research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 221-223

Crystal structure of bis­[4-(di­methyl­amino)­pyridinium] bis­(2-nitro­benzoate) trihydrate

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, Anna University, Chennai 600 025, India, cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and dCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai 600 025, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, anbu24663@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 August 2014; accepted 14 September 2014; online 20 September 2014)

The title salt, 2C7H11N2+·2C7H4NO4·3H2O, crystallized with two anions and two cations in the asymmetric unit, together with three water mol­ecules. Both 4-di­methyl­amino­pyridinium cations are protonated at their pyridine N atoms with the plane of the N(CH3)2 hetero atoms inclined to the pyridine ring by 4.5 (2) and 1.4 (2)°. In the 2-nitro­benzoate anions, the carboxyl and nitro groups are inclined to their respective benzene rings by 77.1 (3) and 20.0 (3)°, and 75.8 (2) and 20.9 (3)°. In the crystal, the anions are linked via O—H⋯O hydrogen bonds involving the water mol­ecules, forming chains along [100]. The cations are linked to these chains by N—H⋯O hydrogen bonds. The chains are linked via C—H⋯O hydrogen bonds and C—H⋯π and ππ inter­actions [inter-centroid distances range from 3.617 (1) to 3.851 (1) Å], forming a three-dimensional structure.

1. Chemical context

Pyridine derivatives are used as calcium channel blockers and antagonists, and exhibit biological activities such as fungicidal, anti­bacterial, anti­fungal, anti­mycotic (Bossert et al., 1981[Bossert, F., Meyer, H. & Wehinger, E. (1981). Angew. Chem. Int. Ed. Engl. 20, 762-769.]; Lohaus & Dittmar, 1968[Lohaus, G. & Dittmar, W. (1968). S. Afr. Patent 6 906 036.]; Wang et al.,1989[Wang, S. D., Herbette, L. G. & Rhodes, D. G. (1989). Acta Cryst. C45, 1748-1751.]). Benzene derivatives are extensively used in medicinal chemistry as important inter­mediates for many pharmaceutical products (Altmann et al., 2004[Altmann, E., Cowan-Jacob, S. W. & Martin Missbach, M. (2004). J. Med. Chem. 4, 5833-5836.]). We herein report on the synthesis and crystal structure of the title salt prepared by the reaction of 4-di­methyl­amino­pyridine with 2-nitro­benzoic acid in hot ethanol as solvent.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title salt consists of two 4-di­methyl­amino­pyrdinium cations and two 2-nitro­benzoate anions, together with three water mol­ecules (Fig. 1[link]). The geometric parameters of the title compound are comparable to those reported for similar structures (Babu et al., 2014[Babu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391-o392.]; Rajkumar et al., 2014[Rajkumar, M. A., Xavier, S. S. J., Anbarasu, S., Devarajan, P. A. & NizamMohideen, M. (2014). Acta Cryst. E70, o473-o474.]), including the compounds 4-di­methyl­amino­pyridinium 2,4-, 3,4- and 3,5-di­nitro­benzoate (Hosomi et al., 2000[Hosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e149-e150.]). The conformations of the two cations are very similar as are the conformations of the two anions. Both 4-di­methyl­amino­pyridinium cations are protonated at their pyridine N atoms (N1 and N2) with the planes of the N(CH3)2 hetero atoms (N3/C6/C7 and N4/C13/C14) inclined to the pyridine rings (N1/C1–C5 and N2/C8–C12) by 4.5 (2) and 1.4 (2)°, respectively. In the 2-nitro­benzoate anions the carboxyl groups (O3/O4/C15 and O5/O6/C28) are inclined to the respective benzene rings (C16–C21 and C22–C27) by 77.1 (3) and 75.8 (2)°. The nitro groups (O1/O2/N5 and O7/O8/N6) are inclined to their respective benzene rings by 20.0 (3) and 20.9 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, the dihedral angle between the two pyridine rings (N1/C1–C5 and N2/C8–C12) is 5.16 (9)°, while the benzene rings (C16–C21 and C22–C27) form a dihedral angle of 19.56 (9)°. The anions are linked via O—H⋯O hydrogen bonds involving the water mol­ecules, forming chains along [100]; Table 1[link] and Fig. 2[link]. The cations are linked to these chains by N—H⋯O hydrogen bonds (Table 1[link]). The chains are linked via C—H⋯O hydrogen bonds and C—H⋯π and ππ inter­actions, forming a three-dimensional structure [Cg1⋯Cg1i = 3.851 (1); Cg2⋯Cg2ii = 3.656 (1); Cg3⋯Cg3iii = 3.617 (1) Å; Cg1, Cg2, and Cg3 are the centroids of rings N1/C1–C5, N2/C8–C12, and C16–C21, respectively; symmetry codes: (i) −x + 2, −y + 1, −z + 2; (ii) −x + 2, −y + 3, −z + 1; (iii) −x + 2, −y + 2, −z + 2].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg3 and Cg4 are the centroids of rings N1/C1–C5, C16–C21, and C22–C27, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6i 0.89 (2) 1.75 (2) 2.639 (2) 175 (2)
O9—H9A⋯O5ii 0.84 (4) 2.11 (4) 2.896 (2) 156 (4)
O10—H10A⋯O4 0.82 (4) 2.08 (4) 2.892 (2) 170 (4)
O10—H10B⋯O5 0.82 (3) 2.02 (3) 2.847 (3) 176 (4)
O11—H11A⋯O9 0.83 (4) 2.05 (3) 2.841 (3) 160 (4)
O11—H11B⋯O10 0.86 (4) 2.12 (4) 2.943 (3) 160 (4)
C1—H1⋯O3iii 0.93 2.43 3.348 (2) 169
C4—H4⋯O1 0.93 2.57 3.474 (3) 164
C6—H6B⋯O7iv 0.96 2.51 3.258 (3) 135
C8—H8⋯O6 0.93 2.40 3.325 (3) 177
C23—H23⋯O8v 0.93 2.55 3.434 (3) 160
C2—H2⋯Cg3iii 0.93 2.96 3.7481 (19) 144
C7—H7ACg1vi 0.93 2.85 3.661 (2) 142
C9—H9⋯Cg4 0.93 2.86 3.702 (2) 151
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) x-1, y, z; (iii) -x+2, -y+1, -z+2; (iv) x, y-1, z; (v) x+1, y, z; (vi) -x+1, -y+1, -z+2.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title salt. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) of salts including benzoate anions and the cation 4-di­methyl­amino­pyridinium yielded 15 hits. Three of these salts have as anions 2,4-di­nitro­benzoate, 3,4-di­nitro­benzoate and 3,5-di­nitro­benzoate (KOBMAP, KOBNAQ, and KOBNOE, respectively; Hosomi et al., 2000[Hosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e149-e150.]). They were studied for their potential SHG properties; only the 3,5-dintrobenzoate salt crystallized in a non-centrosymmetric space group.

5. Synthesis and crystallization

4-Di­methyl­amino­pyridine (2.442 g, 1 mmol) and 2-nitro­benzoic acid (3.342 g, 1mmol) were dissolved in 50 ml of hot ethanol as a solvent. The mixture was stirred well for 8 h to give a homogeneous solution and is was then allowed to evaporate in air at room temperature. Within a few days, small colourless block-like crystals of the title salt were formed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Water H atoms and the pyridinium N atoms were located from difference Fourier maps and refined with distance restraints. O—H = 0.82 (1) and N—H = 0.88 (1) Å, with Uiso(H) = 1.5Ueq(O) for the water H atoms. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula 2C7H11N2+·2C7H4NO4·3H2O
Mr 632.63
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.6163 (4), 12.7215 (7), 17.3478 (9)
α, β, γ (°) 108.238 (1), 92.247 (2), 101.512 (1)
V3) 1554.93 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.28 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.])
Tmin, Tmax 0.971, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 24031, 6426, 5126
Rint 0.029
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.154, 1.04
No. of reflections 6426
No. of parameters 437
No. of restraints 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Pyridine derivatives are used as calcium channel blockers and antagonists, and exhibit biological activities such as fungicidal, anti­bacterial, anti­fungal, anti­mycotic (Bossert et al., 1981; Lohaus & Dittmar, 1968; Wang et al.,1989). Benzene derivatives are extensively used in medicinal chemistry as important inter­mediates for many pharmaceutical products (Altmann et al., 2004). We herein report on the synthesis and crystal structure of the title salt prepared by the reaction of 4-di­methyl­amino­pyridine with 2-nitro­benzoic acid in hot ethanol as solvent.

Structural commentary top

The asymmetric unit of the title salt consists of two 4-di­methyl­amino­pyrdinium cations and two 2-nitro­benzoate anions, together with three water molecules (Fig. 1). The geometric parameters of the title compound are comparable to those reported for similar structures (Babu et al., 2014; Rajkumar et al., 2014), including the compounds 4-di­methyl­amino­pyridinium 2,4-, 3,4- and 3,5-di­nitro­benzoate (Hosomi et al., 2000). The conformations of the two cations are very similar as are the conformations of the two anions. Both 4-di­methyl­amino­pyridinium cations are protonated at their pyridine N atoms (N1 and N2) with the planes of the N(CH3)2 hetero atoms (N3/C6/C7 and N4/C13/C14) inclined to the pyridine rings (N1/C1–C5 and N2/C8–C12) by 4.5 (2) and 1.4 (2)°, respectively. In the 2-nitro­benzoate anions the carboxyl groups (O3/O4/C15 and O5/O6/C28) are inclined to the respective benzene rings (C16–C21 and C22–C27) by 77.1 (3) and 75.8 (2)°. The nitro groups (O1/O2/N5 and O7/O8/N6) are inclined to their respective benzene rings by 20.0 (3) and 20.9 (3)°.

Supra­molecular features top

In the crystal, the dihedral angle between the two pyridine rings (N1/C1–C5 and N2/C8–C12) is 5.16 (9)°, while the benzene rings (C16–C21 and C22–C27) form a dihedral angle of 19.56 (9)°. The anions are linked via O—H···O hydrogen bonds involving the water molecules, forming chains along [100]; Table 1 and Fig. 2. The cations are linked to these chains by N—H···O hydrogen bonds (Table 1). The chains are linked via C—H···O hydrogen bonds and ππ inter­actions, forming a three-dimensional structure [Cg1···Cg1i = 3.851 (1); Cg2···Cg2ii = 3.656 (1); Cg3···Cg3iii = 3.617 (1) Å; Cg1, Cg2, and Cg3 are the centroids of rings N1/C1–C5, N2/C8–C12, and C16–C21, respectively; symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y+3, -z+1; (iii) -x+2, -y+2, -z+2]. What is the role of the C—H···π inter­actions?

Database survey top

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen, 2002) of salts including benzoate anions and the cation 4-di­methyl­amino­pyridinium yielded 15 hits. Three of these salts have as anions 2,4-di­nitro­benzoate, 3,4-di­nitro­benzoate and 3,5-di­nitro­benzoate (KOBMAP, KOBNAQ, and KOBNOE, respectively; Hosomi et al., 2000). They were studied for their potential SHG properties; only the 3,5-dintrobenzoate salt crystallized in a non-centrosymmetric space group.

Synthesis and crystallization top

4-Di­methyl­amino­pyridine (2.442 g, 1 mmol) and 2-nitro­benzoic acid (3.342 g, 1mmol) were dissolved in 50 ml of hot ethanol as a solvent. The mixture was stirred well for 8 hours to give a homogeneous solution and is was then allowed to evaporate in air at room temperature. Within a few days, small colourless block-like crystals of the title salt were formed.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Water H atoms and the pyridinium N atoms were located from difference Fourier maps and refined with distance restraints. O—H = 0.82 (1) and N—H = 0.88 (1) Å, with Uiso(H) = 1.5Ueq(O) for the water H atoms. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Allen (2002); Altmann et al. (2004); Babu et al. (2014); Bossert et al. (1981); Hosomi et al. (2000); Lohaus & Dittmar (1968); Rajkumar et al. (2014); Wang et al. (1989).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title salt. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
Bis-(4-dimethylaminopyridinium) bis-(2-nitrobenzoate) trihydrate top
Crystal data top
2C7H11N2+·2C7H4NO4·3H2OZ = 2
Mr = 632.63F(000) = 668
Triclinic, P1Dx = 1.351 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6163 (4) ÅCell parameters from 668 reflections
b = 12.7215 (7) Åθ = 1.2–26.5°
c = 17.3478 (9) ŵ = 0.11 mm1
α = 108.238 (1)°T = 296 K
β = 92.247 (2)°Block, colourless
γ = 101.512 (1)°0.28 × 0.24 × 0.20 mm
V = 1554.93 (14) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6426 independent reflections
Radiation source: fine-focus sealed tube5126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scanθmax = 26.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.971, Tmax = 0.979k = 1515
24031 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.074P)2 + 0.5049P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6426 reflectionsΔρmax = 0.33 e Å3
437 parametersΔρmin = 0.36 e Å3
9 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.088 (5)
Crystal data top
2C7H11N2+·2C7H4NO4·3H2Oγ = 101.512 (1)°
Mr = 632.63V = 1554.93 (14) Å3
Triclinic, P1Z = 2
a = 7.6163 (4) ÅMo Kα radiation
b = 12.7215 (7) ŵ = 0.11 mm1
c = 17.3478 (9) ÅT = 296 K
α = 108.238 (1)°0.28 × 0.24 × 0.20 mm
β = 92.247 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6426 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5126 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.979Rint = 0.029
24031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0499 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
6426 reflectionsΔρmin = 0.36 e Å3
437 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8708 (2)0.46302 (15)1.12324 (10)0.0488 (4)
H10.90410.42271.15560.059*
C20.7934 (2)0.40558 (14)1.04589 (10)0.0460 (4)
H20.77280.32681.02630.055*
C30.7434 (2)0.46462 (13)0.99459 (9)0.0409 (3)
C40.7752 (2)0.58414 (14)1.03061 (11)0.0483 (4)
H40.74260.62761.00050.058*
C50.8525 (3)0.63547 (15)1.10852 (11)0.0527 (4)
H50.87270.71411.13090.063*
C60.6297 (3)0.28730 (17)0.88249 (12)0.0664 (5)
H6A0.73760.26250.86600.100*
H6B0.54120.26320.83590.100*
H6C0.58360.25480.92270.100*
C70.6312 (3)0.47267 (19)0.86320 (12)0.0650 (5)
H7A0.53910.51260.88320.097*
H7B0.59030.42020.80920.097*
H7C0.73840.52610.86160.097*
C80.8222 (3)1.47002 (15)0.57602 (11)0.0523 (4)
H80.85051.42900.60890.063*
C90.7602 (2)1.41427 (15)0.49641 (11)0.0500 (4)
H90.74611.33590.47550.060*
C100.7169 (2)1.47433 (14)0.44473 (10)0.0446 (4)
C110.7429 (3)1.59337 (15)0.48165 (11)0.0537 (4)
H110.71761.63770.45080.064*
C120.8050 (3)1.64289 (16)0.56213 (12)0.0573 (5)
H120.82101.72110.58550.069*
C130.6263 (4)1.29817 (19)0.32983 (13)0.0759 (6)
H13A0.73831.27560.33430.114*
H13B0.58071.27540.27330.114*
H13C0.54071.26250.35830.114*
C140.6142 (4)1.4840 (2)0.31276 (13)0.0776 (7)
H14A0.51891.52110.33250.116*
H14B0.57671.43240.25830.116*
H14C0.71951.53980.31260.116*
C150.9883 (3)0.77742 (14)0.79236 (10)0.0495 (4)
C160.9024 (2)0.83033 (12)0.93876 (10)0.0403 (3)
C170.9453 (2)0.87021 (13)1.02242 (10)0.0459 (4)
H170.85520.87061.05710.055*
C181.1237 (3)0.90929 (14)1.05345 (10)0.0513 (4)
H181.15520.93631.10960.062*
C191.2561 (2)0.90851 (14)1.00132 (12)0.0526 (4)
H191.37670.93471.02260.063*
C201.2105 (2)0.86906 (14)0.91776 (11)0.0489 (4)
H201.30110.86990.88340.059*
C211.0315 (2)0.82816 (12)0.88416 (9)0.0410 (4)
C220.8177 (2)1.16928 (13)0.58212 (10)0.0456 (4)
C230.9267 (3)1.12931 (18)0.52210 (14)0.0671 (5)
H231.04701.13310.53690.081*
C240.8576 (4)1.0839 (2)0.44030 (14)0.0823 (7)
H240.93221.05730.40100.099*
C250.6807 (4)1.07774 (18)0.41684 (13)0.0755 (7)
H250.63601.04730.36190.091*
C260.5713 (3)1.11601 (15)0.47379 (12)0.0613 (5)
H260.45141.11230.45830.074*
C270.6400 (2)1.16086 (13)0.55545 (10)0.0456 (4)
C280.9034 (2)1.22402 (14)0.66958 (11)0.0503 (4)
N10.9009 (2)0.57649 (13)1.15435 (9)0.0512 (4)
N20.8436 (2)1.58265 (13)0.60863 (9)0.0541 (4)
N30.6704 (2)0.41060 (13)0.91725 (8)0.0511 (4)
N40.6558 (2)1.42142 (13)0.36576 (9)0.0562 (4)
N50.7108 (2)0.79252 (13)0.90781 (10)0.0541 (4)
N60.5164 (2)1.19959 (14)0.61527 (12)0.0626 (4)
O10.6036 (2)0.76776 (17)0.95241 (13)0.0902 (5)
O20.6658 (2)0.7890 (2)0.83978 (12)0.1068 (7)
O30.9533 (3)0.67136 (11)0.76561 (8)0.0799 (5)
O40.9988 (2)0.84108 (12)0.75059 (8)0.0675 (4)
O50.9399 (2)1.16209 (12)0.70715 (10)0.0762 (5)
O60.9380 (3)1.32923 (11)0.69509 (9)0.0787 (5)
O70.5517 (3)1.2051 (2)0.68427 (11)0.1237 (9)
O80.3773 (3)1.21786 (19)0.59186 (15)0.1076 (7)
O90.1837 (2)1.07159 (15)0.78781 (11)0.0777 (4)
O100.7405 (2)0.93838 (16)0.68527 (13)0.0874 (5)
O110.5046 (3)1.0003 (3)0.81462 (15)0.1128 (7)
H9A0.141 (6)1.103 (3)0.758 (2)0.169*
H9B0.087 (2)1.020 (2)0.777 (3)0.169*
H10A0.814 (5)0.917 (4)0.709 (2)0.169*
H10B0.803 (5)1.0021 (18)0.692 (3)0.169*
H11A0.425 (4)1.026 (4)0.798 (3)0.169*
H11B0.566 (5)0.996 (4)0.7735 (18)0.169*
H1A0.957 (3)0.6117 (18)1.2044 (8)0.074 (7)*
H2A0.887 (3)1.6140 (18)0.6610 (7)0.073 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0534 (10)0.0527 (9)0.0438 (9)0.0111 (7)0.0004 (7)0.0217 (7)
C20.0536 (9)0.0411 (8)0.0446 (9)0.0107 (7)0.0017 (7)0.0161 (7)
C30.0414 (8)0.0448 (8)0.0373 (8)0.0095 (6)0.0039 (6)0.0146 (7)
C40.0590 (10)0.0434 (8)0.0462 (9)0.0116 (7)0.0013 (7)0.0203 (7)
C50.0632 (11)0.0398 (8)0.0501 (10)0.0042 (7)0.0004 (8)0.0130 (7)
C60.0867 (15)0.0554 (11)0.0452 (10)0.0093 (10)0.0065 (10)0.0057 (8)
C70.0803 (14)0.0753 (13)0.0431 (10)0.0207 (11)0.0041 (9)0.0240 (9)
C80.0630 (11)0.0519 (10)0.0439 (9)0.0088 (8)0.0013 (8)0.0218 (8)
C90.0601 (10)0.0428 (8)0.0456 (9)0.0067 (7)0.0027 (8)0.0164 (7)
C100.0451 (8)0.0481 (9)0.0395 (8)0.0057 (7)0.0012 (7)0.0163 (7)
C110.0666 (11)0.0484 (9)0.0500 (10)0.0142 (8)0.0005 (8)0.0216 (8)
C120.0720 (12)0.0443 (9)0.0517 (10)0.0132 (8)0.0040 (9)0.0106 (8)
C130.0970 (17)0.0637 (13)0.0493 (11)0.0072 (11)0.0159 (11)0.0035 (9)
C140.0997 (17)0.0870 (16)0.0473 (11)0.0099 (13)0.0081 (11)0.0322 (11)
C150.0684 (11)0.0442 (9)0.0377 (8)0.0162 (8)0.0020 (8)0.0144 (7)
C160.0472 (8)0.0311 (7)0.0436 (8)0.0097 (6)0.0005 (7)0.0139 (6)
C170.0623 (10)0.0373 (8)0.0416 (9)0.0152 (7)0.0094 (7)0.0147 (6)
C180.0741 (12)0.0386 (8)0.0375 (8)0.0126 (8)0.0067 (8)0.0090 (7)
C190.0512 (10)0.0431 (9)0.0580 (11)0.0075 (7)0.0093 (8)0.0125 (8)
C200.0505 (9)0.0450 (9)0.0516 (10)0.0120 (7)0.0071 (7)0.0154 (7)
C210.0544 (9)0.0314 (7)0.0381 (8)0.0117 (6)0.0023 (7)0.0114 (6)
C220.0553 (9)0.0356 (8)0.0429 (9)0.0062 (7)0.0054 (7)0.0125 (7)
C230.0645 (12)0.0624 (12)0.0701 (13)0.0136 (10)0.0101 (10)0.0157 (10)
C240.117 (2)0.0663 (14)0.0559 (13)0.0153 (13)0.0275 (13)0.0100 (11)
C250.118 (2)0.0532 (11)0.0406 (10)0.0022 (12)0.0100 (12)0.0109 (9)
C260.0772 (13)0.0440 (9)0.0540 (11)0.0037 (9)0.0243 (10)0.0182 (8)
C270.0566 (9)0.0342 (7)0.0428 (9)0.0042 (7)0.0085 (7)0.0135 (6)
C280.0553 (10)0.0452 (9)0.0476 (9)0.0046 (7)0.0131 (8)0.0175 (7)
N10.0546 (8)0.0524 (8)0.0401 (8)0.0022 (7)0.0065 (6)0.0134 (6)
N20.0665 (10)0.0548 (9)0.0360 (8)0.0098 (7)0.0001 (7)0.0107 (7)
N30.0630 (9)0.0512 (8)0.0380 (7)0.0131 (7)0.0022 (6)0.0137 (6)
N40.0667 (10)0.0580 (9)0.0404 (8)0.0069 (7)0.0061 (7)0.0172 (7)
N50.0502 (8)0.0475 (8)0.0660 (10)0.0103 (6)0.0011 (7)0.0220 (7)
N60.0550 (9)0.0560 (9)0.0715 (11)0.0113 (7)0.0042 (8)0.0156 (8)
O10.0539 (9)0.1180 (14)0.1136 (14)0.0119 (9)0.0183 (9)0.0619 (12)
O20.0651 (10)0.172 (2)0.0772 (12)0.0044 (11)0.0220 (9)0.0492 (13)
O30.1489 (16)0.0448 (7)0.0383 (7)0.0178 (8)0.0128 (8)0.0077 (6)
O40.1011 (11)0.0583 (8)0.0494 (7)0.0185 (7)0.0010 (7)0.0271 (6)
O50.0974 (11)0.0614 (8)0.0711 (9)0.0069 (8)0.0274 (8)0.0346 (7)
O60.1240 (13)0.0446 (7)0.0532 (8)0.0023 (7)0.0385 (8)0.0119 (6)
O70.0940 (14)0.211 (3)0.0547 (11)0.0546 (15)0.0089 (9)0.0146 (13)
O80.0775 (12)0.1227 (16)0.1424 (18)0.0515 (11)0.0068 (12)0.0535 (14)
O90.0827 (11)0.0792 (11)0.0707 (10)0.0185 (8)0.0039 (8)0.0252 (8)
O100.0776 (11)0.0778 (11)0.1062 (14)0.0037 (9)0.0192 (10)0.0413 (10)
O110.0952 (15)0.153 (2)0.0994 (16)0.0310 (14)0.0013 (12)0.0531 (15)
Geometric parameters (Å, º) top
C1—N11.341 (2)C15—O31.250 (2)
C1—C21.355 (2)C15—C211.514 (2)
C1—H10.9300C16—C171.381 (2)
C2—C31.416 (2)C16—C211.390 (2)
C2—H20.9300C16—N51.464 (2)
C3—N31.339 (2)C17—C181.374 (3)
C3—C41.417 (2)C17—H170.9300
C4—C51.354 (2)C18—C191.380 (3)
C4—H40.9300C18—H180.9300
C5—N11.338 (2)C19—C201.382 (3)
C5—H50.9300C19—H190.9300
C6—N31.456 (2)C20—C211.391 (2)
C6—H6A0.9600C20—H200.9300
C6—H6B0.9600C22—C271.385 (2)
C6—H6C0.9600C22—C231.392 (3)
C7—N31.459 (2)C22—C281.514 (2)
C7—H7A0.9600C23—C241.390 (3)
C7—H7B0.9600C23—H230.9300
C7—H7C0.9600C24—C251.372 (4)
C8—N21.339 (2)C24—H240.9300
C8—C91.355 (2)C25—C261.354 (3)
C8—H80.9300C25—H250.9300
C9—C101.415 (2)C26—C271.387 (2)
C9—H90.9300C26—H260.9300
C10—N41.339 (2)C27—N61.465 (3)
C10—C111.416 (2)C28—O51.232 (2)
C11—C121.360 (3)C28—O61.239 (2)
C11—H110.9300N1—H1A0.886 (10)
C12—N21.335 (2)N2—H2A0.890 (10)
C12—H120.9300N5—O21.201 (2)
C13—N41.461 (3)N5—O11.210 (2)
C13—H13A0.9600N6—O71.193 (2)
C13—H13B0.9600N6—O81.211 (2)
C13—H13C0.9600O9—H9A0.833 (10)
C14—N41.455 (3)O9—H9B0.850 (10)
C14—H14A0.9600O10—H10A0.823 (10)
C14—H14B0.9600O10—H10B0.824 (10)
C14—H14C0.9600O11—H11A0.826 (10)
C15—O41.238 (2)O11—H11B0.861 (10)
N1—C1—C2121.77 (15)C21—C16—N5119.65 (15)
N1—C1—H1119.1C18—C17—C16118.75 (16)
C2—C1—H1119.1C18—C17—H17120.6
C1—C2—C3120.51 (15)C16—C17—H17120.6
C1—C2—H2119.7C17—C18—C19120.07 (16)
C3—C2—H2119.7C17—C18—H18120.0
N3—C3—C2121.99 (15)C19—C18—H18120.0
N3—C3—C4122.39 (15)C18—C19—C20120.39 (17)
C2—C3—C4115.62 (14)C18—C19—H19119.8
C5—C4—C3120.42 (15)C20—C19—H19119.8
C5—C4—H4119.8C19—C20—C21121.14 (16)
C3—C4—H4119.8C19—C20—H20119.4
N1—C5—C4121.97 (16)C21—C20—H20119.4
N1—C5—H5119.0C16—C21—C20116.66 (15)
C4—C5—H5119.0C16—C21—C15123.84 (15)
N3—C6—H6A109.5C20—C21—C15119.37 (15)
N3—C6—H6B109.5C27—C22—C23116.35 (17)
H6A—C6—H6B109.5C27—C22—C28125.37 (16)
N3—C6—H6C109.5C23—C22—C28118.17 (17)
H6A—C6—H6C109.5C24—C23—C22120.7 (2)
H6B—C6—H6C109.5C24—C23—H23119.7
N3—C7—H7A109.5C22—C23—H23119.7
N3—C7—H7B109.5C25—C24—C23120.8 (2)
H7A—C7—H7B109.5C25—C24—H24119.6
N3—C7—H7C109.5C23—C24—H24119.6
H7A—C7—H7C109.5C26—C25—C24119.88 (19)
H7B—C7—H7C109.5C26—C25—H25120.1
N2—C8—C9121.68 (16)C24—C25—H25120.1
N2—C8—H8119.2C25—C26—C27119.3 (2)
C9—C8—H8119.2C25—C26—H26120.3
C8—C9—C10120.53 (16)C27—C26—H26120.3
C8—C9—H9119.7C22—C27—C26122.93 (18)
C10—C9—H9119.7C22—C27—N6119.45 (15)
N4—C10—C9121.79 (16)C26—C27—N6117.62 (17)
N4—C10—C11122.36 (15)O5—C28—O6126.17 (16)
C9—C10—C11115.85 (15)O5—C28—C22118.31 (15)
C12—C11—C10120.03 (16)O6—C28—C22115.42 (14)
C12—C11—H11120.0C5—N1—C1119.69 (15)
C10—C11—H11120.0C5—N1—H1A120.8 (16)
N2—C12—C11122.02 (17)C1—N1—H1A119.5 (15)
N2—C12—H12119.0C12—N2—C8119.89 (15)
C11—C12—H12119.0C12—N2—H2A123.1 (15)
N4—C13—H13A109.5C8—N2—H2A117.0 (15)
N4—C13—H13B109.5C3—N3—C6121.71 (15)
H13A—C13—H13B109.5C3—N3—C7121.54 (15)
N4—C13—H13C109.5C6—N3—C7116.73 (15)
H13A—C13—H13C109.5C10—N4—C14121.44 (16)
H13B—C13—H13C109.5C10—N4—C13121.11 (15)
N4—C14—H14A109.5C14—N4—C13117.45 (16)
N4—C14—H14B109.5O2—N5—O1122.49 (18)
H14A—C14—H14B109.5O2—N5—C16118.90 (16)
N4—C14—H14C109.5O1—N5—C16118.60 (17)
H14A—C14—H14C109.5O7—N6—O8122.5 (2)
H14B—C14—H14C109.5O7—N6—C27118.58 (18)
O4—C15—O3125.90 (16)O8—N6—C27118.8 (2)
O4—C15—C21119.44 (15)H9A—O9—H9B91 (4)
O3—C15—C21114.55 (14)H10A—O10—H10B96 (4)
C17—C16—C21123.00 (15)H11A—O11—H11B96 (4)
C17—C16—N5117.32 (15)
N1—C1—C2—C30.9 (3)C24—C25—C26—C270.1 (3)
C1—C2—C3—N3178.43 (16)C23—C22—C27—C260.3 (2)
C1—C2—C3—C41.8 (2)C28—C22—C27—C26175.91 (15)
N3—C3—C4—C5178.69 (17)C23—C22—C27—N6179.05 (16)
C2—C3—C4—C51.6 (2)C28—C22—C27—N64.7 (2)
C3—C4—C5—N10.3 (3)C25—C26—C27—C220.4 (3)
N2—C8—C9—C100.4 (3)C25—C26—C27—N6179.00 (17)
C8—C9—C10—N4179.85 (17)C27—C22—C28—O5108.3 (2)
C8—C9—C10—C110.1 (3)C23—C22—C28—O575.5 (2)
N4—C10—C11—C12179.88 (18)C27—C22—C28—O675.0 (2)
C9—C10—C11—C120.4 (3)C23—C22—C28—O6101.1 (2)
C10—C11—C12—N20.2 (3)C4—C5—N1—C10.7 (3)
C21—C16—C17—C180.2 (2)C2—C1—N1—C50.4 (3)
N5—C16—C17—C18178.21 (13)C11—C12—N2—C80.3 (3)
C16—C17—C18—C190.2 (2)C9—C8—N2—C120.6 (3)
C17—C18—C19—C200.3 (3)C2—C3—N3—C63.1 (3)
C18—C19—C20—C210.8 (3)C4—C3—N3—C6176.64 (17)
C17—C16—C21—C200.2 (2)C2—C3—N3—C7175.62 (17)
N5—C16—C21—C20177.74 (13)C4—C3—N3—C74.6 (3)
C17—C16—C21—C15175.61 (14)C9—C10—N4—C14179.02 (19)
N5—C16—C21—C156.5 (2)C11—C10—N4—C140.7 (3)
C19—C20—C21—C160.7 (2)C9—C10—N4—C131.7 (3)
C19—C20—C21—C15175.32 (15)C11—C10—N4—C13178.59 (19)
O4—C15—C21—C16107.6 (2)C17—C16—N5—O2158.56 (19)
O3—C15—C21—C1675.9 (2)C21—C16—N5—O219.5 (3)
O4—C15—C21—C2076.7 (2)C17—C16—N5—O120.3 (2)
O3—C15—C21—C2099.8 (2)C21—C16—N5—O1161.69 (17)
C27—C22—C23—C240.0 (3)C22—C27—N6—O722.2 (3)
C28—C22—C23—C24176.52 (18)C26—C27—N6—O7157.2 (2)
C22—C23—C24—C250.2 (3)C22—C27—N6—O8162.33 (19)
C23—C24—C25—C260.2 (3)C26—C27—N6—O818.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3 and Cg4 are the centroids of rings N1/C1–C5, C16–C21, and C22–C27, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.89 (2)1.75 (2)2.639 (2)175 (2)
O9—H9A···O5ii0.84 (4)2.11 (4)2.896 (2)156 (4)
O10—H10A···O40.82 (4)2.08 (4)2.892 (2)170 (4)
O10—H10B···O50.82 (3)2.02 (3)2.847 (3)176 (4)
O11—H11A···O90.83 (4)2.05 (3)2.841 (3)160 (4)
O11—H11B···O100.86 (4)2.12 (4)2.943 (3)160 (4)
C1—H1···O3iii0.932.433.348 (2)169
C4—H4···O10.932.573.474 (3)164
C6—H6B···O7iv0.962.513.258 (3)135
C8—H8···O60.932.403.325 (3)177
C23—H23···O8v0.932.553.434 (3)160
C2—H2···Cg3iii0.932.963.7481 (19)144
C7—H7A···Cg1vi0.932.853.661 (2)142
C9—H9···Cg40.932.863.702 (2)151
Symmetry codes: (i) x+2, y+2, z+2; (ii) x1, y, z; (iii) x+2, y+1, z+2; (iv) x, y1, z; (v) x+1, y, z; (vi) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula2C7H11N2+·2C7H4NO4·3H2O
Mr632.63
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.6163 (4), 12.7215 (7), 17.3478 (9)
α, β, γ (°)108.238 (1), 92.247 (2), 101.512 (1)
V3)1554.93 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
24031, 6426, 5126
Rint0.029
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.154, 1.04
No. of reflections6426
No. of parameters437
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.36

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXL97 (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg3 and Cg4 are the centroids of rings N1/C1–C5, C16–C21, and C22–C27, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.888 (15)1.754 (15)2.639 (2)175 (2)
O9—H9A···O5ii0.84 (4)2.11 (4)2.896 (2)156 (4)
O10—H10A···O40.82 (4)2.08 (4)2.892 (2)170 (4)
O10—H10B···O50.82 (3)2.02 (3)2.847 (3)176 (4)
O11—H11A···O90.83 (4)2.05 (3)2.841 (3)160 (4)
O11—H11B···O100.86 (4)2.12 (4)2.943 (3)160 (4)
C1—H1···O3iii0.932.433.348 (2)169
C4—H4···O10.932.573.474 (3)164
C6—H6B···O7iv0.962.513.258 (3)135
C8—H8···O60.932.403.325 (3)177
C23—H23···O8v0.932.553.434 (3)160
C2—H2···Cg3iii0.932.963.7481 (19)144
C7—H7A···Cg1vi0.932.853.661 (2)142
C9—H9···Cg40.932.863.702 (2)151
Symmetry codes: (i) x+2, y+2, z+2; (ii) x1, y, z; (iii) x+2, y+1, z+2; (iv) x, y1, z; (v) x+1, y, z; (vi) x+1, y+1, z+2.
 

Acknowledgements

The authors are grateful to T. Srinivasan, CAS in Crystallography and Biophysics, University of Madras, Chennai 600 025, India, for the X-ray data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltmann, E., Cowan-Jacob, S. W. & Martin Missbach, M. (2004). J. Med. Chem. 4, 5833–5836.  Web of Science CrossRef Google Scholar
First citationBabu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391–o392.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBossert, F., Meyer, H. & Wehinger, E. (1981). Angew. Chem. Int. Ed. Engl. 20, 762–769.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e149–e150.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLohaus, G. & Dittmar, W. (1968). S. Afr. Patent 6 906 036.  Google Scholar
First citationRajkumar, M. A., Xavier, S. S. J., Anbarasu, S., Devarajan, P. A. & NizamMohideen, M. (2014). Acta Cryst. E70, o473–o474.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. D., Herbette, L. G. & Rhodes, D. G. (1989). Acta Cryst. C45, 1748–1751.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 221-223
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds