organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1096-o1097

Crystal structure of (R)-2′-benz­yl­oxy-[1,1′-binaphthalen]-2-yl tri­fluoro­methane­sulfonate

aChemistry Department, University of Coimbra, P-3004-516 Coimbra, Portugal, and bCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: vhugo@fis.uc.pt

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 August 2014; accepted 22 August 2014; online 10 September 2014)

In the title compound, C28H19F3O4S, a new 2′-benz­yloxy (R)-BINOL derivative containing a tri­fluoro­methane­sulfonate group in the 2-position, the planes of the two naphthyl ring systems (r.m.s. deviations = 0.012 and 0.019 Å) are at an angle of 73.36 (2)°, and the planes of the benzyl ring and the naphthyl ring system bound to the ether O atom are at an angle of 75.67 (4)°. In the crystal, mol­ecules are linked via C—H⋯F hydrogen bonds, forming chains propagating along [100]. The chains are linked via a weak C—F⋯π inter­action and weak ππ inter­actions [shortest inter-centroid distance = 3.9158 (12) Å], forming a three-dimensional structure. The absolute structure of the mol­ecule in the crystal was determined by resonant scattering [Flack parameter = 0.02 (6)].

1. Related literature

For the synthesis of some BINOL derivatives, see, for example: Carrilho et al. (2012[Carrilho, R. M. B., Neves, A. C. B., Lourenço, M. A. O., Abreu, A. R., Rosado, M. T. S., Abreu, P. E., Eusébio, M. E. S., Kollár, L., Bayón, J. C. & Pereira, M. M. (2012). J. Organomet. Chem. 698, 28-34.], 2014[Carrilho, R. M. B., Costa, G. N., Neves, A. C. B., Pereira, M. M., Grabulosa, A., Bayón, J. C., Rocamora, M. & Muller, G. (2014). Eur. J. Inorg. Chem. pp. 1034-1041.]). For the synthesis of related binaphthyl-based tri­fluoro­methane­sulfonate derivatives, see: Zeng et al. (2011[Zeng, Q., Zeng, H. & Yang, Z. (2011). Synth. Commun. 41, 3556-3560.]); Singer & Buchwald (1999[Singer, R. A. & Buchwald, S. L. (1999). Tetrahedron Lett. 40, 1095-1098.]); Meškovà et al. (2011[Meškovà, M. & Putala, M. (2011). Tetrahedron Lett. 52, 5379-5383.]); Sälinger & Brückner (2009[Sälinger, D. & Brückner, R. (2009). Synlett, pp. 109-111.]); Zheng et al. (2013[Zheng, L.-S., Li, L., Yang, K.-F., Zheng, Z.-J., Xiao, X.-Q. & Xu, L.-W. (2013). Tetrahedron, 69, 8777-8784.]). For the use of aryl tri­fluoro­methane­sulfonate derivatives as inter­mediates in Buchwald–Hartwig aminations, see: Louie et al. (1997[Louie, J., Driver, M. S., Hamann, B. C. & Hartwig, J. F. (1997). J. Org. Chem. 62, 1268-1273.]); Ahman & Buchwald (1997[Ahman, J. & Buchwald, S. L. (1997). Tetrahedron Lett. 38, 6363-6366.]); Meadows et al. (2008[Meadows, R. E. & Woodward, S. (2008). Tetrahedron, 64, 1218-1224.]). For a review of the synthesis and catalytic applications of binaphthyl-based phosphine and phosphite ligands, see: Sakai et al. (1993[Sakai, N., Mano, S., Nozaki, K. & Takaya, H. (1993). J. Am. Chem. Soc. 115, 7033-7034.]); Yan & Zhang (2006[Yan, Y. & Zhang, X. (2006). J. Am. Chem. Soc. 128, 7198-7202.]); Pereira et al. (2013[Pereira, M. M., Calvete, M. J. F., Carrilho, R. M. B. & Abreu, A. R. (2013). Chem. Soc. Rev. 42, 6990-7027.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C28H19F3O4S

  • Mr = 508.49

  • Orthorhombic, P 21 21 21

  • a = 9.3383 (4) Å

  • b = 12.3380 (5) Å

  • c = 20.5893 (8) Å

  • V = 2372.22 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.36 × 0.28 × 0.1 mm

2.1.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 1.000

  • 42588 measured reflections

  • 5367 independent reflections

  • 4373 reflections with I > 2σ(I)

  • Rint = 0.038

2.1.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.088

  • S = 1.06

  • 5367 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.02 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C4/C9/C10 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯F3i 0.93 2.50 3.357 (2) 153
C28—F3⋯Cg1ii 1.29 (1) 3.61 (1) 4.632 (3) 136 (1)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al. 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For the synthesis of some BINOL derivatives, see, for example: Carrilho et al. (2012, 2014). For the synthesis of related binaphthyl-based trifluoromethanesulfonate derivatives, see: Zeng et al. (2011); Singer & Buchwald (1999); Meškovà et al. (2011); Sälinger & Brückner (2009); Zheng et al. (2013). For the use of aryl trifluoromethanesulfonate derivatives as intermediates in Buchwald–Hartwig aminations, see: Louie et al. (1997); Ahman & Buchwald (1997); Meadows et al. (2008). For a review of the synthesis and catalytic applications of binaphthyl-based phosphine and phosphite ligands, see: Sakai et al. (1993); Yan & Zhang (2006); Pereira et al. (2013).

Experimental top

The title compound was synthesized from (R)-BINOL according to an optimized two step procedure. To a solution of (R)-BINOL (5.00 g, 17 mmol), dried azeotropically with toluene, triphenylphosphine (PPh3) (4.5 g, 17 mmol) and benzyl alcohol (2.1 ml, 20 mmol), in dry THF (100 ml), diethyl azodicarboxylate (DEAD) (40% in toluene, 7.5 ml, 17 mmol) was added drop wise, at 273 K and the mixture was stirred at 298 K, for 48 h. After quenching with water, the solvent was evaporated under reduced pressure and the crude mixture was dissolved in dichloromethane (50 ml). The organic layer was washed with brine (3 × 50 ml) and water (3 × 50 ml) and dried over anhydrous Na2SO4. After removal of the solvent under reduced pressure, the product was isolated by column chromatography on silica gel, using a mixture of CH2Cl2/n-hexane (2:1) as eluent, and was further purified by recrystallization from toluene/n-hexane yielding white crystals. The intermediate product, (R)-2'-(benzyloxy)-1,1'-binaphthyl-2-ol (L), with a white crystalline aspect, was obtained in 91% yield (5.85 g, 15.5 mmol). The respective NMR data obtained are in agreement with published values [Takahashi, M. & Ogasawara, K. (1997). Tetrahedron Asymmetry, 8, 3125–3130]. Next, to a solution of (L) (2.82 g, 7.5 mmol) in anhydrous CH2Cl2 (15 ml), were added sequentially and drop wise, at 273 K under a nitrogen atmosphere, pyridine (1.0 ml, 12 mmol) and trifluoromethanesulfonic anhydride (triflic anhydride) (1.5 ml, 9 mmol.) The mixture, which produced a red solution, was allowed to warm to room temperature and stirred for 6 h. n-Hexane (20 ml) was then added, and the mixture was passed over a silica gel column (previously activated at 473 K). The silica gel column was washed with 40 ml of a mixture of CH2Cl2/n-hexane (1:1). After removal of the solvents under reduced pressure, the title compound was obtained as a white solid in 87% yield (3.30 g, 6.5 mmol). Crystals suitable for X-ray diffraction analysis were obtained after dissolution of the title compound (5 mg ml-1) in ethyl acetate, and left for the solvent to evaporate in air at room temperature for 48 h.

Spectroscopic data for the title compound: 1H NMR (CDCl3, TMS, 400 MHz) δ (p.p.m.) 5.01 (s, 2H, OCH2Ph), 6.92–6.99 (m, 3H, ArH), 7.03–7.05 (m, 3H, ArH), 7.13 (t, J=7.4 Hz, 1H, ArH), 7.19–7.27 (m, 3H, ArH), 7.29 (d, J=9.2 Hz, 1H, ArH), 7.36–7.40 (m, 1H, ArH), 7.46 (d, J=8.8 Hz, 1H, ArH), 7.73 (d,J=8.0 Hz, 1H, ArH), 7.81–7.86 (m, 2H, ArH), 7.89 (d, J=8.8 Hz, 1H, ArH). 13C NMR (CDCl3, TMS, 100 MHz) δ (p.p.m.) 70.8 (OCH2Ph), 114.7 (ArC), 116.2 (ArC), 116.8 (CF3), 119.7 (ArC), 120.0 (ArC), 124.0 (ArC), 125.2 (ArC), 126.7 (ArC), 126.9 (ArC), 127.0 (ArC), 127.1 (ArC), 127.5 (ArC), 127.5 (ArC), 127.6 (ArC), 128.2 (ArC), 128.3 (ArC), 128.4 (ArC), 129.1 (ArC), 130.4 (ArC), 131.1 (ArC), 132.7 (ArC), 133.8 (ArC), 133.8 (ArC), 137.3 (OCH2CPh), 145.8 (COTf), 154.4 (COBn). 19F NMR (CDCl3, TFA, 376 MHz) δ (p.p.m.) -73.61 (OS(O)2CF3). Mp: 128–131 °C.

Refinement top

All the H atoms were placed in idealized positions and refined as riding atoms: C—H = 0.93 - 0.97 Å with Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and Mercury (Macrae et al. 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The C-H···F hydrogen bonds are shown as dashed lines (see Table 1 for details).
(R)-2'-Benzyloxy-[1,1'-binaphthalen]-2-yl trifluoromethanesulfonate top
Crystal data top
C28H19F3O4SF(000) = 1048
Mr = 508.49Dx = 1.424 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6182 reflections
a = 9.3383 (4) Åθ = 2.6–22.2°
b = 12.3380 (5) ŵ = 0.19 mm1
c = 20.5893 (8) ÅT = 293 K
V = 2372.22 (17) Å3Prismatic, colourless
Z = 40.36 × 0.28 × 0.1 mm
Data collection top
Bruker APEXII
diffractometer
5367 independent reflections
Radiation source: fine-focus sealed tube4373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1112
Tmin = 0.890, Tmax = 1.000k = 1515
42588 measured reflectionsl = 2626
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.1954P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.18 e Å3
5367 reflectionsΔρmin = 0.24 e Å3
326 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0058 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (6)
Crystal data top
C28H19F3O4SV = 2372.22 (17) Å3
Mr = 508.49Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.3383 (4) ŵ = 0.19 mm1
b = 12.3380 (5) ÅT = 293 K
c = 20.5893 (8) Å0.36 × 0.28 × 0.1 mm
Data collection top
Bruker APEXII
diffractometer
5367 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4373 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 1.000Rint = 0.038
42588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.18 e Å3
S = 1.06Δρmin = 0.24 e Å3
5367 reflectionsAbsolute structure: Flack (1983)
326 parametersAbsolute structure parameter: 0.02 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.71125 (5)0.03924 (4)0.94675 (2)0.04816 (14)
O10.62251 (12)0.04090 (10)1.01056 (5)0.0417 (3)
O20.74153 (18)0.06979 (12)0.93075 (8)0.0706 (4)
O30.81614 (18)0.12109 (14)0.94647 (8)0.0759 (5)
C280.5709 (3)0.08085 (18)0.89039 (11)0.0641 (6)
F10.46451 (16)0.01259 (12)0.89093 (7)0.0829 (4)
F20.6254 (2)0.08254 (15)0.83119 (7)0.1095 (6)
F30.5251 (2)0.17688 (12)0.90464 (9)0.1210 (8)
C10.66233 (18)0.11054 (13)1.06373 (8)0.0381 (4)
C20.5916 (2)0.20964 (15)1.06794 (9)0.0471 (5)
H20.52460.23011.03680.056*
C30.6231 (2)0.27570 (16)1.11882 (10)0.0533 (5)
H30.57670.34211.12270.064*
C40.7249 (2)0.24510 (14)1.16576 (9)0.0462 (4)
C50.7608 (3)0.31324 (17)1.21878 (11)0.0633 (6)
H50.71650.38041.22290.076*
C60.8584 (3)0.2820 (2)1.26350 (11)0.0705 (7)
H60.88120.32811.29770.085*
C70.9252 (3)0.18142 (19)1.25880 (10)0.0664 (6)
H70.99150.16071.29010.080*
C80.8943 (2)0.11300 (17)1.20867 (9)0.0520 (5)
H80.94000.04621.20610.062*
C90.7933 (2)0.14259 (14)1.16045 (8)0.0405 (4)
C100.76185 (18)0.07382 (13)1.10677 (8)0.0362 (4)
C110.83484 (18)0.03262 (14)1.09688 (8)0.0361 (4)
C120.97941 (18)0.03635 (14)1.07440 (8)0.0368 (4)
C131.0607 (2)0.05821 (15)1.06183 (9)0.0473 (4)
H131.01900.12601.06740.057*
C141.1994 (2)0.05104 (18)1.04172 (10)0.0588 (5)
H141.25120.11401.03370.071*
C151.2648 (2)0.05005 (19)1.03296 (10)0.0604 (5)
H151.36020.05381.02030.072*
C161.1901 (2)0.14184 (17)1.04285 (9)0.0500 (5)
H161.23410.20851.03610.060*
C171.04466 (19)0.13834 (14)1.06346 (8)0.0396 (4)
C180.9652 (2)0.23321 (15)1.07409 (9)0.0447 (4)
H181.00730.30021.06610.054*
C190.8274 (2)0.22913 (14)1.09589 (9)0.0438 (4)
H190.77670.29291.10310.053*
C200.76214 (18)0.12812 (13)1.10741 (8)0.0374 (4)
O40.62534 (13)0.11801 (10)1.13046 (7)0.0486 (3)
C210.5362 (2)0.21227 (16)1.13402 (10)0.0506 (5)
H21A0.54920.25431.09460.061*
H21B0.43700.18921.13540.061*
C220.56468 (19)0.28464 (15)1.19158 (9)0.0432 (4)
C230.4871 (2)0.37900 (17)1.19706 (11)0.0568 (5)
H230.42140.39711.16490.068*
C240.5055 (3)0.44718 (18)1.24960 (12)0.0673 (6)
H240.45160.51031.25290.081*
C250.6022 (3)0.42192 (19)1.29639 (11)0.0657 (6)
H250.61460.46781.33180.079*
C260.6814 (3)0.32918 (19)1.29156 (11)0.0654 (6)
H260.74860.31251.32330.079*
C270.6614 (2)0.25998 (17)1.23930 (10)0.0543 (5)
H270.71410.19621.23660.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0493 (3)0.0501 (3)0.0450 (2)0.0092 (2)0.0044 (2)0.0009 (2)
O10.0400 (6)0.0445 (7)0.0407 (6)0.0051 (6)0.0015 (5)0.0028 (6)
O20.0793 (10)0.0590 (9)0.0736 (10)0.0117 (8)0.0072 (8)0.0157 (7)
O30.0716 (10)0.0955 (12)0.0607 (9)0.0437 (9)0.0134 (8)0.0032 (8)
C280.0933 (17)0.0476 (12)0.0513 (12)0.0119 (13)0.0123 (12)0.0061 (10)
F10.0779 (9)0.0843 (10)0.0867 (9)0.0169 (8)0.0295 (8)0.0098 (8)
F20.1557 (16)0.1263 (13)0.0465 (8)0.0335 (13)0.0093 (9)0.0187 (8)
F30.193 (2)0.0576 (9)0.1125 (13)0.0383 (11)0.0741 (14)0.0055 (8)
C10.0384 (9)0.0354 (9)0.0407 (9)0.0003 (7)0.0022 (7)0.0006 (7)
C20.0448 (10)0.0429 (10)0.0536 (11)0.0117 (9)0.0018 (9)0.0086 (9)
C30.0568 (12)0.0395 (11)0.0636 (13)0.0160 (9)0.0064 (10)0.0011 (10)
C40.0508 (11)0.0397 (10)0.0483 (10)0.0018 (9)0.0113 (9)0.0030 (8)
C50.0801 (16)0.0489 (12)0.0609 (13)0.0017 (11)0.0130 (12)0.0143 (10)
C60.0911 (18)0.0670 (15)0.0535 (13)0.0082 (13)0.0002 (13)0.0184 (11)
C70.0761 (16)0.0744 (15)0.0486 (12)0.0002 (13)0.0097 (11)0.0050 (11)
C80.0565 (12)0.0530 (12)0.0463 (11)0.0045 (10)0.0041 (9)0.0009 (9)
C90.0447 (10)0.0388 (9)0.0380 (9)0.0007 (9)0.0049 (8)0.0005 (7)
C100.0365 (9)0.0327 (9)0.0393 (9)0.0019 (7)0.0046 (7)0.0041 (7)
C110.0399 (9)0.0331 (9)0.0353 (8)0.0036 (8)0.0011 (7)0.0023 (7)
C120.0389 (9)0.0370 (9)0.0345 (8)0.0014 (8)0.0021 (7)0.0011 (7)
C130.0462 (10)0.0406 (10)0.0552 (11)0.0012 (8)0.0039 (9)0.0038 (9)
C140.0498 (11)0.0572 (13)0.0693 (13)0.0108 (11)0.0071 (10)0.0057 (10)
C150.0407 (10)0.0726 (15)0.0679 (13)0.0028 (11)0.0122 (9)0.0018 (11)
C160.0450 (11)0.0527 (12)0.0524 (11)0.0110 (9)0.0071 (9)0.0003 (9)
C170.0437 (10)0.0406 (10)0.0344 (9)0.0073 (8)0.0009 (7)0.0004 (7)
C180.0529 (11)0.0366 (10)0.0444 (10)0.0082 (9)0.0008 (8)0.0018 (8)
C190.0525 (11)0.0326 (10)0.0463 (10)0.0011 (8)0.0007 (8)0.0026 (8)
C200.0372 (9)0.0352 (9)0.0398 (9)0.0027 (7)0.0010 (7)0.0048 (7)
O40.0422 (7)0.0387 (7)0.0651 (8)0.0009 (6)0.0113 (6)0.0073 (6)
C210.0425 (10)0.0474 (11)0.0618 (12)0.0080 (9)0.0027 (9)0.0084 (9)
C220.0368 (10)0.0425 (10)0.0502 (10)0.0028 (8)0.0053 (8)0.0012 (8)
C230.0567 (13)0.0494 (12)0.0643 (13)0.0165 (10)0.0002 (10)0.0014 (10)
C240.0769 (15)0.0464 (12)0.0785 (15)0.0107 (12)0.0119 (13)0.0092 (12)
C250.0802 (16)0.0589 (14)0.0580 (13)0.0100 (13)0.0094 (12)0.0137 (11)
C260.0714 (15)0.0728 (15)0.0520 (12)0.0009 (13)0.0048 (11)0.0065 (11)
C270.0580 (12)0.0529 (12)0.0521 (11)0.0130 (10)0.0019 (10)0.0029 (9)
Geometric parameters (Å, º) top
S1—O31.4069 (15)C13—C141.362 (3)
S1—O21.4136 (15)C13—H130.9300
S1—O11.5535 (12)C14—C151.400 (3)
S1—C281.824 (2)C14—H140.9300
O1—C11.440 (2)C15—C161.346 (3)
C28—F31.293 (3)C15—H150.9300
C28—F11.302 (3)C16—C171.423 (3)
C28—F21.321 (3)C16—H160.9300
C1—C101.362 (2)C17—C181.403 (3)
C1—C21.393 (2)C18—C191.363 (3)
C2—C31.360 (3)C18—H180.9300
C2—H20.9300C19—C201.407 (2)
C3—C41.407 (3)C19—H190.9300
C3—H30.9300C20—O41.368 (2)
C4—C51.418 (3)O4—C211.432 (2)
C4—C91.421 (2)C21—C221.508 (3)
C5—C61.352 (3)C21—H21A0.9700
C5—H50.9300C21—H21B0.9700
C6—C71.392 (3)C22—C271.369 (3)
C6—H60.9300C22—C231.376 (3)
C7—C81.364 (3)C23—C241.381 (3)
C7—H70.9300C23—H230.9300
C8—C91.417 (3)C24—C251.357 (3)
C8—H80.9300C24—H240.9300
C9—C101.424 (2)C25—C261.366 (3)
C10—C111.493 (2)C25—H250.9300
C11—C201.377 (2)C26—C271.386 (3)
C11—C121.428 (2)C26—H260.9300
C12—C131.416 (3)C27—H270.9300
C12—C171.416 (2)
O3—S1—O2122.88 (11)C14—C13—C12120.78 (18)
O3—S1—O1111.42 (8)C14—C13—H13119.6
O2—S1—O1108.45 (9)C12—C13—H13119.6
O3—S1—C28107.20 (11)C13—C14—C15120.76 (19)
O2—S1—C28105.27 (11)C13—C14—H14119.6
O1—S1—C2898.69 (10)C15—C14—H14119.6
C1—O1—S1120.87 (10)C16—C15—C14120.26 (17)
F3—C28—F1109.8 (2)C16—C15—H15119.9
F3—C28—F2108.80 (19)C14—C15—H15119.9
F1—C28—F2108.19 (19)C15—C16—C17120.95 (18)
F3—C28—S1110.54 (16)C15—C16—H16119.5
F1—C28—S1111.13 (14)C17—C16—H16119.5
F2—C28—S1108.3 (2)C18—C17—C12119.26 (16)
C10—C1—C2125.14 (16)C18—C17—C16121.73 (16)
C10—C1—O1118.18 (14)C12—C17—C16119.00 (17)
C2—C1—O1116.65 (15)C19—C18—C17121.32 (17)
C3—C2—C1118.13 (17)C19—C18—H18119.3
C3—C2—H2120.9C17—C18—H18119.3
C1—C2—H2120.9C18—C19—C20119.78 (17)
C2—C3—C4120.98 (17)C18—C19—H19120.1
C2—C3—H3119.5C20—C19—H19120.1
C4—C3—H3119.5O4—C20—C11115.90 (14)
C3—C4—C5121.96 (18)O4—C20—C19122.91 (15)
C3—C4—C9119.32 (17)C11—C20—C19121.18 (16)
C5—C4—C9118.71 (19)C20—O4—C21119.09 (14)
C6—C5—C4121.0 (2)O4—C21—C22114.75 (16)
C6—C5—H5119.5O4—C21—H21A108.6
C4—C5—H5119.5C22—C21—H21A108.6
C5—C6—C7120.6 (2)O4—C21—H21B108.6
C5—C6—H6119.7C22—C21—H21B108.6
C7—C6—H6119.7H21A—C21—H21B107.6
C8—C7—C6120.6 (2)C27—C22—C23118.46 (18)
C8—C7—H7119.7C27—C22—C21123.30 (17)
C6—C7—H7119.7C23—C22—C21118.22 (17)
C7—C8—C9120.77 (19)C22—C23—C24121.0 (2)
C7—C8—H8119.6C22—C23—H23119.5
C9—C8—H8119.6C24—C23—H23119.5
C8—C9—C4118.34 (16)C25—C24—C23119.9 (2)
C8—C9—C10121.85 (16)C25—C24—H24120.0
C4—C9—C10119.80 (16)C23—C24—H24120.0
C1—C10—C9116.60 (15)C24—C25—C26120.1 (2)
C1—C10—C11121.02 (15)C24—C25—H25120.0
C9—C10—C11122.37 (15)C26—C25—H25120.0
C20—C11—C12119.31 (16)C25—C26—C27120.0 (2)
C20—C11—C10120.39 (14)C25—C26—H26120.0
C12—C11—C10120.27 (16)C27—C26—H26120.0
C13—C12—C17118.19 (15)C22—C27—C26120.6 (2)
C13—C12—C11122.66 (16)C22—C27—H27119.7
C17—C12—C11119.15 (16)C26—C27—H27119.7
O3—S1—O1—C17.53 (15)C1—C10—C11—C12104.50 (19)
O2—S1—O1—C1130.68 (13)C9—C10—C11—C1274.6 (2)
C28—S1—O1—C1119.94 (13)C20—C11—C12—C13179.35 (16)
O3—S1—C28—F353.6 (2)C10—C11—C12—C131.3 (2)
O2—S1—C28—F3174.03 (18)C20—C11—C12—C170.0 (2)
O1—S1—C28—F362.1 (2)C10—C11—C12—C17178.01 (14)
O3—S1—C28—F1175.81 (17)C17—C12—C13—C142.0 (3)
O2—S1—C28—F151.9 (2)C11—C12—C13—C14178.62 (18)
O1—S1—C28—F160.08 (18)C12—C13—C14—C150.0 (3)
O3—S1—C28—F265.48 (18)C13—C14—C15—C161.6 (3)
O2—S1—C28—F266.86 (17)C14—C15—C16—C171.2 (3)
O1—S1—C28—F2178.79 (15)C13—C12—C17—C18178.51 (17)
S1—O1—C1—C1085.42 (17)C11—C12—C17—C180.9 (2)
S1—O1—C1—C296.53 (17)C13—C12—C17—C162.4 (2)
C10—C1—C2—C30.1 (3)C11—C12—C17—C16178.21 (16)
O1—C1—C2—C3177.79 (17)C15—C16—C17—C18179.92 (19)
C1—C2—C3—C40.3 (3)C15—C16—C17—C120.9 (3)
C2—C3—C4—C5179.2 (2)C12—C17—C18—C191.2 (3)
C2—C3—C4—C91.3 (3)C16—C17—C18—C19177.82 (18)
C3—C4—C5—C6179.7 (2)C17—C18—C19—C200.7 (3)
C9—C4—C5—C60.2 (3)C12—C11—C20—O4178.43 (15)
C4—C5—C6—C70.6 (4)C10—C11—C20—O43.6 (2)
C5—C6—C7—C80.6 (4)C12—C11—C20—C190.5 (2)
C6—C7—C8—C90.2 (4)C10—C11—C20—C19177.46 (16)
C7—C8—C9—C40.2 (3)C18—C19—C20—O4178.70 (16)
C7—C8—C9—C10178.4 (2)C18—C19—C20—C110.2 (3)
C3—C4—C9—C8179.31 (18)C11—C20—O4—C21171.35 (15)
C5—C4—C9—C80.2 (3)C19—C20—O4—C219.7 (2)
C3—C4—C9—C102.1 (3)C20—O4—C21—C2279.1 (2)
C5—C4—C9—C10178.42 (17)O4—C21—C22—C273.9 (3)
C2—C1—C10—C90.9 (3)O4—C21—C22—C23177.56 (17)
O1—C1—C10—C9177.00 (14)C27—C22—C23—C240.4 (3)
C2—C1—C10—C11178.24 (16)C21—C22—C23—C24178.2 (2)
O1—C1—C10—C113.9 (2)C22—C23—C24—C250.7 (4)
C8—C9—C10—C1179.60 (17)C23—C24—C25—C260.0 (4)
C4—C9—C10—C11.8 (2)C24—C25—C26—C270.9 (4)
C8—C9—C10—C111.3 (3)C23—C22—C27—C260.6 (3)
C4—C9—C10—C11177.27 (16)C21—C22—C27—C26179.1 (2)
C1—C10—C11—C2073.5 (2)C25—C26—C27—C221.3 (3)
C9—C10—C11—C20107.46 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1-C4/C9/C10 ring
D—H···AD—HH···AD···AD—H···A
C13—H13···F3i0.932.503.357 (2)153
C28—F3···Cg1ii1.29 (1)3.61 (1)4.632 (3)136 (1)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x1/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1-C4/C9/C10 ring
D—H···AD—HH···AD···AD—H···A
C13—H13···F3i0.932.503.357 (2)153
C28—F3···Cg1ii1.293 (3)3.613 (2)4.632 (3)136.0 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x1/2, y+1/2, z+2.
 

Acknowledgements

This work was supported by funds from FEDER via the COMPETE (Programa Operacional Factores de Competitividade) programme and by the FCT (Fundação para a Ciência e a Tecnologia) (project PEst-C/FIS/UI0036/2011).

References

First citationAhman, J. & Buchwald, S. L. (1997). Tetrahedron Lett. 38, 6363–6366.  CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarrilho, R. M. B., Costa, G. N., Neves, A. C. B., Pereira, M. M., Grabulosa, A., Bayón, J. C., Rocamora, M. & Muller, G. (2014). Eur. J. Inorg. Chem. pp. 1034–1041.  Web of Science CrossRef Google Scholar
First citationCarrilho, R. M. B., Neves, A. C. B., Lourenço, M. A. O., Abreu, A. R., Rosado, M. T. S., Abreu, P. E., Eusébio, M. E. S., Kollár, L., Bayón, J. C. & Pereira, M. M. (2012). J. Organomet. Chem. 698, 28–34.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLouie, J., Driver, M. S., Hamann, B. C. & Hartwig, J. F. (1997). J. Org. Chem. 62, 1268–1273.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeadows, R. E. & Woodward, S. (2008). Tetrahedron, 64, 1218–1224.  Web of Science CrossRef CAS Google Scholar
First citationMeškovà, M. & Putala, M. (2011). Tetrahedron Lett. 52, 5379–5383.  Google Scholar
First citationPereira, M. M., Calvete, M. J. F., Carrilho, R. M. B. & Abreu, A. R. (2013). Chem. Soc. Rev. 42, 6990–7027.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSakai, N., Mano, S., Nozaki, K. & Takaya, H. (1993). J. Am. Chem. Soc. 115, 7033–7034.  CrossRef CAS Web of Science Google Scholar
First citationSälinger, D. & Brückner, R. (2009). Synlett, pp. 109–111.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinger, R. A. & Buchwald, S. L. (1999). Tetrahedron Lett. 40, 1095–1098.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, Y. & Zhang, X. (2006). J. Am. Chem. Soc. 128, 7198–7202.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZeng, Q., Zeng, H. & Yang, Z. (2011). Synth. Commun. 41, 3556–3560.  Web of Science CrossRef CAS Google Scholar
First citationZheng, L.-S., Li, L., Yang, K.-F., Zheng, Z.-J., Xiao, X.-Q. & Xu, L.-W. (2013). Tetrahedron, 69, 8777–8784.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1096-o1097
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds