organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1114-o1115

Crystal structure of tolyl­fluanid

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang, National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: jekim@gnu.ac.kr, thkim@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 15 September 2014; accepted 16 September 2014; online 20 September 2014)

The title compound, C10H13Cl2FN2O2S2 {systematic name: N-[(di­chloro­fluoro­methyl)­sulfanyl]-N′,N′-dimethyl-N-p-tolyl­sulfamide}, is a well known fungicide. The dihedral angle between the mean plane of the di­methyl­amino group and that of the benzene ring is 32.3 (3)°. One Cl atom and one F atom of the di­chloro­fluoro­methyl­thio group are disordered over two sets of sites with an occupancy ratio of 0.605 (9):0.395 (9). In the crystal structure, two C—H⋯Cl hydrogen bonds link adjacent mol­ecules, forming dimers with R22(14) loops. C—H⋯O hydrogen bonds link pairs of dimers into chains along the b-axis direction. These chains are joined by an additional C—H⋯O contact, generating a sheet in the ab plane.

1. Related literature

For information on the toxicity and fungicidal properties of the title compound, see: Sargis et al. (2012[Sargis, R. M., Neel, B. A., Brock, C. O., Lin, Y., Hickey, A. T., Carlton, D. A. & Brady, M. J. (2012). Biochim. Biophys. Acta, 1822, 952-960.]); Stajnbaher & Zupancic-Kralj (2008[Stajnbaher, D. & Zupancic-Kralj, L. (2008). J. Chromatogr. 1190, 316-326.]). For a related crystal structure, see: Ogata et al. (1986[Ogata, M., Matsumoto, H., Shimizu, S., Kida, S., Wada, T., Shiro, M. & Sato, K. (1986). J. Med. Chem. 29, 417-423.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H13Cl2FN2O2S2

  • Mr = 347.24

  • Monoclinic, C 2/c

  • a = 23.7638 (19) Å

  • b = 8.7046 (7) Å

  • c = 14.6559 (11) Å

  • β = 102.133 (3)°

  • V = 2963.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 173 K

  • 0.19 × 0.10 × 0.08 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.874, Tmax = 0.944

  • 18246 measured reflections

  • 2913 independent reflections

  • 2236 reflections with I > 2σ(I)

  • Rint = 0.059

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.135

  • S = 1.14

  • 2913 reflections

  • 194 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.98 2.59 3.469 (7) 150
C6—H6⋯Cl1ii 0.95 2.77 3.457 (6) 130
C4—H4⋯O2iii 0.95 2.62 3.563 (5) 171
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tolylfluanid, C10H13Cl2FN2O2S2, is a member of the phenylsulfamide group of fungicides and has been applied in agriculture for control of fungal diseases during thinning, pruning, and harvesting of fruits and vegetables (Sargis et al., 2012; Stajnbaher & Zupancic-Kralj, 2008). Its crystal structure is reported herein. In this compound (Scheme 1, Fig. 1), the dihedral angle between the dimethylamino group plane and that of the phenyl ring is 32.3 (3)°. Disorder was modeled for one Cl atom (Cl1) and one F atom (F1) of the dichlorofluoromethylthio group over two sets of sites with an occupancy ratio of 0.605 (9):0.395 (9). All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Ogata et al., 1986).

In the crystal structure, two C6–H6..Cl1 hydrogen bonds link adjacent molecules, forming dimers with R22(14) loops. C1–H1B···O1 hydrogen bonds link pairs of dimers into chains along the b axis direction. These chains are joined by an additional slightly weaker C4–H4···O2 contact generating a two-dimensional sheet in the ab plane.

Related literature top

For information on the toxicity and fungicidal properties of the title compound, see: Sargis et al. (2012); Stajnbaher & Zupancic-Kralj (2008). For a related crystal structure, see: Ogata et al. (1986).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation from a solution in CHCl3 gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl group and d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for Csp2—H.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. Only atoms of the major disorder components are shown.
[Figure 2] Fig. 2. Crystal packing of the title compound with C–H···Cl and C–H···O hydrogen bonds are shown as dashed lines. H atoms bonded to C atoms have been omitted for clarity, except H atoms of hydrogen bonds. Only atoms of the major disorder components are shown.
N-[(Dichlorofluoromethyl)sulfanyl]-N',N'-dimethyl- N-p-tolylsulfamide top
Crystal data top
C10H13Cl2FN2O2S2F(000) = 1424
Mr = 347.24Dx = 1.556 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6794 reflections
a = 23.7638 (19) Åθ = 2.8–27.1°
b = 8.7046 (7) ŵ = 0.73 mm1
c = 14.6559 (11) ÅT = 173 K
β = 102.133 (3)°Block, colourless
V = 2963.9 (4) Å30.19 × 0.10 × 0.08 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2913 independent reflections
Radiation source: fine-focus sealed tube2236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2926
Tmin = 0.874, Tmax = 0.944k = 1010
18246 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0259P)2 + 15.3569P]
where P = (Fo2 + 2Fc2)/3
2913 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C10H13Cl2FN2O2S2V = 2963.9 (4) Å3
Mr = 347.24Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.7638 (19) ŵ = 0.73 mm1
b = 8.7046 (7) ÅT = 173 K
c = 14.6559 (11) Å0.19 × 0.10 × 0.08 mm
β = 102.133 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2913 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2236 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.944Rint = 0.059
18246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0259P)2 + 15.3569P]
where P = (Fo2 + 2Fc2)/3
2913 reflectionsΔρmax = 0.48 e Å3
194 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.42965 (16)0.2602 (5)0.1267 (3)0.0592 (11)0.605 (9)
Cl1'0.3886 (3)0.4591 (10)0.1620 (5)0.0549 (18)0.395 (9)
Cl20.32595 (6)0.33538 (16)0.00564 (8)0.0545 (4)
S10.33566 (4)0.30575 (13)0.35656 (7)0.0302 (3)
S20.31078 (4)0.20191 (13)0.16220 (7)0.0307 (3)
F10.3625 (4)0.4708 (12)0.1530 (7)0.052 (2)0.605 (9)
F1'0.4106 (7)0.1951 (19)0.1104 (9)0.066 (4)0.395 (9)
O10.38994 (13)0.3659 (4)0.4004 (2)0.0438 (8)
O20.29116 (13)0.4060 (4)0.31161 (19)0.0402 (8)
N10.34588 (14)0.1819 (4)0.2728 (2)0.0304 (8)
N20.31214 (16)0.2043 (4)0.4323 (2)0.0376 (9)
C10.4891 (2)0.3490 (7)0.3831 (4)0.0685 (17)
H1A0.52140.34870.35100.103*
H1B0.46610.44210.36630.103*
H1C0.50400.34670.45070.103*
C20.4519 (2)0.2090 (6)0.3541 (3)0.0428 (11)
C30.39365 (19)0.2240 (6)0.3152 (3)0.0385 (11)
H30.37710.32360.30640.046*
C40.35902 (18)0.0958 (5)0.2887 (3)0.0334 (10)
H40.31920.10840.26230.040*
C50.38234 (17)0.0485 (5)0.3007 (3)0.0308 (9)
C60.4402 (2)0.0684 (6)0.3386 (4)0.0474 (12)
H60.45650.16840.34580.057*
C70.4738 (2)0.0593 (6)0.3658 (4)0.0585 (15)
H70.51330.04520.39370.070*
C80.2585 (2)0.1181 (6)0.3994 (4)0.0546 (14)
H8A0.26740.01870.37430.082*
H8B0.23310.17680.35030.082*
H8C0.23930.10140.45150.082*
C90.3532 (3)0.1351 (7)0.5110 (3)0.0612 (16)
H9A0.33470.12330.56440.092*
H9B0.38700.20180.52850.092*
H9C0.36520.03410.49250.092*
C100.3611 (2)0.3152 (6)0.1127 (3)0.0458 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0428 (17)0.057 (2)0.084 (2)0.0029 (13)0.0277 (15)0.0112 (17)
Cl1'0.070 (4)0.052 (3)0.048 (2)0.015 (3)0.025 (3)0.0026 (19)
Cl20.0701 (9)0.0687 (9)0.0275 (6)0.0036 (7)0.0163 (6)0.0102 (6)
S10.0345 (6)0.0318 (6)0.0237 (5)0.0008 (5)0.0050 (4)0.0004 (4)
S20.0316 (6)0.0378 (6)0.0221 (5)0.0014 (5)0.0044 (4)0.0015 (4)
F10.065 (5)0.038 (4)0.056 (4)0.010 (5)0.025 (5)0.009 (3)
F1'0.066 (8)0.079 (10)0.066 (7)0.057 (7)0.047 (7)0.028 (7)
O10.0412 (19)0.044 (2)0.0430 (18)0.0107 (15)0.0016 (14)0.0031 (15)
O20.0482 (19)0.0385 (19)0.0328 (16)0.0149 (15)0.0062 (14)0.0027 (14)
N10.0344 (19)0.036 (2)0.0203 (16)0.0061 (16)0.0038 (14)0.0011 (15)
N20.050 (2)0.040 (2)0.0251 (17)0.0075 (18)0.0119 (16)0.0017 (16)
C10.058 (4)0.050 (4)0.091 (4)0.011 (3)0.001 (3)0.024 (3)
C20.041 (3)0.043 (3)0.045 (3)0.003 (2)0.010 (2)0.009 (2)
C30.044 (3)0.038 (3)0.035 (2)0.001 (2)0.010 (2)0.000 (2)
C40.029 (2)0.043 (3)0.027 (2)0.0004 (19)0.0039 (17)0.0059 (19)
C50.032 (2)0.036 (3)0.025 (2)0.0080 (19)0.0069 (17)0.0035 (18)
C60.034 (3)0.035 (3)0.069 (3)0.004 (2)0.003 (2)0.010 (2)
C70.034 (3)0.050 (3)0.083 (4)0.000 (2)0.007 (3)0.014 (3)
C80.061 (3)0.052 (3)0.062 (3)0.019 (3)0.038 (3)0.013 (3)
C90.089 (4)0.060 (4)0.033 (3)0.007 (3)0.010 (3)0.019 (3)
C100.044 (3)0.062 (4)0.033 (2)0.002 (2)0.011 (2)0.010 (2)
Geometric parameters (Å, º) top
Cl1—C101.670 (6)C1—H1C0.9800
Cl1'—C101.523 (10)C2—C31.389 (6)
Cl2—C101.768 (5)C2—C71.400 (7)
S1—O11.415 (3)C3—C41.392 (6)
S1—O21.422 (3)C3—H30.9500
S1—N21.608 (3)C4—C51.369 (6)
S1—N11.690 (3)C4—H40.9500
S2—N11.669 (3)C5—C61.381 (6)
S2—C101.814 (5)C6—C71.378 (7)
F1—C101.474 (12)C6—H60.9500
F1'—C101.581 (11)C7—H70.9500
N1—C51.455 (5)C8—H8A0.9800
N2—C81.470 (6)C8—H8B0.9800
N2—C91.473 (6)C8—H8C0.9800
C1—C21.513 (7)C9—H9A0.9800
C1—H1A0.9800C9—H9B0.9800
C1—H1B0.9800C9—H9C0.9800
O1—S1—O2120.1 (2)C7—C6—H6120.6
O1—S1—N2107.78 (19)C5—C6—H6120.6
O2—S1—N2108.94 (19)C6—C7—C2122.5 (5)
O1—S1—N1108.03 (18)C6—C7—H7118.8
O2—S1—N1105.17 (17)C2—C7—H7118.8
N2—S1—N1105.96 (18)N2—C8—H8A109.5
N1—S2—C10102.03 (19)N2—C8—H8B109.5
C5—N1—S2120.2 (3)H8A—C8—H8B109.5
C5—N1—S1118.3 (2)N2—C8—H8C109.5
S2—N1—S1121.3 (2)H8A—C8—H8C109.5
C8—N2—C9115.7 (4)H8B—C8—H8C109.5
C8—N2—S1117.2 (3)N2—C9—H9A109.5
C9—N2—S1119.7 (3)N2—C9—H9B109.5
C2—C1—H1A109.5H9A—C9—H9B109.5
C2—C1—H1B109.5N2—C9—H9C109.5
H1A—C1—H1B109.5H9A—C9—H9C109.5
C2—C1—H1C109.5H9B—C9—H9C109.5
H1A—C1—H1C109.5F1—C10—Cl1'23.6 (3)
H1B—C1—H1C109.5F1—C10—F1'131.4 (7)
C3—C2—C7116.8 (4)Cl1'—C10—F1'107.8 (7)
C3—C2—C1120.9 (5)F1—C10—Cl1106.0 (5)
C7—C2—C1122.4 (4)Cl1'—C10—Cl182.3 (4)
C2—C3—C4121.3 (4)F1'—C10—Cl125.9 (7)
C2—C3—H3119.4F1—C10—Cl2105.5 (5)
C4—C3—H3119.4Cl1'—C10—Cl2116.8 (4)
C5—C4—C3120.0 (4)F1'—C10—Cl2104.1 (6)
C5—C4—H4120.0Cl1—C10—Cl2113.3 (3)
C3—C4—H4120.0F1—C10—S2107.5 (5)
C4—C5—C6120.6 (4)Cl1'—C10—S2120.7 (4)
C4—C5—N1119.7 (4)F1'—C10—S2101.9 (7)
C6—C5—N1119.8 (4)Cl1—C10—S2120.2 (3)
C7—C6—C5118.9 (4)Cl2—C10—S2103.4 (2)
C10—S2—N1—C592.6 (3)C3—C4—C5—C60.2 (6)
C10—S2—N1—S192.9 (3)C3—C4—C5—N1180.0 (4)
O1—S1—N1—C560.6 (3)S2—N1—C5—C459.3 (5)
O2—S1—N1—C5170.0 (3)S1—N1—C5—C4115.4 (4)
N2—S1—N1—C554.7 (3)S2—N1—C5—C6120.5 (4)
O1—S1—N1—S2124.8 (2)S1—N1—C5—C664.9 (5)
O2—S1—N1—S24.6 (3)C4—C5—C6—C71.2 (7)
N2—S1—N1—S2119.9 (2)N1—C5—C6—C7179.0 (4)
O1—S1—N2—C8174.3 (3)C5—C6—C7—C21.9 (8)
O2—S1—N2—C853.9 (4)C3—C2—C7—C61.5 (8)
N1—S1—N2—C858.8 (4)C1—C2—C7—C6179.3 (5)
O1—S1—N2—C925.5 (4)N1—S2—C10—F169.9 (5)
O2—S1—N2—C9157.4 (4)N1—S2—C10—Cl1'48.4 (5)
N1—S1—N2—C989.9 (4)N1—S2—C10—F1'70.9 (7)
C7—C2—C3—C40.4 (7)N1—S2—C10—Cl151.2 (4)
C1—C2—C3—C4179.7 (5)N1—S2—C10—Cl2178.7 (2)
C2—C3—C4—C50.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.982.593.469 (7)150
C6—H6···Cl1ii0.952.773.457 (6)130
C4—H4···O2iii0.952.623.563 (5)171
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1/2; (iii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.982.593.469 (7)150
C6—H6···Cl1ii0.952.773.457 (6)130
C4—H4···O2iii0.952.623.563 (5)171
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1/2; (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOgata, M., Matsumoto, H., Shimizu, S., Kida, S., Wada, T., Shiro, M. & Sato, K. (1986). J. Med. Chem. 29, 417–423.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSargis, R. M., Neel, B. A., Brock, C. O., Lin, Y., Hickey, A. T., Carlton, D. A. & Brady, M. J. (2012). Biochim. Biophys. Acta, 1822, 952–960.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStajnbaher, D. & Zupancic-Kralj, L. (2008). J. Chromatogr. 1190, 316–326.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1114-o1115
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds