research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 199-202

Crystal structures of (E)-(3-ethyl-1-methyl-2,6-di­phenyl­piperidin-4-yl­­idene)amino phenyl carbonate and (E)-(3-iso­propyl-1-methyl-2,6-di­phenyl­piperidin-4-yl­­idene)amino phenyl carbonate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Chemistry, Annamalai University, Annamalai Nagar, Chidambaram 608 002, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 July 2014; accepted 20 August 2014; online 13 September 2014)

In the title compounds, C27H28N2O3, (I), and C28H30N2O3, (II), the conformation about the C=N bond is E. The piperidine rings adopt chair conformations with the attached phenyl rings almost normal to their mean planes, the dihedral angles being 85.82 (8) and 85.84 (7)° in (I), and 87.98 (12) and 86.42 (13)° in (II). The phenyl rings are inclined to one another by 52.87 (8)° in (I) and by 60.51 (14)° in (II). The main difference in the conformation of the two compounds is the angle of inclination of the phen­oxy­carbonyl ring to the piperidine ring mean plane. In (I), these two planes are almost coplanar, with a dihedral angle of 2.05 (8)°, while in (II), this angle is 45.24 (13)°. In the crystal of (I), mol­ecules are linked by C—H⋯O hydrogen bonds, forming inversion dimers with R22(14) loops. The dimers are linked via C—H⋯π inter­actions forming a three-dimensional network. In the crystal of (II), there are no significant inter­molecular inter­actions present.

1. Chemical context

Piperidine derivatives are one of the simplest heterocyclic units found in nature, for example in several alkaloids. Such compounds have been used as anti­histamines, anaesthetics, tranquilizers and hypotensive agents (Robinson, 1973[Robinson, O. P. W. (1973). Postgrad. Med. J. (Suppl.), 49, 9-12.]). The synthesis and biological activity of piperidin-4-one derivatives has received considerable attention (Parthiban et al., 2009[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981-2985.]; Narayanan et al., 2012[Narayanan, K., Shanmugam, M., Jothivel, S. & Kabilan, S. (2012). Bioorg. Med. Chem. Lett. 22, 6602-6607.]). Both natural and synthetic piperidine derivatives have high pharmaceutical value, hence our inter­est in the synthesis of 2,6-disubstituted piperidine derivatives. We report herein on the synthesis and crystal structures of (E)-(3-ethyl-1-methyl-2,6-di­phenyl­piperidin-4-yl­idene)amino phenyl carbonate, (I)[link], and (E)-(3-isopropyl-1-methyl-2,6-di­phenyl­piperidin-4-yl­idene)amino phenyl carbonate, (II).[link]

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound (I)[link] is shown in Fig. 1[link]. The piperidine ring adopts a chair conformation. The attached phenyl rings (C7–C12 and C13–C18) are twisted away from the mean plane of the piperidine ring by 85.82 (8) and 85.84 (7)°. The two phenyl rings are oriented to each other with a dihedral angle of 52.87 (8)°. The phen­oxy ring (C22–C27) is almost coplanar with the piperidine ring mean plane with a dihedral angle of 2.05 (8)°. The sum of the bond angles around atom N1 (331.9°) is in accordance with sp3 hybridization. The ethyl group substituted at position 5 of the piperidine moiety is in an equatorial orientation.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The mol­ecular structure of compound (II)[link] is shown in Fig. 2[link]. The piperidine ring also adopts a chair conformation. The attached phenyl rings (C7—C12 and C13—C18) are twisted away from the mean plane of the piperidine ring by 87.98 (12) and 86.42 (13) °. The two phenyl rings are oriented to each other with a dihedral angle of 60.51 (14)°. In (II)[link] the phen­oxy ring (C23–C28) is no longer coplanar with the mean plane of the piperidine ring but inclined to it by 45.24 (13)°. The sum of the bond angles around atom N1 (335.6°) is in accordance with sp3 hybridization. The isopropyl group substituted at position 5 of the piperidine moiety is in an equatorial orientation.

[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

For both compounds (I)[link] and (II)[link], the bond lengths and bond angles are comparable with the values reported for the 3-methyl derivative (III), (E)-3-methyl-1-methyl-2,6-di­phenyl­piperidin-4-one O-phen­oxy­carbonyl oxime (Raghuvarman et al., 2014[Raghuvarman, B., Sivakumar, R., Gokula Krishnan, K., Thanikachalam, V. & Aravindhan, S. (2014). Acta Cryst. E70, o713.]). The overall conformation of compound (III) is very similar to that of compound (II)[link], with the phen­oxy ring inclined to the mean plane of the piperidine ring by 32.79 (9)°, compared to 45.24 (13)° in (II)[link].

3. Supra­molecular features

In the crystal of (I)[link], pairs of C—H⋯O hydrogen bonds link the mol­ecules, forming inversion dimers with R22(14) loops. The dimers are linked via C-H⋯π inter­actions, forming a three-dimensional network (Fig. 3[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg3 and Cg4 are the centroids of the C13–C18 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯O2i 0.93 2.57 3.422 (2) 153
C6—H6⋯Cg4ii 0.98 2.99 3.959 (2) 170
C10—H10⋯Cg3iii 0.93 2.96 3.824 (2) 155
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of compound (I)[link]. The C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

In the crystal of (II)[link], there are no significant inter­molecular inter­actions present. This is similar to the situation in the crystal of compound (III). The packing in (II) is illustrated in Fig. 4[link].

[Figure 4]
Figure 4
A view along the a axis of the crystal packing of compound (II)[link].

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) revealed the presence of 25 structures with the substructure 2,6-diphenyl-4-piperidine oxime. Of these, 16 have the piperidine ring in a chair conformation, while seven have a boat conformation and two a screw-boat conformation. In the various structures, the diphenyl rings are inclined to one another by dihedral angles varying from ca. 44.9° in a very similar compound to those studied here, viz (E)-{[(3-isopropyl-1-methyl-2,6-di­phenylpip­eridin-4-yl­idene)amino]­oxy}(pyridin-3-yl)methanone (CCDC refcode: HOFFIT; Vinuchakkaravarthy et al., 2014[Vinuchakkaravarthy, T., Sivakumar, R., Srinivasan, T., Thanikachalam, V. & Velmurugan, D. (2014). Acta Cryst. E70, o551.]), to ca. 80.7° in t-3-benzyl-r-2,c-6-bis­(4-meth­oxy­phen­yl)piper­idin-4-one oxime (CCDC refcode: HODGAU; Jayabharathi et al., 2008[Jayabharathi, J., Thangamani, A., Balamurugan, S., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, o1211.]).

5. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were synthesized by Mannich condensation using benzaldehyde (2 mol), ammonium acetate (1 mol) and methyl propyl ketone (1 mol) for (I)[link], and methyl isobutyl ketone (1 mol) for (II)[link], in absolute ethanol. The mixtures were warmed for 30 min and stirred overnight at room temperature. The products obtained were treated with methyl iodide (1.5 mol) in the presence of potassium carbon­ate (2 mol) in acetone (10 ml) and refluxed to give 1-methyl-3-ethyl-2,6-di­phenyl­piperidin-4-one and 1-methyl-3-isopropyl-2,6-di­phenyl­piperidin-4-one, respectively. The oximations were carried out using hydroxyl­amine hydro­chloride (2 mol) in the presence of sodium acetate (2 mol) in ethanol (10 ml) and refluxed. To the resulting oximes, (0.5 g, 1.62 mmol) for the precursor of (I)[link] and (0.5 g, 1.55 mmol) for the precursor of (II)[link], in dry tetra­hydro­furan (10 ml), was added potassium carbonate (0.48 g, 3.24 mmol) followed by tetra­butyl­ammonium bromide (0.58 g, 1.62 mmol). After stirring for 15 min, phenyl chloro­formate (0.38 g, 2.43 mmol) was added dropwise to the reaction mixtures over a period of 15 min. The mixtures were stirred at ambient temperature for 2 h and progress of the reactions was monitored by thin-layer chromatography. Upon completion of the reactions, the reaction mixtures were diluted with water (20 ml) and extracted with di­chloro­methane (2 × 20 ml). The combined organic layers were washed with water (2 × 20 ml), brine solution (20 ml), dried over anhydrous sodium sulfate (5 g), filtered and concentrated under reduced pressure. The crude products were purified by column chromatography over silica gel (100–200 mesh) eluted with a solvent system of ethyl acetate–petroleum ether (2:98). The pure fractions were collected and concentrated under reduced pressure to give white solids of (I)[link] (yield 0.60 g, 86%) and (II)[link] (yield 0.56 g, 82%), which were recrystallized from a DMF–water mixture (9:1) to give colourless block-like crystals of (I)[link] and (II)[link], respectively.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C–H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

  (I) (II)
Crystal data
Chemical formula C27H28N2O3 C28H30N2O3
Mr 428.51 442.54
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 9.3844 (5), 17.8121 (8), 14.4077 (7) 10.3511 (5), 23.9398 (10), 10.0587 (4)
β (°) 107.216 (2) 94.997 (2)
V3) 2300.4 (2) 2483.11 (19)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.26 × 0.23 × 0.19 0.28 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.979, 0.985 0.979, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 27700, 6225, 3960 21076, 4150, 2894
Rint 0.038 0.036
(sin θ/λ)max−1) 0.687 0.586
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.132, 1.04 0.052, 0.145, 1.01
No. of reflections 6225 4150
No. of parameters 291 301
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.21 0.39, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Piperidine derivatives are one of the simplest heterocyclic units found in nature, for example in several alkaloids. Such compounds have been used as anti­histamines, anaesthetics, tranquilizers and hypotensive agents (Robinson, 1973). The synthesis and biological activity of piperidin-4-one derivatives has received considerable attention (Parthiban et al., 2009; Narayanan et al., 2012). Both natural and synthetic piperidine derivatives have high pharmaceutical value, hence our inter­est in the synthesis of 2,6-disubstituted piperidine derivatives. We report herein on the synthesis and crystal structures of (E)-(3-ethyl-1-methyl-2,6-di­phenyl­piperidin-4-yl­idene)amino phenyl carbonate, (I), and (E)-(3-iso­propyl-1-methyl-2,6-di­phenyl­piperidin-4-yl­idene)amino phenyl carbonate, (II).

Structural commentary top

The molecular structure of compound (I) is shown in Fig. 1. The piperidine ring adopts a chair conformation. The attached phenyl rings (C7–C12 and C13–C18) are twisted away from the mean plane of the piperidine ring by 85.82 (8) and 85.84 (7)°. The two phenyl rings are oriented to each other with a dihedral angle of 52.87 (8)°. The phen­oxy ring (C22–C27) is almost coplanar with the piperidine ring mean plane with a dihedral angle of 2.05 (8)°. The sum of the bond angles around atom N1 (331.9°) is in accordance with sp3 hybridization. The ethyl group substituted at position 5 of the piperidine moiety is in an equatorial orientation.

The molecular structure of compound (II) is shown in Fig. 2. The piperidine ring also adopts a chair conformation. The attached phenyl rings (C7—C12 and C13—C18) are twisted away from the mean plane of the piperidine ring by 87.98 (12) and 86.42 (13) °. The two phenyl rings are oriented to each other with a dihedral angle of 60.51 (14)°. In (II) the phen­oxy ring (C23–C28) is no longer coplanar with the mean plane of the piperidine ring but inclined to it by 45.24 (13)°. The sum of the bond angles around atom N1 (335.6°) is in accordance with sp3 hybridization. The iso­propyl group substituted at position 5 of the piperidine moiety is in an equatorial orientation.

For both compounds (I) and (II), the bond lengths and bond angles are comparable with the values reported for the 3-methyl derivative (III), (E)-3-methyl-1-methyl-2,6-di­phenyl­piperidin-4-one O-phen­oxy­carbonyl oxime (Raghuvarman et al., 2014). The overall conformation of compound (III) is very similar to that of compound (II), with the phen­oxy ring inclined to the mean plane of the piperidine ring by 32.79 (9)°, compared to 45.24 (13)° in (II).

Supra­molecular features top

In the crystal of (I), pairs of C—H···O hydrogen bonds link the molecules, forming inversion dimers with R22(14) loops. The dimers are linked via C—H···π inter­actions, forming a three-dimensional network (Fig. 3 and Table 1).

In the crystal of (II), there are no significant inter­molecular inter­actions present. This is similar to the situation in the crystal of compound (III).

Database survey top

A search of the Cambridge Structural Database (Version 53.5, last update May 2014; Allen, 2002) revealed the presence of 25 structures with the substructure 2,6-di­phenyl-4-piperidine oxime. Of these, 16 have the piperidine ring in a chair conformation, while seven have a boat conformation and two a screw-boat conformation. In the various structures, the di­phenyl rings are inclined to one another by dihedral angles varying from ca. 44.9° in a very similar compound to those studied here, viz (E)-{[(3-iso­propyl-1-methyl-2,6-di­phenyl­piperidin-4-yl­idene)amino]­oxy}(pyridin-3-yl)methanone (CCDC refcode: HOFFIT; Vinuchakkaravarthy et al., 2014), to ca. 80.7° in t-3-benzyl-r-2,c-6-bis­(4-meth­oxy­phenyl)­piperidin-4-one oxime (CCDC refcode: HODGAU; Jayabharathi et al., 2008).

Synthesis and crystallization top

Compounds (I) and (II) were synthesized by Mannich condensation using benzaldehyde (2 mol), ammonium acetate (1 mol) and methyl propyl ketone (1 mol) for (I), and methyl iso­butyl ketone (1 mol) for (II), in absolute ethanol. The mixtures were warmed for 30 min and stirred overnight at room temperature. The products obtained were treated with methyl iodide (1.5 mol) in the presence of potassium carbonate (2 mol) in acetone (10 ml) and refluxed to give 1-methyl-3-ethyl-2,6-di­phenyl­piperidin-4-one and 1-methyl-3-iso­propyl-2,6-di­phenyl­piperidin-4-one, respectively. The oximations were carried out using hydroxyl­amine hydro­chloride (2 mol) in the presence of sodium acetate (2 mol) in ethanol (10 ml) and refluxed. To the resulting oximes, (0.5 g, 1.62 mmol) for the precursor of (I) and (0.5 g, 1.55 mmol) for the precursor of (II), in dry tetra­hydro­furan (10 ml), was added potassium carbonate (0.48 g, 3.24 mmol) followed by tetra­butyl­ammonium bromide (0.58 g, 1.62 mmol). After stirring for 15 min, phenyl chloro­formate (0.38 g, 2.43 mmol) was added dropwise to the reaction mixtures over a period of 15 min. The mixtures were stirred at ambient temperature for 2 h and progress of the reactions was monitored by thin-layer chromatography. Upon completion of the reactions, the reaction mixtures were diluted with water (20 ml) and extracted with di­chloro­methane (2 × 20 ml). The combined organic layers were washed with water (2 × 20 ml), brine solution (20 ml), dried over anhydrous sodium sulfate (5 g), filtered and concentrated under reduced pressure. The crude products were purified by column chromatography over silica gel (100–200 mesh) eluted with a solvent system of ethyl acetate–petroleum ether (2:98). The pure fractions were collected and concentrated under reduced pressure to give white solids of (I) (yield 0.60 g, 86%) and (II) (yield 0.56 g, 82%), which were recrystallized from a DMF–water mixture (9:1) to give colourless block-like crystals of (I) and (II), respectively.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C–H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Allen (2002); Jayabharathi et al. (2008); Narayanan et al. (2012); Parthiban et al. (2009); Raghuvarman et al. (2014); Robinson (1973); Vinuchakkaravarthy et al. (2014).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) for (I); SHELXL97 (Sheldrick, 2008) for (II). For both compounds, molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of compound (II), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. A view along the a axis of the crystal packing of compound (I). The C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 4] Fig. 4. A view along the a axis of the crystal packing of compound (II).
(I) (E)-(3-Ethyl-1-methyl-2,6-diphenylpiperidin-4-ylidene)amino phenyl carbonate top
Crystal data top
C27H28N2O3F(000) = 912
Mr = 428.51Dx = 1.237 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3844 (5) ÅCell parameters from 3960 reflections
b = 17.8121 (8) Åθ = 2.3–29.2°
c = 14.4077 (7) ŵ = 0.08 mm1
β = 107.216 (2)°T = 293 K
V = 2300.4 (2) Å3Block, colourless
Z = 40.26 × 0.23 × 0.19 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
6225 independent reflections
Radiation source: fine-focus sealed tube3960 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω and ϕ scansθmax = 29.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1112
Tmin = 0.979, Tmax = 0.985k = 1424
27700 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.056P)2 + 0.318P]
where P = (Fo2 + 2Fc2)/3
6225 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C27H28N2O3V = 2300.4 (2) Å3
Mr = 428.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3844 (5) ŵ = 0.08 mm1
b = 17.8121 (8) ÅT = 293 K
c = 14.4077 (7) Å0.26 × 0.23 × 0.19 mm
β = 107.216 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6225 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3960 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.985Rint = 0.038
27700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
6225 reflectionsΔρmin = 0.21 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16033 (13)0.69157 (5)0.23258 (7)0.0559 (3)
O20.18007 (13)0.60763 (6)0.11987 (8)0.0600 (3)
O30.10502 (13)0.57830 (5)0.25107 (7)0.0532 (3)
N10.43390 (12)0.91971 (5)0.30173 (7)0.0375 (3)
N20.16780 (14)0.75070 (6)0.16364 (8)0.0465 (3)
C20.40986 (16)0.85353 (7)0.35561 (9)0.0390 (3)
H20.31560.86000.37090.047*
C30.39791 (17)0.78357 (7)0.29349 (10)0.0453 (3)
H3A0.49280.77420.28160.054*
H3B0.37490.74070.32790.054*
C40.27994 (15)0.79261 (7)0.19955 (9)0.0371 (3)
C50.29438 (15)0.86167 (7)0.14267 (9)0.0359 (3)
H50.38810.85700.12620.043*
C60.31051 (15)0.93034 (7)0.21098 (9)0.0363 (3)
H60.21740.93630.22790.044*
C70.33626 (15)1.00074 (7)0.15954 (9)0.0382 (3)
C80.46668 (19)1.01047 (8)0.13590 (13)0.0562 (4)
H80.54030.97380.15290.067*
C90.4899 (2)1.07381 (9)0.08742 (15)0.0679 (5)
H90.57881.07930.07200.081*
C100.3841 (2)1.12844 (9)0.06185 (12)0.0635 (5)
H100.39991.17080.02850.076*
C110.2546 (2)1.12046 (9)0.08567 (13)0.0639 (5)
H110.18241.15790.06910.077*
C120.23004 (18)1.05686 (8)0.13439 (12)0.0530 (4)
H120.14141.05200.15030.064*
C130.53352 (16)0.84251 (7)0.44998 (9)0.0388 (3)
C140.49950 (18)0.83362 (8)0.53594 (10)0.0473 (4)
H140.40080.83640.53650.057*
C150.6124 (2)0.82040 (8)0.62192 (11)0.0625 (5)
H150.58940.81470.68000.075*
C160.7582 (2)0.81580 (9)0.62077 (13)0.0657 (5)
H160.83400.80650.67800.079*
C170.7913 (2)0.82486 (10)0.53564 (14)0.0670 (5)
H170.88990.82180.53500.080*
C180.68084 (17)0.83849 (9)0.45091 (12)0.0542 (4)
H180.70530.84510.39340.065*
C190.17030 (17)0.87159 (8)0.04765 (10)0.0471 (4)
H19A0.07510.86910.06120.057*
H19B0.17880.92130.02220.057*
C200.1705 (2)0.81423 (9)0.02984 (11)0.0596 (4)
H20A0.14150.76620.01120.089*
H20B0.26880.81080.03700.089*
H20C0.10130.82940.09050.089*
C210.15176 (16)0.62395 (8)0.19180 (10)0.0438 (3)
C220.08654 (16)0.50144 (7)0.22919 (10)0.0415 (3)
C230.14142 (17)0.45367 (8)0.30599 (11)0.0482 (4)
H230.19280.47230.36700.058*
C240.11922 (19)0.37755 (9)0.29127 (13)0.0585 (4)
H240.15650.34430.34250.070*
C250.0423 (2)0.35073 (9)0.20119 (13)0.0602 (4)
H250.02820.29930.19140.072*
C260.01384 (19)0.39930 (9)0.12579 (12)0.0569 (4)
H260.06660.38070.06500.068*
C270.00697 (18)0.47570 (9)0.13886 (11)0.0501 (4)
H270.03190.50890.08780.060*
C280.4511 (2)0.98690 (8)0.36280 (12)0.0626 (5)
H28A0.53270.97990.42080.094*
H28B0.36100.99530.37990.094*
H28C0.47071.02950.32770.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0890 (8)0.0416 (5)0.0359 (5)0.0271 (5)0.0166 (5)0.0001 (4)
O20.0821 (8)0.0514 (6)0.0578 (7)0.0071 (6)0.0380 (6)0.0024 (5)
O30.0821 (8)0.0388 (5)0.0433 (6)0.0189 (5)0.0258 (5)0.0009 (4)
N10.0464 (7)0.0291 (5)0.0335 (6)0.0036 (4)0.0064 (5)0.0026 (4)
N20.0644 (8)0.0388 (6)0.0338 (6)0.0162 (5)0.0108 (6)0.0036 (5)
C20.0427 (8)0.0385 (7)0.0345 (7)0.0017 (5)0.0093 (6)0.0008 (5)
C30.0546 (9)0.0320 (6)0.0412 (8)0.0042 (6)0.0016 (7)0.0017 (5)
C40.0474 (8)0.0297 (6)0.0326 (7)0.0037 (5)0.0095 (6)0.0024 (5)
C50.0422 (7)0.0313 (6)0.0333 (7)0.0044 (5)0.0096 (6)0.0002 (5)
C60.0408 (7)0.0315 (6)0.0359 (7)0.0017 (5)0.0102 (6)0.0001 (5)
C70.0438 (8)0.0314 (6)0.0360 (7)0.0048 (5)0.0065 (6)0.0015 (5)
C80.0524 (9)0.0402 (8)0.0786 (12)0.0015 (7)0.0235 (8)0.0087 (7)
C90.0704 (12)0.0517 (10)0.0873 (13)0.0166 (8)0.0323 (10)0.0092 (9)
C100.0814 (13)0.0418 (8)0.0566 (10)0.0190 (8)0.0036 (9)0.0108 (7)
C110.0665 (11)0.0374 (8)0.0730 (11)0.0046 (7)0.0019 (9)0.0115 (7)
C120.0497 (9)0.0410 (8)0.0653 (10)0.0018 (6)0.0124 (8)0.0048 (7)
C130.0453 (8)0.0331 (6)0.0352 (7)0.0026 (5)0.0074 (6)0.0018 (5)
C140.0579 (9)0.0423 (7)0.0401 (8)0.0046 (6)0.0122 (7)0.0001 (6)
C150.0953 (15)0.0496 (9)0.0355 (8)0.0136 (9)0.0081 (9)0.0062 (6)
C160.0688 (12)0.0492 (9)0.0561 (11)0.0042 (8)0.0172 (9)0.0078 (7)
C170.0482 (10)0.0697 (11)0.0708 (13)0.0006 (8)0.0012 (9)0.0033 (9)
C180.0470 (9)0.0641 (10)0.0480 (9)0.0041 (7)0.0087 (7)0.0036 (7)
C190.0609 (9)0.0394 (7)0.0355 (7)0.0061 (6)0.0056 (7)0.0029 (5)
C200.0873 (13)0.0545 (9)0.0352 (8)0.0124 (8)0.0155 (8)0.0038 (6)
C210.0478 (8)0.0434 (7)0.0368 (7)0.0118 (6)0.0074 (6)0.0035 (6)
C220.0476 (8)0.0368 (7)0.0433 (8)0.0100 (6)0.0185 (6)0.0007 (5)
C230.0514 (9)0.0485 (8)0.0426 (8)0.0086 (7)0.0106 (7)0.0026 (6)
C240.0666 (11)0.0449 (8)0.0633 (11)0.0009 (8)0.0183 (9)0.0089 (7)
C250.0719 (11)0.0402 (8)0.0738 (12)0.0086 (7)0.0296 (10)0.0065 (7)
C260.0642 (10)0.0581 (9)0.0509 (9)0.0185 (8)0.0209 (8)0.0134 (7)
C270.0573 (9)0.0504 (8)0.0426 (8)0.0108 (7)0.0149 (7)0.0022 (6)
C280.0921 (13)0.0391 (8)0.0456 (9)0.0018 (8)0.0035 (9)0.0097 (6)
Geometric parameters (Å, º) top
O1—C211.3320 (17)C13—C141.376 (2)
O1—N21.4635 (14)C13—C181.380 (2)
O2—C211.1798 (17)C14—C151.391 (2)
O3—C211.3433 (17)C14—H140.9300
O3—C221.4041 (16)C15—C161.376 (3)
N1—C21.4651 (16)C15—H150.9300
N1—C281.4658 (17)C16—C171.361 (3)
N1—C61.4799 (16)C16—H160.9300
N2—C41.2690 (17)C17—C181.369 (2)
C2—C131.5166 (18)C17—H170.9300
C2—C31.5188 (18)C18—H180.9300
C2—H20.9800C19—C201.514 (2)
C3—C41.4820 (18)C19—H19A0.9700
C3—H3A0.9700C19—H19B0.9700
C3—H3B0.9700C20—H20A0.9600
C4—C51.5062 (17)C20—H20B0.9600
C5—C191.5224 (18)C20—H20C0.9600
C5—C61.5490 (17)C22—C231.370 (2)
C5—H50.9800C22—C271.373 (2)
C6—C71.5120 (17)C23—C241.379 (2)
C6—H60.9800C23—H230.9300
C7—C81.375 (2)C24—C251.371 (2)
C7—C121.382 (2)C24—H240.9300
C8—C91.378 (2)C25—C261.366 (2)
C8—H80.9300C25—H250.9300
C9—C101.361 (3)C26—C271.380 (2)
C9—H90.9300C26—H260.9300
C10—C111.365 (3)C27—H270.9300
C10—H100.9300C28—H28A0.9600
C11—C121.388 (2)C28—H28B0.9600
C11—H110.9300C28—H28C0.9600
C12—H120.9300
C21—O1—N2111.10 (10)C13—C14—C15120.16 (16)
C21—O3—C22119.30 (11)C13—C14—H14119.9
C2—N1—C28110.22 (11)C15—C14—H14119.9
C2—N1—C6111.60 (10)C16—C15—C14119.82 (16)
C28—N1—C6110.12 (10)C16—C15—H15120.1
C4—N2—O1110.32 (10)C14—C15—H15120.1
N1—C2—C13112.46 (10)C17—C16—C15119.78 (15)
N1—C2—C3110.12 (11)C17—C16—H16120.1
C13—C2—C3109.00 (11)C15—C16—H16120.1
N1—C2—H2108.4C16—C17—C18120.69 (18)
C13—C2—H2108.4C16—C17—H17119.7
C3—C2—H2108.4C18—C17—H17119.7
C4—C3—C2110.73 (11)C17—C18—C13120.63 (17)
C4—C3—H3A109.5C17—C18—H18119.7
C2—C3—H3A109.5C13—C18—H18119.7
C4—C3—H3B109.5C20—C19—C5114.67 (13)
C2—C3—H3B109.5C20—C19—H19A108.6
H3A—C3—H3B108.1C5—C19—H19A108.6
N2—C4—C3127.85 (12)C20—C19—H19B108.6
N2—C4—C5117.13 (11)C5—C19—H19B108.6
C3—C4—C5114.98 (11)H19A—C19—H19B107.6
C4—C5—C19114.59 (11)C19—C20—H20A109.5
C4—C5—C6107.87 (10)C19—C20—H20B109.5
C19—C5—C6112.62 (11)H20A—C20—H20B109.5
C4—C5—H5107.1C19—C20—H20C109.5
C19—C5—H5107.1H20A—C20—H20C109.5
C6—C5—H5107.1H20B—C20—H20C109.5
N1—C6—C7110.03 (10)O2—C21—O1127.61 (13)
N1—C6—C5111.35 (10)O2—C21—O3127.59 (13)
C7—C6—C5110.07 (10)O1—C21—O3104.79 (12)
N1—C6—H6108.4C23—C22—C27121.81 (13)
C7—C6—H6108.4C23—C22—O3115.62 (12)
C5—C6—H6108.4C27—C22—O3122.32 (13)
C8—C7—C12118.01 (13)C22—C23—C24118.89 (14)
C8—C7—C6120.60 (12)C22—C23—H23120.6
C12—C7—C6121.39 (13)C24—C23—H23120.6
C7—C8—C9120.97 (15)C25—C24—C23120.11 (15)
C7—C8—H8119.5C25—C24—H24119.9
C9—C8—H8119.5C23—C24—H24119.9
C10—C9—C8120.72 (18)C26—C25—C24120.20 (15)
C10—C9—H9119.6C26—C25—H25119.9
C8—C9—H9119.6C24—C25—H25119.9
C9—C10—C11119.35 (15)C25—C26—C27120.68 (15)
C9—C10—H10120.3C25—C26—H26119.7
C11—C10—H10120.3C27—C26—H26119.7
C10—C11—C12120.40 (15)C22—C27—C26118.28 (14)
C10—C11—H11119.8C22—C27—H27120.9
C12—C11—H11119.8C26—C27—H27120.9
C7—C12—C11120.54 (16)N1—C28—H28A109.5
C7—C12—H12119.7N1—C28—H28B109.5
C11—C12—H12119.7H28A—C28—H28B109.5
C14—C13—C18118.92 (13)N1—C28—H28C109.5
C14—C13—C2120.12 (13)H28A—C28—H28C109.5
C18—C13—C2120.92 (13)H28B—C28—H28C109.5
C21—O1—N2—C4126.57 (13)C8—C7—C12—C110.8 (2)
C28—N1—C2—C1356.10 (15)C6—C7—C12—C11178.85 (13)
C6—N1—C2—C13178.80 (11)C10—C11—C12—C70.0 (2)
C28—N1—C2—C3177.89 (12)N1—C2—C13—C14127.86 (13)
C6—N1—C2—C359.41 (14)C3—C2—C13—C14109.72 (14)
N1—C2—C3—C455.11 (16)N1—C2—C13—C1854.52 (16)
C13—C2—C3—C4178.92 (12)C3—C2—C13—C1867.90 (16)
O1—N2—C4—C34.5 (2)C18—C13—C14—C150.3 (2)
O1—N2—C4—C5173.17 (11)C2—C13—C14—C15177.33 (12)
C2—C3—C4—N2124.04 (15)C13—C14—C15—C160.4 (2)
C2—C3—C4—C553.71 (17)C14—C15—C16—C170.6 (2)
N2—C4—C5—C190.37 (18)C15—C16—C17—C180.0 (3)
C3—C4—C5—C19178.37 (12)C16—C17—C18—C130.7 (3)
N2—C4—C5—C6125.92 (13)C14—C13—C18—C170.9 (2)
C3—C4—C5—C652.08 (15)C2—C13—C18—C17176.78 (14)
C2—N1—C6—C7177.77 (11)C4—C5—C19—C2068.43 (17)
C28—N1—C6—C755.01 (15)C6—C5—C19—C20167.77 (12)
C2—N1—C6—C559.91 (14)N2—O1—C21—O216.9 (2)
C28—N1—C6—C5177.34 (12)N2—O1—C21—O3163.60 (11)
C4—C5—C6—N153.75 (14)C22—O3—C21—O20.5 (2)
C19—C5—C6—N1178.81 (11)C22—O3—C21—O1178.97 (12)
C4—C5—C6—C7176.05 (11)C21—O3—C22—C23135.67 (14)
C19—C5—C6—C756.51 (15)C21—O3—C22—C2750.0 (2)
N1—C6—C7—C855.30 (17)C27—C22—C23—C241.7 (2)
C5—C6—C7—C867.78 (16)O3—C22—C23—C24176.06 (14)
N1—C6—C7—C12125.07 (14)C22—C23—C24—C250.5 (2)
C5—C6—C7—C12111.85 (15)C23—C24—C25—C260.6 (3)
C12—C7—C8—C90.9 (2)C24—C25—C26—C270.5 (3)
C6—C7—C8—C9178.77 (15)C23—C22—C27—C261.7 (2)
C7—C8—C9—C100.1 (3)O3—C22—C27—C26175.70 (14)
C8—C9—C10—C110.7 (3)C25—C26—C27—C220.6 (2)
C9—C10—C11—C120.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C13–C18 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C26—H26···O2i0.932.573.422 (2)153
C6—H6···Cg4ii0.982.993.959 (2)170
C10—H10···Cg3iii0.932.963.824 (2)155
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+3/2; (iii) x+1, y1/2, z+3/2.
(II) (E)-(3-Isopropyl-1-methyl-2,6-diphenylpiperidin-4-ylidene)amino phenyl carbonate top
Crystal data top
C28H30N2O3F(000) = 944
Mr = 442.54Dx = 1.184 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2894 reflections
a = 10.3511 (5) Åθ = 2.6–24.6°
b = 23.9398 (10) ŵ = 0.08 mm1
c = 10.0587 (4) ÅT = 293 K
β = 94.997 (2)°Block, colourless
V = 2483.11 (19) Å30.28 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4150 independent reflections
Radiation source: fine-focus sealed tube2894 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scansθmax = 24.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1211
Tmin = 0.979, Tmax = 0.985k = 2728
21076 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0589P)2 + 1.1855P]
where P = (Fo2 + 2Fc2)/3
4150 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C28H30N2O3V = 2483.11 (19) Å3
Mr = 442.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3511 (5) ŵ = 0.08 mm1
b = 23.9398 (10) ÅT = 293 K
c = 10.0587 (4) Å0.28 × 0.25 × 0.20 mm
β = 94.997 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4150 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2894 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.985Rint = 0.036
21076 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
4150 reflectionsΔρmin = 0.17 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.0430 (2)0.18137 (10)0.0563 (3)0.0584 (6)
H20.00640.19570.02360.070*
C30.1492 (2)0.22117 (10)0.0893 (3)0.0608 (7)
H3A0.17870.21140.17520.073*
H3B0.11510.25890.09530.073*
C40.2604 (2)0.21879 (9)0.0150 (2)0.0525 (6)
C50.3125 (2)0.16055 (10)0.0412 (2)0.0536 (6)
H50.33500.14670.04550.064*
C60.1996 (2)0.12406 (10)0.0777 (2)0.0547 (6)
H60.16840.13960.15920.066*
C70.2425 (2)0.06462 (9)0.1082 (2)0.0487 (6)
C80.2295 (2)0.04233 (10)0.2329 (2)0.0585 (6)
H80.19360.06390.29720.070*
C90.2691 (3)0.01168 (12)0.2631 (3)0.0719 (8)
H90.25920.02640.34710.086*
C100.3228 (3)0.04338 (11)0.1694 (3)0.0739 (8)
H100.35030.07960.18970.089*
C110.3358 (3)0.02159 (11)0.0459 (3)0.0708 (8)
H110.37240.04310.01800.085*
C120.2955 (3)0.03161 (11)0.0155 (3)0.0628 (7)
H120.30420.04570.06950.075*
C130.0643 (2)0.18131 (9)0.1681 (2)0.0532 (6)
C140.0462 (3)0.15994 (12)0.2912 (3)0.0727 (8)
H140.03430.14530.30700.087*
C150.1438 (4)0.15961 (15)0.3913 (3)0.0894 (10)
H150.12910.14480.47420.107*
C160.2622 (4)0.18061 (14)0.3713 (4)0.0901 (10)
H160.32840.18030.44000.108*
C170.2831 (3)0.20193 (14)0.2516 (4)0.0878 (10)
H170.36430.21610.23710.105*
C180.1845 (3)0.20295 (12)0.1497 (3)0.0721 (8)
H180.19960.21850.06770.086*
C190.4372 (2)0.15494 (10)0.1351 (2)0.0551 (6)
H190.45540.11480.14140.066*
C200.5495 (3)0.18046 (12)0.0689 (3)0.0746 (8)
H20A0.55650.16280.01590.112*
H20B0.62840.17500.12480.112*
H20C0.53450.21970.05590.112*
C210.4315 (3)0.17488 (12)0.2767 (3)0.0756 (8)
H21A0.42200.21480.27730.113*
H21B0.51010.16460.32870.113*
H21C0.35890.15790.31420.113*
C220.2968 (2)0.35449 (9)0.1078 (2)0.0500 (6)
C230.2503 (2)0.45192 (9)0.1050 (2)0.0498 (6)
C240.1424 (3)0.48133 (11)0.1271 (3)0.0675 (7)
H240.06100.46470.11590.081*
C250.1551 (3)0.53614 (13)0.1665 (3)0.0823 (9)
H250.08180.55690.18180.099*
C260.2743 (4)0.56017 (12)0.1832 (3)0.0806 (9)
H260.28250.59730.20960.097*
C270.3816 (3)0.52999 (12)0.1614 (3)0.0753 (8)
H270.46310.54650.17380.090*
C280.3704 (3)0.47520 (11)0.1212 (3)0.0627 (7)
H280.44350.45450.10540.075*
C290.0141 (3)0.08902 (14)0.0065 (4)0.1030 (12)
H29A0.04870.10210.08630.155*
H29B0.01780.05160.02010.155*
H29C0.08110.08940.06580.155*
N10.09137 (17)0.12532 (8)0.02577 (19)0.0518 (5)
N20.31261 (19)0.25920 (8)0.0822 (2)0.0552 (5)
O10.24663 (16)0.31067 (6)0.03989 (17)0.0584 (4)
O20.3785 (2)0.35587 (7)0.19522 (19)0.0783 (6)
O30.22803 (16)0.39771 (6)0.05421 (17)0.0614 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0579 (15)0.0519 (15)0.0644 (15)0.0002 (12)0.0010 (12)0.0028 (12)
C30.0659 (16)0.0453 (14)0.0689 (16)0.0064 (12)0.0066 (13)0.0039 (12)
C40.0537 (14)0.0407 (13)0.0622 (15)0.0064 (11)0.0007 (11)0.0020 (11)
C50.0546 (14)0.0428 (13)0.0625 (15)0.0039 (11)0.0004 (11)0.0012 (11)
C60.0556 (14)0.0465 (13)0.0607 (14)0.0052 (11)0.0035 (11)0.0059 (11)
C70.0493 (13)0.0426 (13)0.0524 (13)0.0082 (10)0.0054 (11)0.0023 (11)
C80.0667 (16)0.0532 (15)0.0554 (15)0.0121 (12)0.0047 (12)0.0002 (12)
C90.095 (2)0.0556 (17)0.0611 (16)0.0195 (15)0.0130 (15)0.0153 (14)
C100.081 (2)0.0407 (15)0.094 (2)0.0037 (13)0.0266 (17)0.0028 (16)
C110.0756 (19)0.0509 (17)0.085 (2)0.0036 (14)0.0024 (15)0.0132 (15)
C120.0779 (18)0.0539 (16)0.0561 (15)0.0114 (13)0.0033 (13)0.0013 (13)
C130.0513 (14)0.0430 (13)0.0640 (15)0.0014 (11)0.0017 (11)0.0025 (11)
C140.0610 (17)0.0781 (19)0.0781 (19)0.0008 (14)0.0005 (14)0.0201 (16)
C150.101 (3)0.093 (2)0.0714 (19)0.011 (2)0.0080 (18)0.0134 (17)
C160.084 (2)0.086 (2)0.094 (3)0.0046 (19)0.031 (2)0.024 (2)
C170.0569 (18)0.088 (2)0.116 (3)0.0213 (16)0.0047 (18)0.024 (2)
C180.0718 (19)0.0697 (18)0.0758 (18)0.0124 (15)0.0129 (15)0.0058 (15)
C190.0481 (13)0.0451 (14)0.0704 (16)0.0021 (11)0.0047 (11)0.0002 (12)
C200.0632 (17)0.0665 (18)0.095 (2)0.0030 (14)0.0126 (15)0.0041 (16)
C210.084 (2)0.0757 (19)0.0645 (17)0.0037 (16)0.0079 (14)0.0003 (15)
C220.0591 (14)0.0406 (13)0.0501 (13)0.0032 (11)0.0037 (12)0.0031 (11)
C230.0626 (15)0.0379 (12)0.0478 (13)0.0020 (11)0.0006 (11)0.0019 (10)
C240.0640 (17)0.0564 (16)0.0816 (18)0.0004 (13)0.0029 (14)0.0005 (14)
C250.089 (2)0.0608 (19)0.097 (2)0.0181 (17)0.0090 (18)0.0123 (16)
C260.108 (3)0.0470 (16)0.084 (2)0.0017 (17)0.0103 (18)0.0136 (14)
C270.081 (2)0.0556 (17)0.086 (2)0.0166 (15)0.0094 (16)0.0041 (15)
C280.0621 (16)0.0511 (15)0.0742 (17)0.0031 (12)0.0010 (13)0.0046 (13)
C290.0671 (19)0.087 (2)0.149 (3)0.0271 (17)0.025 (2)0.050 (2)
N10.0469 (11)0.0426 (11)0.0643 (12)0.0080 (9)0.0047 (9)0.0060 (9)
N20.0603 (12)0.0384 (11)0.0657 (12)0.0003 (9)0.0020 (10)0.0038 (10)
O10.0662 (11)0.0382 (9)0.0683 (10)0.0025 (8)0.0081 (8)0.0025 (8)
O20.1028 (15)0.0504 (11)0.0750 (12)0.0003 (10)0.0308 (12)0.0000 (9)
O30.0701 (11)0.0395 (9)0.0714 (11)0.0018 (8)0.0125 (9)0.0031 (8)
Geometric parameters (Å, º) top
C2—N11.456 (3)C16—H160.9300
C2—C131.510 (3)C17—C181.382 (4)
C2—C31.513 (3)C17—H170.9300
C2—H20.9800C18—H180.9300
C3—C41.490 (3)C19—C211.508 (4)
C3—H3A0.9700C19—C201.517 (4)
C3—H3B0.9700C19—H190.9800
C4—N21.273 (3)C20—H20A0.9600
C4—C51.510 (3)C20—H20B0.9600
C5—C61.529 (3)C20—H20C0.9600
C5—C191.537 (3)C21—H21A0.9600
C5—H50.9800C21—H21B0.9600
C6—N11.462 (3)C21—H21C0.9600
C6—C71.514 (3)C22—O21.166 (3)
C6—H60.9800C22—O11.332 (3)
C7—C121.373 (3)C22—O31.342 (3)
C7—C81.380 (3)C23—C241.355 (3)
C8—C91.382 (4)C23—C281.359 (3)
C8—H80.9300C23—O31.406 (3)
C9—C101.365 (4)C24—C251.374 (4)
C9—H90.9300C24—H240.9300
C10—C111.365 (4)C25—C261.359 (4)
C10—H100.9300C25—H250.9300
C11—C121.366 (4)C26—C271.359 (4)
C11—H110.9300C26—H260.9300
C12—H120.9300C27—C281.375 (4)
C13—C141.368 (4)C27—H270.9300
C13—C181.375 (4)C28—H280.9300
C14—C151.363 (4)C29—N11.454 (3)
C14—H140.9300C29—H29A0.9600
C15—C161.355 (5)C29—H29B0.9600
C15—H150.9300C29—H29C0.9600
C16—C171.343 (5)N2—O11.454 (2)
N1—C2—C13111.92 (19)C16—C17—C18120.4 (3)
N1—C2—C3112.6 (2)C16—C17—H17119.8
C13—C2—C3109.8 (2)C18—C17—H17119.8
N1—C2—H2107.4C13—C18—C17120.8 (3)
C13—C2—H2107.4C13—C18—H18119.6
C3—C2—H2107.4C17—C18—H18119.6
C4—C3—C2110.7 (2)C21—C19—C20112.4 (2)
C4—C3—H3A109.5C21—C19—C5116.9 (2)
C2—C3—H3A109.5C20—C19—C5109.2 (2)
C4—C3—H3B109.5C21—C19—H19105.8
C2—C3—H3B109.5C20—C19—H19105.8
H3A—C3—H3B108.1C5—C19—H19105.8
N2—C4—C3127.6 (2)C19—C20—H20A109.5
N2—C4—C5118.7 (2)C19—C20—H20B109.5
C3—C4—C5113.6 (2)H20A—C20—H20B109.5
C4—C5—C6107.51 (19)C19—C20—H20C109.5
C4—C5—C19117.11 (19)H20A—C20—H20C109.5
C6—C5—C19114.9 (2)H20B—C20—H20C109.5
C4—C5—H5105.4C19—C21—H21A109.5
C6—C5—H5105.4C19—C21—H21B109.5
C19—C5—H5105.4H21A—C21—H21B109.5
N1—C6—C7110.88 (19)C19—C21—H21C109.5
N1—C6—C5111.81 (19)H21A—C21—H21C109.5
C7—C6—C5111.7 (2)H21B—C21—H21C109.5
N1—C6—H6107.4O2—C22—O1129.3 (2)
C7—C6—H6107.4O2—C22—O3127.3 (2)
C5—C6—H6107.4O1—C22—O3103.40 (19)
C12—C7—C8118.1 (2)C24—C23—C28121.7 (2)
C12—C7—C6122.0 (2)C24—C23—O3115.4 (2)
C8—C7—C6119.9 (2)C28—C23—O3122.8 (2)
C7—C8—C9120.7 (3)C23—C24—C25119.0 (3)
C7—C8—H8119.6C23—C24—H24120.5
C9—C8—H8119.6C25—C24—H24120.5
C10—C9—C8120.0 (3)C26—C25—C24120.2 (3)
C10—C9—H9120.0C26—C25—H25119.9
C8—C9—H9120.0C24—C25—H25119.9
C9—C10—C11119.6 (3)C27—C26—C25120.1 (3)
C9—C10—H10120.2C27—C26—H26120.0
C11—C10—H10120.2C25—C26—H26120.0
C10—C11—C12120.5 (3)C26—C27—C28120.3 (3)
C10—C11—H11119.7C26—C27—H27119.8
C12—C11—H11119.7C28—C27—H27119.8
C11—C12—C7121.1 (3)C23—C28—C27118.7 (3)
C11—C12—H12119.5C23—C28—H28120.7
C7—C12—H12119.5C27—C28—H28120.7
C14—C13—C18117.4 (2)N1—C29—H29A109.5
C14—C13—C2121.7 (2)N1—C29—H29B109.5
C18—C13—C2121.0 (2)H29A—C29—H29B109.5
C15—C14—C13121.3 (3)N1—C29—H29C109.5
C15—C14—H14119.3H29A—C29—H29C109.5
C13—C14—H14119.3H29B—C29—H29C109.5
C16—C15—C14120.6 (3)C29—N1—C2110.3 (2)
C16—C15—H15119.7C29—N1—C6111.9 (2)
C14—C15—H15119.7C2—N1—C6113.42 (18)
C17—C16—C15119.5 (3)C4—N2—O1108.79 (18)
C17—C16—H16120.3C22—O1—N2111.42 (17)
C15—C16—H16120.3C22—O3—C23120.09 (18)
N1—C2—C3—C450.5 (3)C14—C13—C18—C171.2 (4)
C13—C2—C3—C4175.9 (2)C2—C13—C18—C17178.9 (3)
C2—C3—C4—N2125.4 (3)C16—C17—C18—C131.2 (5)
C2—C3—C4—C553.8 (3)C4—C5—C19—C2161.7 (3)
N2—C4—C5—C6123.4 (2)C6—C5—C19—C2165.9 (3)
C3—C4—C5—C655.9 (3)C4—C5—C19—C2067.4 (3)
N2—C4—C5—C197.7 (3)C6—C5—C19—C20165.0 (2)
C3—C4—C5—C19173.0 (2)C28—C23—C24—C250.3 (4)
C4—C5—C6—N156.0 (3)O3—C23—C24—C25174.8 (2)
C19—C5—C6—N1171.7 (2)C23—C24—C25—C260.2 (5)
C4—C5—C6—C7179.08 (19)C24—C25—C26—C270.2 (5)
C19—C5—C6—C746.8 (3)C25—C26—C27—C280.6 (5)
N1—C6—C7—C1265.1 (3)C24—C23—C28—C270.1 (4)
C5—C6—C7—C1260.4 (3)O3—C23—C28—C27174.9 (2)
N1—C6—C7—C8115.4 (2)C26—C27—C28—C230.6 (4)
C5—C6—C7—C8119.1 (2)C13—C2—N1—C2956.4 (3)
C12—C7—C8—C90.1 (4)C3—C2—N1—C29179.4 (2)
C6—C7—C8—C9179.4 (2)C13—C2—N1—C6177.2 (2)
C7—C8—C9—C100.5 (4)C3—C2—N1—C653.0 (3)
C8—C9—C10—C110.6 (4)C7—C6—N1—C2952.5 (3)
C9—C10—C11—C120.0 (4)C5—C6—N1—C29177.9 (3)
C10—C11—C12—C70.7 (4)C7—C6—N1—C2178.0 (2)
C8—C7—C12—C110.8 (4)C5—C6—N1—C256.6 (3)
C6—C7—C12—C11178.7 (2)C3—C4—N2—O10.8 (3)
N1—C2—C13—C1457.7 (3)C5—C4—N2—O1179.95 (19)
C3—C2—C13—C1468.0 (3)O2—C22—O1—N23.3 (4)
N1—C2—C13—C18122.3 (3)O3—C22—O1—N2178.33 (17)
C3—C2—C13—C18111.9 (3)C4—N2—O1—C22179.5 (2)
C18—C13—C14—C150.6 (4)O2—C22—O3—C230.9 (4)
C2—C13—C14—C15179.5 (3)O1—C22—O3—C23177.43 (19)
C13—C14—C15—C160.0 (5)C24—C23—O3—C22133.2 (2)
C14—C15—C16—C170.0 (5)C28—C23—O3—C2251.7 (3)
C15—C16—C17—C180.6 (5)
Hydrogen-bond geometry (Å, º) for (I) top
Cg3 and Cg4 are the centroids of the C13–C18 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C26—H26···O2i0.932.573.422 (2)153
C6—H6···Cg4ii0.982.993.959 (2)170
C10—H10···Cg3iii0.932.963.824 (2)155
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+3/2; (iii) x+1, y1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC27H28N2O3C28H30N2O3
Mr428.51442.54
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)9.3844 (5), 17.8121 (8), 14.4077 (7)10.3511 (5), 23.9398 (10), 10.0587 (4)
β (°) 107.216 (2) 94.997 (2)
V3)2300.4 (2)2483.11 (19)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.26 × 0.23 × 0.190.28 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Bruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.979, 0.9850.979, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
27700, 6225, 3960 21076, 4150, 2894
Rint0.0380.036
(sin θ/λ)max1)0.6870.586
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.132, 1.04 0.052, 0.145, 1.01
No. of reflections62254150
No. of parameters291301
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.210.39, 0.17

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the TBI Consultancy, CAS in Crystallography & Biophysics, University of Madras, India, for the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJayabharathi, J., Thangamani, A., Balamurugan, S., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, o1211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarayanan, K., Shanmugam, M., Jothivel, S. & Kabilan, S. (2012). Bioorg. Med. Chem. Lett. 22, 6602–6607.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981–2985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRaghuvarman, B., Sivakumar, R., Gokula Krishnan, K., Thanikachalam, V. & Aravindhan, S. (2014). Acta Cryst. E70, o713.  CSD CrossRef IUCr Journals Google Scholar
First citationRobinson, O. P. W. (1973). Postgrad. Med. J. (Suppl.), 49, 9–12.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinuchakkaravarthy, T., Sivakumar, R., Srinivasan, T., Thanikachalam, V. & Velmurugan, D. (2014). Acta Cryst. E70, o551.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 199-202
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds