735 (11)0.0547 (10)0.0232 (9)0.0188 (8)0.0379 (8)
Cl10.0578 (4)0.0930 (5)0.0459 (3)0.0096 (3)0.0003 (3)0.0145 (3)
S10.0528 (3)0.0631 (4)0.0671 (4)0.0324 (3)0.0256 (3)0.0216 (3)
C340.0609 (16)0.0823 (18)0.0741 (17)0.0275 (14)0.0249 (13)0.0148 (14)
Cl20.0616 (18)0.159 (4)0.0890 (18)0.0206 (16)0.0457 (14)0.0199 (16)
Cl30.0606 (15)0.104 (2)0.119 (2)0.0311 (14)0.0016 (12)0.0197 (15)
Cl40.149 (3)0.0942 (17)0.080 (2)0.0599 (16)0.0426 (13)0.0360 (13)
Cl4'0.090 (2)0.177 (5)0.299 (9)0.064 (3)0.071 (4)0.157 (6)
Cl3'0.072 (2)0.189 (6)0.121 (3)0.001 (3)0.0016 (19)0.072 (4)
Cl2'0.0620 (17)0.079 (2)0.157 (4)0.0165 (13)0.037 (2)0.0274 (19)
Geometric parameters (Å, º) top
C1—C21.384 (3)C18—H180.9800
C1—C61.400 (3)C19—N41.517 (2)
C1—C151.534 (3)C19—C201.529 (3)
C2—C31.389 (3)C19—C271.551 (3)
C2—H20.9300C20—C211.506 (3)
C3—C41.378 (3)C20—H200.9800
C3—H30.9300C21—C261.387 (3)
C4—C51.378 (3)C21—C221.389 (3)
C4—H40.9300C22—C231.382 (3)
C5—C61.387 (3)C22—H220.9300
C5—H50.9300C23—C241.365 (4)
C6—C71.459 (3)C23—H230.9300
C7—N11.309 (3)C24—C251.376 (4)
C7—C141.423 (3)C24—H240.9300
C8—N11.375 (3)C25—C261.388 (3)
C8—C91.410 (3)C25—H250.9300
C8—C131.416 (3)C26—O11.376 (2)
C9—C101.362 (3)C27—O11.433 (2)
C9—H90.9300C27—C281.500 (3)
C10—C111.395 (3)C27—H270.9800
C10—H100.9300C28—C331.384 (3)
C11—C121.365 (3)C28—C291.389 (3)
C11—H110.9300C29—C301.376 (3)
C12—C131.407 (3)C29—H290.9300
C12—H120.9300C30—C311.374 (3)
C13—N21.383 (2)C30—H300.9300
C14—N21.301 (2)C31—C321.371 (3)
C14—C151.534 (3)C31—Cl11.744 (2)
C15—N31.482 (2)C32—C331.380 (3)
C15—C201.574 (2)C32—H320.9300
C16—N31.436 (3)C33—H330.9300
C16—S11.855 (2)N4—O21.213 (2)
C16—H16A0.9700N4—O31.213 (2)
C16—H16B0.9700C34—Cl41.702 (4)
C17—C181.542 (3)C34—Cl31.713 (5)
C17—S11.806 (2)C34—Cl2'1.716 (4)
C17—H17A0.9700C34—Cl21.740 (4)
C17—H17B0.9700C34—Cl3'1.741 (5)
C18—N31.459 (2)C34—Cl4'1.789 (5)
C18—C191.529 (3)C34—H340.9800
C2—C1—C6119.32 (18)C19—C20—H20108.0
C2—C1—C15129.22 (18)C15—C20—H20108.0
C6—C1—C15111.44 (17)C26—C21—C22118.26 (19)
C1—C2—C3119.0 (2)C26—C21—C20120.69 (18)
C1—C2—H2120.5C22—C21—C20120.98 (19)
C3—C2—H2120.5C23—C22—C21120.6 (2)
C4—C3—C2121.1 (2)C23—C22—H22119.7
C4—C3—H3119.4C21—C22—H22119.7
C2—C3—H3119.4C24—C23—C22120.2 (2)
C5—C4—C3120.6 (2)C24—C23—H23119.9
C5—C4—H4119.7C22—C23—H23119.9
C3—C4—H4119.7C23—C24—C25120.7 (2)
C4—C5—C6118.6 (2)C23—C24—H24119.7
C4—C5—H5120.7C25—C24—H24119.7
C6—C5—H5120.7C24—C25—C26119.2 (2)
C5—C6—C1121.27 (19)C24—C25—H25120.4
C5—C6—C7129.75 (19)C26—C25—H25120.4
C1—C6—C7108.95 (16)O1—C26—C21122.08 (18)
N1—C7—C14123.79 (18)O1—C26—C25116.8 (2)
N1—C7—C6128.09 (17)C21—C26—C25121.1 (2)
C14—C7—C6108.01 (16)O1—C27—C28108.27 (15)
N1—C8—C9119.51 (18)O1—C27—C19108.82 (15)
N1—C8—C13121.63 (17)C28—C27—C19117.68 (16)
C9—C8—C13118.84 (19)O1—C27—H27107.2
C10—C9—C8120.1 (2)C28—C27—H27107.2
C10—C9—H9120.0C19—C27—H27107.2
C8—C9—H9120.0C33—C28—C29118.66 (18)
C9—C10—C11121.0 (2)C33—C28—C27122.61 (18)
C9—C10—H10119.5C29—C28—C27118.72 (17)
C11—C10—H10119.5C30—C29—C28120.79 (18)
C12—C11—C10120.6 (2)C30—C29—H29119.6
C12—C11—H11119.7C28—C29—H29119.6
C10—C11—H11119.7C31—C30—C29119.2 (2)
C11—C12—C13119.9 (2)C31—C30—H30120.4
C11—C12—H12120.0C29—C30—H30120.4
C13—C12—H12120.0C32—C31—C30121.22 (19)
N2—C13—C12118.86 (18)C32—C31—Cl1120.13 (17)
N2—C13—C8121.60 (18)C30—C31—Cl1118.63 (17)
C12—C13—C8119.54 (18)C31—C32—C33119.29 (19)
N2—C14—C7123.09 (17)C31—C32—H32120.4
N2—C14—C15126.01 (16)C33—C32—H32120.4
C7—C14—C15110.84 (16)C32—C33—C28120.76 (19)
N3—C15—C14110.17 (14)C32—C33—H33119.6
N3—C15—C1118.11 (16)C28—C33—H33119.6
C14—C15—C1100.26 (14)C7—N1—C8114.63 (16)
N3—C15—C20103.63 (14)C14—N2—C13114.98 (16)
C14—C15—C20114.11 (15)C16—N3—C18110.27 (15)
C1—C15—C20111.03 (14)C16—N3—C15120.50 (15)
N3—C16—S1108.00 (14)C18—N3—C15112.00 (14)
N3—C16—H16A110.1O2—N4—O3124.58 (18)
S1—C16—H16A110.1O2—N4—C19118.49 (17)
N3—C16—H16B110.1O3—N4—C19116.88 (18)
S1—C16—H16B110.1C26—O1—C27114.72 (15)
H16A—C16—H16B108.4C17—S1—C1693.00 (10)
C18—C17—S1104.77 (14)Cl4—C34—Cl3120.1 (3)
C18—C17—H17A110.8Cl4—C34—Cl2'109.5 (3)
S1—C17—H17A110.8Cl3—C34—Cl2'117.4 (4)
C18—C17—H17B110.8Cl4—C34—Cl2116.2 (3)
S1—C17—H17B110.8Cl3—C34—Cl2108.3 (4)
H17A—C17—H17B108.9Cl2'—C34—Cl29.0 (5)
N3—C18—C19101.95 (14)Cl4—C34—Cl3'111.2 (4)
N3—C18—C17108.61 (16)Cl3—C34—Cl3'15.4 (5)
C19—C18—C17116.08 (17)Cl2'—C34—Cl3'113.5 (4)
N3—C18—H18110.0Cl2—C34—Cl3'104.8 (4)
C19—C18—H18110.0Cl4—C34—Cl4'20.5 (6)
C17—C18—H18110.0Cl3—C34—Cl4'107.1 (5)
N4—C19—C20111.80 (15)Cl2'—C34—Cl4'106.6 (3)
N4—C19—C18110.45 (15)Cl2—C34—Cl4'110.7 (4)
C20—C19—C18104.34 (15)Cl3'—C34—Cl4'95.2 (8)
N4—C19—C27107.53 (15)Cl4—C34—H34103.2
C20—C19—C27108.23 (15)Cl3—C34—H34103.2
C18—C19—C27114.53 (16)Cl2'—C34—H34100.0
C21—C20—C19113.44 (16)Cl2—C34—H34103.2
C21—C20—C15115.47 (15)Cl3'—C34—H34118.5
C19—C20—C15103.65 (14)Cl4'—C34—H34123.3
C21—C20—H20108.0
C6—C1—C2—C31.6 (3)C15—C20—C21—C2270.2 (2)
C15—C1—C2—C3179.92 (19)C26—C21—C22—C230.2 (3)
C1—C2—C3—C41.6 (3)C20—C21—C22—C23176.7 (2)
C2—C3—C4—C50.3 (3)C21—C22—C23—C241.2 (4)
C3—C4—C5—C60.9 (3)C22—C23—C24—C251.3 (4)
C4—C5—C6—C10.9 (3)C23—C24—C25—C260.1 (4)
C4—C5—C6—C7176.9 (2)C22—C21—C26—O1178.72 (18)
C2—C1—C6—C50.4 (3)C20—C21—C26—O11.8 (3)
C15—C1—C6—C5179.12 (18)C22—C21—C26—C251.6 (3)
C2—C1—C6—C7178.52 (17)C20—C21—C26—C25175.35 (18)
C15—C1—C6—C72.7 (2)C24—C25—C26—O1178.82 (19)
C5—C6—C7—N10.5 (3)C24—C25—C26—C211.5 (3)
C1—C6—C7—N1178.44 (19)N4—C19—C27—O158.19 (19)
C5—C6—C7—C14175.9 (2)C20—C19—C27—O162.75 (18)
C1—C6—C7—C142.1 (2)C18—C19—C27—O1178.65 (14)
N1—C8—C9—C10175.5 (2)N4—C19—C27—C2865.4 (2)
C13—C8—C9—C102.8 (3)C20—C19—C27—C28173.70 (15)
C8—C9—C10—C110.3 (4)C18—C19—C27—C2857.8 (2)
C9—C10—C11—C121.9 (4)O1—C27—C28—C3328.0 (3)
C10—C11—C12—C131.5 (4)C19—C27—C28—C3395.8 (2)
C11—C12—C13—N2178.8 (2)O1—C27—C28—C29150.91 (18)
C11—C12—C13—C81.1 (3)C19—C27—C28—C2985.3 (2)
N1—C8—C13—N25.0 (3)C33—C28—C29—C302.1 (3)
C9—C8—C13—N2176.71 (18)C27—C28—C29—C30178.90 (19)
N1—C8—C13—C12175.10 (19)C28—C29—C30—C310.7 (3)
C9—C8—C13—C123.2 (3)C29—C30—C31—C321.1 (3)
N1—C7—C14—N25.4 (3)C29—C30—C31—Cl1177.28 (17)
C6—C7—C14—N2171.10 (17)C30—C31—C32—C331.5 (3)
N1—C7—C14—C15177.37 (17)Cl1—C31—C32—C33176.85 (17)
C6—C7—C14—C156.1 (2)C31—C32—C33—C280.1 (3)
N2—C14—C15—N344.7 (2)C29—C28—C33—C321.7 (3)
C7—C14—C15—N3132.38 (16)C27—C28—C33—C32179.35 (19)
N2—C14—C15—C1169.92 (17)C14—C7—N1—C82.2 (3)
C7—C14—C15—C17.18 (18)C6—C7—N1—C8173.56 (18)
N2—C14—C15—C2071.4 (2)C9—C8—N1—C7179.09 (19)
C7—C14—C15—C20111.55 (17)C13—C8—N1—C72.7 (3)
C2—C1—C15—N355.9 (3)C7—C14—N2—C132.9 (3)
C6—C1—C15—N3125.49 (17)C15—C14—N2—C13179.67 (16)
C2—C1—C15—C14175.49 (19)C12—C13—N2—C14178.15 (18)
C6—C1—C15—C145.90 (19)C8—C13—N2—C142.0 (3)
C2—C1—C15—C2063.6 (3)S1—C16—N3—C1828.37 (19)
C6—C1—C15—C20115.06 (17)S1—C16—N3—C15104.55 (16)
S1—C17—C18—N336.06 (19)C19—C18—N3—C16165.78 (16)
S1—C17—C18—C19150.14 (14)C17—C18—N3—C1642.7 (2)
N3—C18—C19—N4158.18 (15)C19—C18—N3—C1528.66 (19)
C17—C18—C19—N440.4 (2)C17—C18—N3—C1594.39 (19)
N3—C18—C19—C2037.89 (18)C14—C15—N3—C1697.3 (2)
C17—C18—C19—C2079.93 (19)C1—C15—N3—C1616.9 (2)
N3—C18—C19—C2780.24 (18)C20—C15—N3—C16140.19 (17)
C17—C18—C19—C27161.94 (16)C14—C15—N3—C18130.46 (16)
N4—C19—C20—C2181.17 (19)C1—C15—N3—C18115.26 (18)
C18—C19—C20—C21159.45 (15)C20—C15—N3—C187.99 (19)
C27—C19—C20—C2137.1 (2)C20—C19—N4—O219.1 (3)
N4—C19—C20—C15152.85 (15)C18—C19—N4—O2134.8 (2)
C18—C19—C20—C1533.46 (18)C27—C19—N4—O299.6 (2)
C27—C19—C20—C1588.90 (17)C20—C19—N4—O3163.49 (18)
N3—C15—C20—C21140.83 (16)C18—C19—N4—O347.8 (2)
C14—C15—C20—C2121.0 (2)C27—C19—N4—O377.8 (2)
C1—C15—C20—C2191.4 (2)C21—C26—O1—C2725.0 (2)
N3—C15—C20—C1916.14 (18)C25—C26—O1—C27157.73 (18)
C14—C15—C20—C19103.68 (17)C28—C27—O1—C26173.69 (15)
C1—C15—C20—C19143.92 (15)C19—C27—O1—C2657.3 (2)
C19—C20—C21—C266.5 (2)C18—C17—S1—C1616.90 (16)
C15—C20—C21—C26113.0 (2)N3—C16—S1—C175.54 (16)
C19—C20—C21—C22170.39 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C34—H34···N10.982.593.401 (3)140
C27—H27···N20.982.273.200 (3)158
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C34—H34···N10.982.593.401 (3)140.4
C27—H27···N20.982.273.200 (3)158.1
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. VV thanks the DBT, Government of India, for a fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Seferoğlu, Z. & Ertan, N. (2006). Acta Cryst. E62, o1609–o1611.  CSD CrossRef IUCr Journals Google Scholar
First citationMuralikrishna, S., Raveendrareddy, P., Ravindranath, L. K., Harikrishna, S. & Jagadeeswara, R. P. (2013). Pharma Chem. 5, 87–93.  Google Scholar
First citationShao, L., Jin, Z., Liu, J.-B., Zhou, X., Zhang, Q., Hu, Y. & Fang, J.-X. (2004). Acta Cryst. E60, o2517–o2519.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShruthy, V. S. & Shakkeela, Y. (2014). Int. J. Pharm Pharm Sci. 6, 271–275.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1111-o1112
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds