organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1128-o1129

Crystal structure of 4,5-bis­­(3,4,5-tri­meth­­oxy­phen­yl)-2H-1,2,3-triazole methanol monosolvate

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock AR 72205, USA, and bDepartment of Chemistry, University of Kentucky, Lexington KY 40506, USA
*Correspondence e-mail: pacrooks@uams.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 17 September 2014; accepted 18 September 2014; online 24 September 2014)

The title compound, C20H23N3O6·CH3OH, was synthesized by [3 + 2] cyclo­addition of (Z)-2,3-bis­(3,4,5-tri­meth­oxy­phen­yl)acrylo­nitrile with sodium azide and ammonium chloride in DMF/water. The central nitro­gen of the triazole ring is protonated. The dihedral angles between the triazole ring and the 3,4,5-tri­meth­oxy­phenyl ring planes are 34.31 (4) and 45.03 (5)°, while that between the 3,4,5-tri­meth­oxy­phenyl rings is 51.87 (5)°. In the crystal, the mol­ecules, along with two methanol solvent mol­ecules are linked into an R44(10) centrosymmetric dimer by N—H⋯O and O—H⋯N hydrogen bonds.

1. Related literature

The synthetic procedure has been described by Madadi et al. (2014[Madadi, N. R., Penthala, N. R., Song, L., Hendrickson, H. P. & Crooks, P. A. (2014). Tetrahedron Lett. 55, 4207-4211.]) and by Penthala et al. (2014[Penthala, N. R., Madadi, N. R., Janganati, V. & Crooks, P. A. (2014). Tetrahedron Lett. 55, 5562-5565.]). For structure-related activity, see: Young & Chaplin (2004[Young, S. L. & Chaplin, D. J. (2004). Expert Opin. Investig. Drugs, 13, 1171-1182.]); Pettit et al. (1995[Pettit, G. R., Singh, S. B., Boyd, M. R., Hamel, E., Pettit, R. K., Schmidt, J. M. & Hogan, F. (1995). J. Med. Chem. 38, 1666-1672.]); Hsieh et al. (2005[Hsieh, H. P., Liou, J. P. & Mahindroo, N. (2005). Curr. Pharm. Des. 11, 1655-1677.]); Carr et al. (2010[Carr, M., Greene, L. M., Knox, A. J., Lloyd, D. G., Zisterer, D. M. & Meegan, M. J. (2010). Eur. J. Med. Chem. 45, 5752-5766.]); Banimustafa et al. (2013[Banimustafa, M., Kheirollahi, A., Safavi, M., Kabudanian Ardestani, S., Aryapour, H., Foroumadi, A. & Emami, S. (2013). Eur. J. Med. Chem. 70, 692-702.]); Demchuk et al. (2014[Demchuk, D. V., Samet, A. V., Chernysheva, N. B., Ushkarov, V. I., Stashina, G. A., Konyushkin, L. D., Raihstat, M. M., Firgang, S. I., Philchenkov, A. A., Zavelevich, M. P., Kuiava, L. M., Chekhun, V. F., Blokhin, D. Y., Kiselyov, A. S., Semenova, M. N. & Semenov, V. V. (2014). Bioorg. Med. Chem. 22, 738-755.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H23N3O6·CH4O

  • Mr = 433.45

  • Triclinic, [P \overline 1]

  • a = 10.1458 (1) Å

  • b = 10.6090 (1) Å

  • c = 11.0435 (2) Å

  • α = 89.5708 (6)°

  • β = 72.5903 (6)°

  • γ = 70.7146 (7)°

  • V = 1065.07 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 90 K

  • 0.24 × 0.22 × 0.20 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.882, Tmax = 0.970

  • 28813 measured reflections

  • 4887 independent reflections

  • 3960 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.05

  • 4887 reflections

  • 291 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1M 0.936 (17) 1.797 (18) 2.7303 (15) 174.2 (16)
O1M—H1M⋯N3i 0.84 1.97 2.8101 (15) 177
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 2006[Otwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, ch. 11.4, pp. 226-235. Dordrecht: Kluwer Academic Publishers.]); data reduction: DENZO-SMN (Otwinowski & Minor, 2006[Otwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, ch. 11.4, pp. 226-235. Dordrecht: Kluwer Academic Publishers.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELX (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Antimitotic agents are a major class of anticancer drugs that target the microtubules. There are three major binding sites on tubulin, namely the colchicine, taxane and vinca domains. Lately, anti-mitotic agents such as combretastatin A-4 that bind to the colchicine binding site are receiving much attention due to their potent anticancer and antiangiogenic properties. Combretastatin A-4 is a cis configured natural product extracted from the South African willow tree combretum caffrum (Pettit et al., 1995). Its phosphate prodrug (CA-4P) is currently in phase 3 clinical trials for anaplastic thyroid cancer, and it has successfully arrested tumor growth in a wide spectrum of tumor models (Young and Chaplin, 2004). However, recent studies have reported the chemical instability of CA-4 due to cis-trans isomerization to the more thermodynamically stable, but less potent, trans-CA-4 isomer (Hsieh et al., 2005). Recently, much research has been conducted to stabilize the cis configuration by replacing the ethylene bridge with heterocyclic ring systems, including thiazoles, tetrazoles, imidazoles, pyrazoles, oxazolones, triazoles, and furanones (Carr et al., 2010; Banimustafa et al., 2013; Demchuk et al., 2014). One approach we are exploring is the replacement of the ethylene bridge in the cis stilbene scaffold with a triazole moiety to produce geometrically stable triazole analogs of CA4 with improved water solubility.

The title compound structure determination was performed to determine unequivocally the position of the hydrogen atom on the triazole ring system, which cannot be easily determined by NMR spectroscopy, and to obtain detailed information on the structural conformation of the molecule that may be useful in structure-activity relationship (SAR) analysis. The title compound was synthesized in two steps as described by Madadi et al., 2014 and Penthala et al., 2014).

In the first step, (Z)-2,3-bis(3,4,5-trimethoxyphenyl)acrylonitrile was synthesized by reacting 2-(3,4,5-trimethoxyphenyl)acetonitrile with 3,4,5-trimethoxybenzaldehyde in 5% NaOMe in methanol to afford the product in 85% yield. In the second step 4,5-bis(3,4,5-trimethoxyphenyl)-2H-1,2,3- triazole was synthesized by refluxing a mixture of (Z)-2,3-bis(3,4,5-trimethoxyphenyl)acrylonitrile, sodium azide and ammonium chloride in a DMF/water mixture to afford the desired product in 64% yield. The crystal structure of the compound indicates the presence of a 2H nitrogen on the triazole ring, i.e. protonation of the middle N atom. The molecules, along with two methanol solvent molecules, are linked into an R44(10) centrosymmetric dimer by N—H···O and O—H···N intermolecular hydrogen bonds. The dihedral angles between the triazole ring and the two 3,4,5-trimethoxyphenyl ring planes are 34.31 (4)° and 45.03 (5)°, while that between the two 3,4,5-trimethoxyphenyl rings is 51.87 (5)°.

Related literature top

The synthetic procedure has been described by Madadi et al. (2014) and by Penthala et al. (2014). For structure-related activity, see: Young & Chaplin (2004); Pettit et al. (1995); Hsieh et al. (2005); Carr et al. (2010); Banimustafa et al. (2013); Demchuk et al. (2014).

Experimental top

A mixture of (Z)-2,3-bis(3,4,5-trimethoxyphenyl)acrylonitrile, sodium azide and ammonium chloride in a mole ratio of 1:3:3, respectively, was refluxed in 10% aqueous DMF for 5 hrs. The reaction was monitored by TLC. When the (Z)-2,3-bis(3,4,5-trimethoxyphenyl)-acrylonitrile strating material had completely disappeared, cold water was added and the mixture was stirred over 10–15 min, during which the final product precipitated out. The product was purified by flash column chromatography utilizing ethyl acetate/methanol to afford 4,5-bis(3,4,5-trimethoxyphenyl)-2H-1,2,3-triazole in 64% yield. Crystallization from methanol afforded a white crystalline product: 4,5-bis(3,4,5-trimethoxyphenyl)-2H-1,2,3-triazole methanolate, which was suitable for X-ray crystallographic analysis.

1H NMR (400 MHz, CDCl3-d): δ 3.93 (s, 3H, –OCH3), 6.87 (d, J = 8 Hz, 1H, ArH), 7.05 (d, J = 12 Hz, 2H, ArH),), 7.42 (s, 2H, ArH), 7.78 (s, 1H, ArH) p.p.m. 13C NMR (400 MHz,CDCl3-d): δ 55.87, 55.96, 111.05, 127.31, 129.80, 129.89, 130.54, 132.60, 132.86, 149.15, 149.54 p.p.m. HRMS (ESI): m/z calcd for C20H23N3O6 [M—H] 350.0463; found 350.0480.

Refinement top

H atoms were found in difference Fourier maps. Those bonded to carbon and oxygen were subsequently placed at idealized positions with constrained distances of 0.98 Å (RCH3), 0.95 Å (Csp2H) and 0.84 Å (OH), while the nitrogen-bound H atom position was refined. Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 2006); data reduction: DENZO-SMN (Otwinowski & Minor, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b); molecular graphics: XP in SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELX (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the structure with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and a hydrogen bond is drawn as a dashed line.
4,5-Bis(3,4,5-trimethoxyphenyl)-2H-1,2,3-triazole methanol monosolvate top
Crystal data top
C20H23N3O6·CH4OZ = 2
Mr = 433.45F(000) = 460
Triclinic, P1Dx = 1.352 Mg m3
a = 10.1458 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6090 (1) ÅCell parameters from 11695 reflections
c = 11.0435 (2) Åθ = 1.0–27.5°
α = 89.5708 (6)°µ = 0.10 mm1
β = 72.5903 (6)°T = 90 K
γ = 70.7146 (7)°Block, colourless
V = 1065.07 (2) Å30.24 × 0.22 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
4887 independent reflections
Radiation source: fine-focus sealed-tube3960 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1Rint = 0.037
ϕ and ω scans at fixed χ = 55°θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1313
Tmin = 0.882, Tmax = 0.970k = 1313
28813 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.3615P]
where P = (Fo2 + 2Fc2)/3
4887 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C20H23N3O6·CH4Oγ = 70.7146 (7)°
Mr = 433.45V = 1065.07 (2) Å3
Triclinic, P1Z = 2
a = 10.1458 (1) ÅMo Kα radiation
b = 10.6090 (1) ŵ = 0.10 mm1
c = 11.0435 (2) ÅT = 90 K
α = 89.5708 (6)°0.24 × 0.22 × 0.20 mm
β = 72.5903 (6)°
Data collection top
Nonius KappaCCD
diffractometer
4887 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3960 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.970Rint = 0.037
28813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.28 e Å3
4887 reflectionsΔρmin = 0.30 e Å3
291 parameters
Special details top

Experimental. The crystal was mounted with polyisobutene oil on the tip of a fine glass fibre, fastened in a copper mounting pin with electrical solder. It was placed directly into the cold stream of a liquid nitrogen based cryostat.

Diffraction data were collected with the crystal at 90 K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.60782 (12)0.74167 (11)0.56615 (11)0.0185 (2)
N20.73493 (13)0.64285 (12)0.54691 (11)0.0195 (3)
H2N0.8264 (19)0.6486 (17)0.5010 (16)0.023*
N30.72437 (12)0.53382 (11)0.60414 (11)0.0182 (2)
O10.10274 (10)1.12766 (9)0.78293 (10)0.0199 (2)
O20.09566 (10)1.00928 (10)0.79884 (9)0.0203 (2)
O30.01750 (10)0.74272 (10)0.76182 (10)0.0212 (2)
O40.55195 (11)0.11586 (9)0.76505 (9)0.0200 (2)
O50.35131 (11)0.22077 (10)0.98936 (9)0.0226 (2)
O60.26188 (10)0.48551 (10)1.06686 (9)0.0203 (2)
C10.34889 (14)0.77606 (13)0.68391 (12)0.0156 (3)
C20.30637 (14)0.91466 (13)0.71055 (12)0.0161 (3)
H20.37850.95600.70060.019*
C30.15713 (14)0.99221 (13)0.75193 (12)0.0160 (3)
C40.05096 (14)0.93156 (13)0.76591 (12)0.0162 (3)
C50.09440 (14)0.79251 (14)0.74196 (12)0.0171 (3)
C60.24333 (14)0.71422 (14)0.69882 (13)0.0177 (3)
H60.27280.61990.67980.021*
C70.50685 (14)0.69379 (13)0.64045 (12)0.0162 (3)
C80.57985 (14)0.56334 (13)0.66514 (12)0.0159 (3)
C90.52294 (14)0.47110 (13)0.74808 (13)0.0162 (3)
C100.56894 (14)0.33457 (13)0.70935 (13)0.0167 (3)
H100.63680.29880.62700.020*
C110.51433 (14)0.25086 (13)0.79276 (13)0.0161 (3)
C120.41268 (14)0.30331 (14)0.91361 (13)0.0172 (3)
C130.36502 (14)0.44122 (14)0.94987 (12)0.0165 (3)
C140.42169 (14)0.52434 (14)0.86842 (13)0.0170 (3)
H140.39160.61730.89460.020*
C150.20801 (16)1.19411 (14)0.76486 (15)0.0231 (3)
H15A0.27081.15870.81840.035*
H15B0.15651.29070.78870.035*
H15C0.26881.17850.67510.035*
C160.17239 (16)1.02141 (16)0.93261 (14)0.0265 (3)
H16A0.16340.93190.96050.040*
H16B0.27651.07450.94890.040*
H16C0.12971.06610.97990.040*
C170.02045 (17)0.60063 (15)0.75393 (16)0.0279 (3)
H17A0.07980.56210.66630.042*
H17B0.06940.57780.77810.042*
H17C0.07710.56420.81190.042*
C180.64600 (16)0.06014 (15)0.63927 (14)0.0242 (3)
H18A0.60150.10720.57680.036*
H18B0.65930.03540.62870.036*
H18C0.74170.07030.62590.036*
C190.38996 (17)0.19362 (16)1.10416 (14)0.0247 (3)
H19A0.49250.13381.08260.037*
H19B0.32560.15061.15930.037*
H19C0.37810.27801.14890.037*
C200.19984 (16)0.62778 (14)1.10034 (13)0.0220 (3)
H20A0.27720.66211.10440.033*
H20B0.12350.64761.18370.033*
H20C0.15640.67091.03580.033*
O1M1.00187 (11)0.66705 (10)0.42773 (10)0.0244 (2)
H1M1.08490.60760.41490.037*
C1M1.01117 (17)0.79571 (15)0.45053 (15)0.0269 (3)
H1M10.91190.86260.48140.040*
H1M21.06720.82060.37100.040*
H1M31.06080.79220.51480.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0160 (5)0.0170 (6)0.0195 (6)0.0042 (4)0.0029 (4)0.0023 (5)
N20.0155 (5)0.0163 (6)0.0228 (6)0.0052 (4)0.0011 (5)0.0035 (5)
N30.0172 (5)0.0164 (6)0.0194 (6)0.0070 (4)0.0022 (4)0.0033 (4)
O10.0167 (5)0.0148 (5)0.0270 (5)0.0046 (4)0.0063 (4)0.0008 (4)
O20.0127 (4)0.0229 (5)0.0217 (5)0.0030 (4)0.0039 (4)0.0033 (4)
O30.0166 (5)0.0193 (5)0.0281 (5)0.0088 (4)0.0047 (4)0.0020 (4)
O40.0235 (5)0.0141 (5)0.0203 (5)0.0063 (4)0.0039 (4)0.0011 (4)
O50.0322 (6)0.0247 (5)0.0171 (5)0.0179 (5)0.0077 (4)0.0070 (4)
O60.0205 (5)0.0186 (5)0.0170 (5)0.0062 (4)0.0003 (4)0.0006 (4)
C10.0150 (6)0.0161 (6)0.0139 (6)0.0034 (5)0.0041 (5)0.0031 (5)
C20.0161 (6)0.0175 (7)0.0160 (6)0.0074 (5)0.0052 (5)0.0033 (5)
C30.0176 (6)0.0147 (6)0.0152 (6)0.0041 (5)0.0062 (5)0.0030 (5)
C40.0138 (6)0.0180 (7)0.0156 (6)0.0034 (5)0.0053 (5)0.0033 (5)
C50.0161 (6)0.0219 (7)0.0156 (6)0.0087 (5)0.0060 (5)0.0042 (5)
C60.0188 (6)0.0167 (7)0.0178 (6)0.0069 (5)0.0054 (5)0.0025 (5)
C70.0169 (6)0.0164 (7)0.0144 (6)0.0061 (5)0.0032 (5)0.0014 (5)
C80.0142 (6)0.0158 (6)0.0154 (6)0.0043 (5)0.0022 (5)0.0007 (5)
C90.0147 (6)0.0164 (7)0.0179 (6)0.0050 (5)0.0061 (5)0.0031 (5)
C100.0151 (6)0.0172 (7)0.0162 (6)0.0050 (5)0.0033 (5)0.0012 (5)
C110.0167 (6)0.0138 (6)0.0195 (6)0.0055 (5)0.0080 (5)0.0026 (5)
C120.0187 (6)0.0196 (7)0.0169 (6)0.0106 (5)0.0064 (5)0.0050 (5)
C130.0140 (6)0.0201 (7)0.0151 (6)0.0062 (5)0.0040 (5)0.0022 (5)
C140.0168 (6)0.0153 (6)0.0186 (6)0.0055 (5)0.0052 (5)0.0015 (5)
C150.0216 (7)0.0172 (7)0.0318 (8)0.0079 (6)0.0089 (6)0.0026 (6)
C160.0197 (7)0.0293 (8)0.0235 (7)0.0057 (6)0.0001 (6)0.0031 (6)
C170.0246 (7)0.0220 (8)0.0373 (9)0.0128 (6)0.0047 (6)0.0022 (6)
C180.0259 (7)0.0177 (7)0.0246 (7)0.0079 (6)0.0011 (6)0.0030 (6)
C190.0263 (7)0.0267 (8)0.0212 (7)0.0093 (6)0.0075 (6)0.0089 (6)
C200.0215 (7)0.0190 (7)0.0191 (7)0.0030 (6)0.0017 (5)0.0013 (5)
O1M0.0200 (5)0.0177 (5)0.0302 (6)0.0046 (4)0.0028 (4)0.0040 (4)
C1M0.0278 (7)0.0227 (8)0.0301 (8)0.0100 (6)0.0073 (6)0.0020 (6)
Geometric parameters (Å, º) top
N1—N21.3243 (16)C10—C111.3970 (18)
N1—C71.3473 (16)C10—H100.9500
N2—N31.3339 (16)C11—C121.4010 (19)
N2—H2N0.936 (17)C12—C131.4002 (19)
N3—C81.3455 (16)C13—C141.3895 (18)
O1—C31.3628 (16)C14—H140.9500
O1—C151.4301 (16)C15—H15A0.9800
O2—C41.3768 (15)C15—H15B0.9800
O2—C161.4330 (17)C15—H15C0.9800
O3—C51.3645 (16)C16—H16A0.9800
O3—C171.4236 (17)C16—H16B0.9800
O4—C111.3661 (16)C16—H16C0.9800
O4—C181.4268 (17)C17—H17A0.9800
O5—C121.3755 (16)C17—H17B0.9800
O5—C191.4358 (17)C17—H17C0.9800
O6—C131.3639 (16)C18—H18A0.9800
O6—C201.4326 (16)C18—H18B0.9800
C1—C21.3950 (19)C18—H18C0.9800
C1—C61.4006 (18)C19—H19A0.9800
C1—C71.4774 (18)C19—H19B0.9800
C2—C31.3954 (18)C19—H19C0.9800
C2—H20.9500C20—H20A0.9800
C3—C41.3982 (19)C20—H20B0.9800
C4—C51.3953 (19)C20—H20C0.9800
C5—C61.3950 (18)O1M—C1M1.4282 (18)
C6—H60.9500O1M—H1M0.8400
C7—C81.4057 (19)C1M—H1M10.9800
C8—C91.4743 (18)C1M—H1M20.9800
C9—C101.3936 (19)C1M—H1M30.9800
C9—C141.3970 (18)
N2—N1—C7104.56 (11)O6—C13—C12115.88 (11)
N1—N2—N3114.49 (11)C14—C13—C12120.27 (12)
N1—N2—H2N124.0 (10)C13—C14—C9119.97 (12)
N3—N2—H2N121.4 (11)C13—C14—H14120.0
N2—N3—C8105.06 (11)C9—C14—H14120.0
C3—O1—C15116.70 (10)O1—C15—H15A109.5
C4—O2—C16113.71 (10)O1—C15—H15B109.5
C5—O3—C17117.30 (11)H15A—C15—H15B109.5
C11—O4—C18116.84 (10)O1—C15—H15C109.5
C12—O5—C19116.01 (11)H15A—C15—H15C109.5
C13—O6—C20116.87 (10)H15B—C15—H15C109.5
C2—C1—C6120.65 (12)O2—C16—H16A109.5
C2—C1—C7119.59 (12)O2—C16—H16B109.5
C6—C1—C7119.77 (12)H16A—C16—H16B109.5
C1—C2—C3119.53 (12)O2—C16—H16C109.5
C1—C2—H2120.2H16A—C16—H16C109.5
C3—C2—H2120.2H16B—C16—H16C109.5
O1—C3—C2124.68 (12)O3—C17—H17A109.5
O1—C3—C4115.06 (11)O3—C17—H17B109.5
C2—C3—C4120.25 (12)H17A—C17—H17B109.5
O2—C4—C5120.10 (11)O3—C17—H17C109.5
O2—C4—C3120.05 (12)H17A—C17—H17C109.5
C5—C4—C3119.81 (12)H17B—C17—H17C109.5
O3—C5—C6124.27 (12)O4—C18—H18A109.5
O3—C5—C4115.33 (11)O4—C18—H18B109.5
C6—C5—C4120.39 (12)H18A—C18—H18B109.5
C5—C6—C1119.32 (12)O4—C18—H18C109.5
C5—C6—H6120.3H18A—C18—H18C109.5
C1—C6—H6120.3H18B—C18—H18C109.5
N1—C7—C8108.49 (11)O5—C19—H19A109.5
N1—C7—C1121.12 (12)O5—C19—H19B109.5
C8—C7—C1130.39 (12)H19A—C19—H19B109.5
N3—C8—C7107.40 (11)O5—C19—H19C109.5
N3—C8—C9121.97 (12)H19A—C19—H19C109.5
C7—C8—C9130.48 (12)H19B—C19—H19C109.5
C10—C9—C14120.46 (12)O6—C20—H20A109.5
C10—C9—C8121.60 (12)O6—C20—H20B109.5
C14—C9—C8117.94 (12)H20A—C20—H20B109.5
C9—C10—C11119.35 (12)O6—C20—H20C109.5
C9—C10—H10120.3H20A—C20—H20C109.5
C11—C10—H10120.3H20B—C20—H20C109.5
O4—C11—C10124.35 (12)C1M—O1M—H1M109.5
O4—C11—C12115.03 (11)O1M—C1M—H1M1109.5
C10—C11—C12120.62 (12)O1M—C1M—H1M2109.5
O5—C12—C13121.12 (12)H1M1—C1M—H1M2109.5
O5—C12—C11119.30 (12)O1M—C1M—H1M3109.5
C13—C12—C11119.29 (12)H1M1—C1M—H1M3109.5
O6—C13—C14123.85 (12)H1M2—C1M—H1M3109.5
C7—N1—N2—N30.41 (15)N2—N3—C8—C9175.64 (12)
N1—N2—N3—C80.07 (16)N1—C7—C8—N30.54 (15)
C6—C1—C2—C30.27 (19)C1—C7—C8—N3179.60 (13)
C7—C1—C2—C3179.82 (12)N1—C7—C8—C9174.91 (13)
C15—O1—C3—C23.37 (19)C1—C7—C8—C94.1 (2)
C15—O1—C3—C4177.50 (12)N3—C8—C9—C1047.04 (19)
C1—C2—C3—O1178.74 (12)C7—C8—C9—C10138.07 (15)
C1—C2—C3—C40.36 (19)N3—C8—C9—C14132.31 (14)
C16—O2—C4—C585.75 (15)C7—C8—C9—C1442.6 (2)
C16—O2—C4—C396.54 (15)C14—C9—C10—C110.87 (19)
O1—C3—C4—O24.99 (18)C8—C9—C10—C11178.47 (12)
C2—C3—C4—O2175.83 (11)C18—O4—C11—C104.16 (18)
O1—C3—C4—C5177.30 (11)C18—O4—C11—C12175.12 (12)
C2—C3—C4—C51.9 (2)C9—C10—C11—O4179.85 (12)
C17—O3—C5—C68.57 (19)C9—C10—C11—C120.91 (19)
C17—O3—C5—C4172.45 (12)C19—O5—C12—C1372.53 (17)
O2—C4—C5—O34.09 (18)C19—O5—C12—C11113.70 (14)
C3—C4—C5—O3178.19 (12)O4—C11—C12—O54.85 (18)
O2—C4—C5—C6174.92 (12)C10—C11—C12—O5174.46 (11)
C3—C4—C5—C62.79 (19)O4—C11—C12—C13178.74 (11)
O3—C5—C6—C1178.92 (12)C10—C11—C12—C130.6 (2)
C4—C5—C6—C12.16 (19)C20—O6—C13—C146.21 (18)
C2—C1—C6—C50.6 (2)C20—O6—C13—C12173.47 (11)
C7—C1—C6—C5178.93 (12)O5—C12—C13—O63.80 (18)
N2—N1—C7—C80.56 (15)C11—C12—C13—O6177.57 (11)
N2—N1—C7—C1179.72 (12)O5—C12—C13—C14175.89 (12)
C2—C1—C7—N134.27 (18)C11—C12—C13—C142.11 (19)
C6—C1—C7—N1146.18 (13)O6—C13—C14—C9177.50 (12)
C2—C1—C7—C8144.69 (15)C12—C13—C14—C92.16 (19)
C6—C1—C7—C834.9 (2)C10—C9—C14—C130.66 (19)
N2—N3—C8—C70.28 (15)C8—C9—C14—C13179.98 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1M0.936 (17)1.797 (18)2.7303 (15)174.2 (16)
O1M—H1M···N3i0.841.972.8101 (15)177
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1M0.936 (17)1.797 (18)2.7303 (15)174.2 (16)
O1M—H1M···N3i0.841.972.8101 (15)176.5
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

This investigation was supported NIH/National Cancer Institute (CA140409) United States, and we also thank the Arkansas Research Alliance for financial support.

References

First citationBanimustafa, M., Kheirollahi, A., Safavi, M., Kabudanian Ardestani, S., Aryapour, H., Foroumadi, A. & Emami, S. (2013). Eur. J. Med. Chem. 70, 692–702.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCarr, M., Greene, L. M., Knox, A. J., Lloyd, D. G., Zisterer, D. M. & Meegan, M. J. (2010). Eur. J. Med. Chem. 45, 5752–5766.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDemchuk, D. V., Samet, A. V., Chernysheva, N. B., Ushkarov, V. I., Stashina, G. A., Konyushkin, L. D., Raihstat, M. M., Firgang, S. I., Philchenkov, A. A., Zavelevich, M. P., Kuiava, L. M., Chekhun, V. F., Blokhin, D. Y., Kiselyov, A. S., Semenova, M. N. & Semenov, V. V. (2014). Bioorg. Med. Chem. 22, 738–755.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHsieh, H. P., Liou, J. P. & Mahindroo, N. (2005). Curr. Pharm. Des. 11, 1655–1677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMadadi, N. R., Penthala, N. R., Song, L., Hendrickson, H. P. & Crooks, P. A. (2014). Tetrahedron Lett. 55, 4207–4211.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, ch. 11.4, pp. 226–235. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationPenthala, N. R., Madadi, N. R., Janganati, V. & Crooks, P. A. (2014). Tetrahedron Lett. 55, 5562–5565.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPettit, G. R., Singh, S. B., Boyd, M. R., Hamel, E., Pettit, R. K., Schmidt, J. M. & Hogan, F. (1995). J. Med. Chem. 38, 1666–1672.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoung, S. L. & Chaplin, D. J. (2004). Expert Opin. Investig. Drugs, 13, 1171–1182.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1128-o1129
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds