organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1131-o1132

Crystal structure of 3-methyl-1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-4-carbaldehyde

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 19 September 2014; accepted 20 September 2014; online 27 September 2014)

In the title compound, C15H13N3O, the pyrrolyl and phenyl rings make dihedral angles of 58.99 (5) and 34.95 (5)°, respectively, with the central pyrazole ring. In the crystal, weak, pairwise C—H⋯O inter­actions across centers of symmetry form dimers, which are further associated into corrugated sheets running approximately parallel to (100) via weak C—H⋯N inter­actions.

1. Related literature

For the biological activity of pyrazoline-containing compounds see: Nauduri & Reddy (1998[Nauduri, D. & Reddy, G. B. (1998). Chem. Pharm. Bull. 46, 1254-1260.]); Korgaokar et al. (1996[Korgaokar, S. S., Patil, P. H., Shah, M. J. & Parekh, H. H. (1996). Indian J. Pharm. Sci. 58, 222-225.]); Taylor & Patel (1992[Taylor, E. C. & Patel, H. H. (1992). Tetrahedron, 48, 8089-8100.]); Ozdemir et al. (2007[Ozdemir, Z., Kandilci, H. B., Gümüşel, B., Caliş, U. & Bilgin, A. A. (2007). Eur. J. Med. Chem. 42, 373-379.]); Ruhoğlu et al. (2005[Ruhoğlu, O., Ozdemir, Z., Caliş, U., Gümüşel, B. & Bilgin, A. A. (2005). Arzneimittelforschung, 55, 431-436.]); Palaska et al. (2001[Palaska, E., Aytemir, M., Uzbay, I. T. & Erol, D. (2001). Eur. J. Med. Chem. 36, 539-543.]); Rajendra Prasad et al. (2005[Rajendra Prasad, Y., Lakshmana Rao, A., Prasoona, L., Murali, K. & Ravi Kumar, P. (2005). Bioorg. Med. Chem. Lett. 15, 5030-5034.]); Udupi et al. (1998[Udupi, R. H., Kushnoor, A. S. & Bhat, A. R. (1998). Indian J. Heterocycl. Chem. 8, 63-66.]). For synthetic and industrial applications of pyrazolo­[3,4-b]pyrazines see: Rangnekar & Dhamnaskar (1990[Rangnekar, D. W. & Dhamnaskar, S. V. (1990). J. Chem. Technol. Biotechnol. 49, 311-320.]); Kopp et al. (2001[Kopp, M., Lancelot, J.-C., Dallemagne, P. & Rault, S. (2001). J. Heterocycl. Chem. 38, 1045-1050.]); Farghaly & El-Kashef (2005[Farghaly, A. & El-Kashef, H. (2005). Monatsh. Chem. 136, 217-227.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H13N3O

  • Mr = 251.28

  • Monoclinic, P 21 /c

  • a = 9.5807 (8) Å

  • b = 15.1720 (13) Å

  • c = 8.7370 (8) Å

  • β = 93.6180 (11)°

  • V = 1267.46 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.29 × 0.17 × 0.04 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Tmin = 0.98, Tmax = 1.00

  • 26282 measured reflections

  • 3321 independent reflections

  • 2527 reflections with I > 2σ(I)

  • Rint = 0.053

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 1.07

  • 3321 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N1i 0.95 2.48 3.3931 (17) 161
C12—H12⋯O1ii 0.95 2.52 3.4255 (17) 159
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Pyrazolines and substituted pyrazolines exhibit a variety of biological activities displaying anti-bacterial (Nauduri & Reddy, 1998), anti-fungal (Korgaokar et al., 1996), anti-tumor (Taylor & Patel, 1992), anticonvulsant (Ozdemir et al., 2007; Ruhoğlu et al., 2005), anti-depressant (Palaska et al., 2001; Rajendra Prasad et al., 2005) and anti-inflammatory (Udupi et al., 1998) properties. Moreover, pyrazolo[3,4-b]pyrazines are also used as fluorescent and disperse dyes in dye chemistry (Rangnekar & Dhamnaskar, 1990; Kopp et al., 2001). In addition the title compound and its analogs have proved to be versatile compounds for use in the synthesis of several heterocycles (Farghaly & El-Kashef, 2005). Based on these findings and as part of our on-going study of the synthesis of bio-heterocyclic molecules, we report in this study the crystal structure of the title compound.

In the title compound (Fig. 1), the central pyrazole ring makes dihedral angles of 58.99 (5) and 34.95 (5)°, respectively, with the the pyrrolyl and phenyl rings. Weak, pairwise C12—H12···O1 interactions across centers of symmetry form dimers which are further associated into corrugated sheets running approximately parallel to (100) via weak C15—H15···N1 interactions (Table 1, Fig. 2 and Fig. 3).

Related literature top

For the biological activity of pyrazoline-containing compounds see: Nauduri & Reddy (1998); Korgaokar et al. (1996); Taylor & Patel (1992); Ozdemir et al. (2007); Ruhoğlu et al. (2005); Palaska et al. (2001); Rajendra Prasad et al. (2005); Udupi et al. (1998). For synthetic and industrial applications of pyrazolo[3,4-b]pyrazines see: Rangnekar & Dhamnaskar (1990); Kopp et al. (2001); Farghaly & El-Kashef (2005).

Experimental top

A mixture of 2.01 g (0.01 mol) 5-amino-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde and 1.32 g (0.01 mol) of 2,5-dimethoxytetrahydrofuran in acetic acid (15 ml) was heated under reflux for 2 h. After cooling the mixture was poured into cold water (50 ml) and the precipitate was filtered off, washed with water, dried under vacuum and crystallized from dioxane-water (3:1vv) to afford the product in 85% yield. Colourless plate-like crystals for X-ray diffraction were obtained by further crystallization of the product from acetic acid. M.p. 409 – 411 K.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Bruker, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with labeling scheme and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing viewed down the c axis showing an edge view of one corrugated sheet with hydrogen bonds drawn as red and blue dashed lines.
[Figure 3] Fig. 3. Packing viewed down the a axis showing the C—H···O and C—H···N interactions as red and blue dashed lines, respectively.
3-Methyl-1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-4-carbaldehyde top
Crystal data top
C15H13N3OF(000) = 528
Mr = 251.28Dx = 1.317 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5807 (8) ÅCell parameters from 6992 reflections
b = 15.1720 (13) Åθ = 2.5–29.1°
c = 8.7370 (8) ŵ = 0.09 mm1
β = 93.6180 (11)°T = 150 K
V = 1267.46 (19) Å3Plate, colourless
Z = 40.29 × 0.17 × 0.04 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3321 independent reflections
Radiation source: fine-focus sealed tube2527 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 8.3660 pixels mm-1θmax = 29.2°, θmin = 2.1°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 2020
Tmin = 0.98, Tmax = 1.00l = 1111
26282 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.2193P]
where P = (Fo2 + 2Fc2)/3
3321 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H13N3OV = 1267.46 (19) Å3
Mr = 251.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5807 (8) ŵ = 0.09 mm1
b = 15.1720 (13) ÅT = 150 K
c = 8.7370 (8) Å0.29 × 0.17 × 0.04 mm
β = 93.6180 (11)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3321 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2527 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 1.00Rint = 0.053
26282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
3321 reflectionsΔρmin = 0.25 e Å3
173 parameters
Special details top

Experimental. The diffraction data were collected in three sets of

400 frames (0.5° width in ω) at ϕ = 0, 120

and 240°. A scan time of 80 sec/frame was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger. H-atoms attached to carbon

were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were

included as riding contributions with isotropic displacement parameters

1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33317 (10)0.54403 (7)0.91467 (11)0.0336 (2)
N10.59037 (11)0.76421 (7)0.80193 (12)0.0234 (2)
N20.67710 (11)0.71108 (7)0.72255 (12)0.0211 (2)
N30.70035 (11)0.55911 (6)0.64732 (12)0.0210 (2)
C10.63304 (13)0.62637 (8)0.72276 (14)0.0208 (3)
C20.51547 (13)0.62272 (8)0.80704 (14)0.0217 (3)
C30.49451 (13)0.71148 (8)0.85367 (14)0.0230 (3)
C40.38179 (14)0.74728 (10)0.94605 (16)0.0306 (3)
H4A0.39770.81030.96440.046*
H4B0.38270.71621.04450.046*
H4C0.29090.73880.89010.046*
C50.43357 (14)0.54534 (9)0.83563 (15)0.0253 (3)
H50.45970.49160.78960.030*
C60.79899 (13)0.74965 (8)0.66330 (14)0.0206 (3)
C70.92330 (13)0.70303 (8)0.66282 (14)0.0242 (3)
H70.92850.64410.69970.029*
C81.03977 (14)0.74327 (9)0.60798 (15)0.0269 (3)
H81.12510.71150.60630.032*
C91.03304 (14)0.82956 (9)0.55550 (15)0.0276 (3)
H91.11310.85670.51720.033*
C100.90846 (15)0.87586 (9)0.55948 (15)0.0276 (3)
H100.90400.93540.52560.033*
C110.79111 (13)0.83644 (8)0.61199 (15)0.0240 (3)
H110.70570.86820.61320.029*
C120.76608 (14)0.48753 (8)0.71948 (15)0.0250 (3)
H120.76250.47200.82450.030*
C130.83647 (15)0.44366 (9)0.61277 (15)0.0288 (3)
H130.89130.39200.62990.035*
C140.81336 (14)0.48874 (9)0.47146 (15)0.0276 (3)
H140.84930.47220.37670.033*
C150.73103 (14)0.55959 (8)0.49470 (14)0.0240 (3)
H150.70010.60180.41980.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0322 (5)0.0361 (6)0.0335 (5)0.0085 (4)0.0099 (4)0.0015 (4)
N10.0209 (5)0.0216 (5)0.0282 (6)0.0022 (4)0.0048 (4)0.0046 (4)
N20.0209 (5)0.0177 (5)0.0251 (5)0.0001 (4)0.0044 (4)0.0023 (4)
N30.0249 (5)0.0171 (5)0.0214 (5)0.0011 (4)0.0038 (4)0.0007 (4)
C10.0233 (6)0.0172 (6)0.0216 (6)0.0004 (5)0.0002 (5)0.0002 (4)
C20.0217 (6)0.0222 (6)0.0211 (6)0.0005 (5)0.0012 (5)0.0007 (5)
C30.0214 (6)0.0242 (6)0.0232 (6)0.0006 (5)0.0007 (5)0.0024 (5)
C40.0258 (7)0.0327 (7)0.0341 (7)0.0010 (6)0.0071 (6)0.0065 (6)
C50.0274 (6)0.0254 (6)0.0229 (6)0.0033 (5)0.0008 (5)0.0006 (5)
C60.0218 (6)0.0197 (6)0.0204 (6)0.0025 (5)0.0033 (5)0.0022 (5)
C70.0249 (6)0.0208 (6)0.0270 (6)0.0007 (5)0.0028 (5)0.0009 (5)
C80.0234 (6)0.0277 (7)0.0299 (7)0.0003 (5)0.0044 (5)0.0049 (5)
C90.0279 (7)0.0279 (7)0.0275 (7)0.0077 (5)0.0067 (5)0.0042 (5)
C100.0331 (7)0.0214 (6)0.0284 (7)0.0041 (5)0.0026 (5)0.0005 (5)
C110.0253 (6)0.0192 (6)0.0272 (6)0.0010 (5)0.0005 (5)0.0011 (5)
C120.0315 (7)0.0184 (6)0.0250 (6)0.0016 (5)0.0002 (5)0.0021 (5)
C130.0342 (7)0.0209 (6)0.0313 (7)0.0062 (5)0.0012 (6)0.0015 (5)
C140.0318 (7)0.0276 (7)0.0238 (6)0.0024 (5)0.0043 (5)0.0041 (5)
C150.0294 (7)0.0234 (6)0.0195 (6)0.0012 (5)0.0028 (5)0.0002 (5)
Geometric parameters (Å, º) top
O1—C51.2191 (16)C6—C111.3915 (17)
N1—C31.3191 (16)C7—C81.3838 (18)
N1—N21.3762 (14)C7—H70.9500
N2—C11.3529 (15)C8—C91.3873 (19)
N2—C61.4319 (15)C8—H80.9500
N3—C151.3835 (16)C9—C101.3873 (19)
N3—C121.3869 (16)C9—H90.9500
N3—C11.3946 (15)C10—C111.3775 (18)
C1—C21.3852 (17)C10—H100.9500
C2—C31.4248 (17)C11—H110.9500
C2—C51.4427 (17)C12—C131.3589 (19)
C3—C41.4909 (17)C12—H120.9500
C4—H4A0.9800C13—C141.4165 (19)
C4—H4B0.9800C13—H130.9500
C4—H4C0.9800C14—C151.3562 (18)
C5—H50.9500C14—H140.9500
C6—C71.3854 (17)C15—H150.9500
C3—N1—N2105.85 (10)C8—C7—C6119.21 (12)
C1—N2—N1110.94 (10)C8—C7—H7120.4
C1—N2—C6130.57 (10)C6—C7—H7120.4
N1—N2—C6118.36 (10)C7—C8—C9120.60 (12)
C15—N3—C12108.92 (10)C7—C8—H8119.7
C15—N3—C1125.76 (10)C9—C8—H8119.7
C12—N3—C1124.63 (10)C10—C9—C8119.45 (12)
N2—C1—C2107.63 (10)C10—C9—H9120.3
N2—C1—N3122.74 (11)C8—C9—H9120.3
C2—C1—N3129.63 (11)C11—C10—C9120.67 (12)
C1—C2—C3104.38 (11)C11—C10—H10119.7
C1—C2—C5126.44 (11)C9—C10—H10119.7
C3—C2—C5129.17 (12)C10—C11—C6119.30 (12)
N1—C3—C2111.19 (11)C10—C11—H11120.4
N1—C3—C4120.56 (11)C6—C11—H11120.4
C2—C3—C4128.25 (12)C13—C12—N3107.60 (11)
C3—C4—H4A109.5C13—C12—H12126.2
C3—C4—H4B109.5N3—C12—H12126.2
H4A—C4—H4B109.5C12—C13—C14107.73 (12)
C3—C4—H4C109.5C12—C13—H13126.1
H4A—C4—H4C109.5C14—C13—H13126.1
H4B—C4—H4C109.5C15—C14—C13108.21 (12)
O1—C5—C2124.65 (12)C15—C14—H14125.9
O1—C5—H5117.7C13—C14—H14125.9
C2—C5—H5117.7C14—C15—N3107.53 (11)
C7—C6—C11120.75 (11)C14—C15—H15126.2
C7—C6—N2120.88 (11)N3—C15—H15126.2
C11—C6—N2118.31 (11)
C3—N1—N2—C11.28 (13)C3—C2—C5—O14.1 (2)
C3—N1—N2—C6174.98 (10)C1—N2—C6—C732.38 (19)
N1—N2—C1—C21.18 (13)N1—N2—C6—C7143.01 (12)
C6—N2—C1—C2174.49 (11)C1—N2—C6—C11150.22 (13)
N1—N2—C1—N3178.45 (10)N1—N2—C6—C1134.39 (16)
C6—N2—C1—N35.88 (19)C11—C6—C7—C81.13 (19)
C15—N3—C1—N253.33 (18)N2—C6—C7—C8178.47 (11)
C12—N3—C1—N2116.10 (14)C6—C7—C8—C90.68 (19)
C15—N3—C1—C2126.21 (14)C7—C8—C9—C100.54 (19)
C12—N3—C1—C264.36 (19)C8—C9—C10—C111.3 (2)
N2—C1—C2—C30.59 (13)C9—C10—C11—C60.87 (19)
N3—C1—C2—C3179.00 (12)C7—C6—C11—C100.37 (19)
N2—C1—C2—C5179.33 (11)N2—C6—C11—C10177.77 (11)
N3—C1—C2—C50.3 (2)C15—N3—C12—C130.26 (15)
N2—N1—C3—C20.88 (14)C1—N3—C12—C13171.20 (11)
N2—N1—C3—C4179.99 (11)N3—C12—C13—C140.27 (15)
C1—C2—C3—N10.20 (14)C12—C13—C14—C150.71 (16)
C5—C2—C3—N1178.50 (12)C13—C14—C15—N30.86 (15)
C1—C2—C3—C4179.21 (12)C12—N3—C15—C140.70 (15)
C5—C2—C3—C40.5 (2)C1—N3—C15—C14171.52 (12)
C1—C2—C5—O1177.49 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N1i0.952.483.3931 (17)161
C12—H12···O1ii0.952.523.4255 (17)159
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N1i0.952.483.3931 (17)161
C12—H12···O1ii0.952.523.4255 (17)159
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors would like to thank Professor Hussein M. S. El-Kashef for his contribution to this study. JTM would like to express his thanks to Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationFarghaly, A. & El-Kashef, H. (2005). Monatsh. Chem. 136, 217–227.  Web of Science CrossRef CAS Google Scholar
First citationKopp, M., Lancelot, J.-C., Dallemagne, P. & Rault, S. (2001). J. Heterocycl. Chem. 38, 1045–1050.  CrossRef CAS Google Scholar
First citationKorgaokar, S. S., Patil, P. H., Shah, M. J. & Parekh, H. H. (1996). Indian J. Pharm. Sci. 58, 222–225.  CAS Google Scholar
First citationNauduri, D. & Reddy, G. B. (1998). Chem. Pharm. Bull. 46, 1254–1260.  CrossRef CAS PubMed Google Scholar
First citationOzdemir, Z., Kandilci, H. B., Gümüşel, B., Caliş, U. & Bilgin, A. A. (2007). Eur. J. Med. Chem. 42, 373–379.  Web of Science PubMed Google Scholar
First citationPalaska, E., Aytemir, M., Uzbay, I. T. & Erol, D. (2001). Eur. J. Med. Chem. 36, 539–543.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRajendra Prasad, Y., Lakshmana Rao, A., Prasoona, L., Murali, K. & Ravi Kumar, P. (2005). Bioorg. Med. Chem. Lett. 15, 5030–5034.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRangnekar, D. W. & Dhamnaskar, S. V. (1990). J. Chem. Technol. Biotechnol. 49, 311–320.  CrossRef CAS Google Scholar
First citationRuhoğlu, O., Ozdemir, Z., Caliş, U., Gümüşel, B. & Bilgin, A. A. (2005). Arzneimittelforschung, 55, 431–436.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, E. C. & Patel, H. H. (1992). Tetrahedron, 48, 8089–8100.  CrossRef CAS Web of Science Google Scholar
First citationUdupi, R. H., Kushnoor, A. S. & Bhat, A. R. (1998). Indian J. Heterocycl. Chem. 8, 63–66.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1131-o1132
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds