organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of flufenoxuron: a benzoyl­urea pesticide

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang, National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 5 September 2014; accepted 15 September 2014; online 17 September 2014)

The title compound, C21H11ClF6N2O3 (systematic name: 1-{4-[2-chloro-4-(trifluoromethyl)phenoxy]-2-fluorophenyl}-3-(2,6-di­fluoro­benzo­yl)urea), is a benzoyl­urea pesticide. The dihedral angles between the central fluoro­benzene ring and the terminal di­fluoro­phenyl ring and chloro­phenyl ring system are 62.15 (5) and 88.03 (5)°, respectively. In the crystal, N—H⋯O hydrogen bonds link adjacent mol­ecules, forming R22(8) inversion dimers that pack into loop chains along the a-axis direction by short F⋯F contacts [2.729 (2) Å]. In addition, the chains are linked by weak C—H⋯π and ππ inter­actions [inter-centroid distances = 3.661 (2) and 3.535 (12) Å], resulting in a three-dimensional architecture.

1. Related literature

For information on the toxicity and pesticidal properties of the title compound, see: Kamel et al. (2007[Kamel, A., Al-Dosary, S., Ibrahim, S. & Ahmed, M. A. (2007). Food Chem. 100, 1590-1593.]); Salokhe et al. (2006[Salokhe, S., Sarkar, A., Kulkarni, A., Mukherjee, S. & Pal, J. K. (2006). Pestic. Biochem. Physiol. 85, 84-90.]). For a related crystal structure, see: Liu et al. (2008[Liu, Y., Li, F. & Li, Y. (2008). Acta Cryst. E64, o1756.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H11ClF6N2O3

  • Mr = 488.77

  • Triclinic, [P \overline 1]

  • a = 10.017 (2) Å

  • b = 10.640 (2) Å

  • c = 10.677 (2) Å

  • α = 62.520 (9)°

  • β = 75.874 (8)°

  • γ = 81.831 (8)°

  • V = 978.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 173 K

  • 0.35 × 0.30 × 0.28 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.926

  • 14229 measured reflections

  • 3822 independent reflections

  • 3324 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.07

  • 3822 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 1.97 2.8157 (17) 161
C2—H2ACg2ii 0.95 2.89 3.661 (2) 139
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL ; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Flufenoxuron is a benzoylurea pesticide and acts as an insect growth regulator and chitin synthesis inhibitor. It is used to control immature stages of insects and phytophagous mites on fruits and vegetables (Salokhe et al., 2006; Kamel et al., 2007) and its crystal structure is reported on herein.

In th e title compound, Fig. 1, the dihedral angles between the central fluorobenzene ring and the terminal difluorophenyl ring and chlorophenyl ring system are 62.15 (5) and 88.03 (5)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Liu et al., 2008).

In the crystal, Fig. 2, molecules are linked by a a pair of urea N—H···O hydrogen bonds (Table 1), forming inversion dimers with an R22(8) ring motif. In addition, a short F···F contact [F2···F5i, 2.729 (2) Å] links the dimers into one-dimensional chains extending along [100]. In addition, a weak intermolecular C—H···π interaction [C2—H2A···Cg2ii, 3.611 (2) Å] and ππ interaction between the terminal chlorophenyl ring systems [Cg3···Cg3iii, 3.535 (12) Å] are present (Cg2 and Cg3 are the centroids of the C9-C14 and C15-C20 rings, respectively) [for symmetry codes: (i), -x + 1, -y + 1, -z + 1, (ii), x, y + 1, z, and (iii), -x + 2, -y + 1, -z + 2].

Related literature top

For information on the toxicity and pesticidal properties of the title compound, see: Kamel et al. (2007); Salokhe et al. (2006). For a related crystal structure, see: Liu et al. (2008).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model: N—H = 0.88 Å, Uiso = 1.2Ueq(C) C—H = 0.95 Å, with Uiso = 1.2Ueq(N,C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis. The N—H···O hydrogen bonds, weak π···π interactions, and short F···F contacts are shown as dashed lines (see Table 1 for details).
1-{4-[2-Chloro-4-(trifluoromethyl)phenoxy]-2-fluorophenyl}-3-(2,6-difluorobenzoyl)urea top
Crystal data top
C21H11ClF6N2O3Z = 2
Mr = 488.77F(000) = 492
Triclinic, P1Dx = 1.659 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.017 (2) ÅCell parameters from 8341 reflections
b = 10.640 (2) Åθ = 2.2–28.4°
c = 10.677 (2) ŵ = 0.28 mm1
α = 62.520 (9)°T = 173 K
β = 75.874 (8)°Block, colourless
γ = 81.831 (8)°0.35 × 0.30 × 0.28 mm
V = 978.4 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3822 independent reflections
Radiation source: fine-focus sealed tube3324 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.908, Tmax = 0.926k = 1313
14229 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.2919P]
where P = (Fo2 + 2Fc2)/3
3822 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C21H11ClF6N2O3γ = 81.831 (8)°
Mr = 488.77V = 978.4 (4) Å3
Triclinic, P1Z = 2
a = 10.017 (2) ÅMo Kα radiation
b = 10.640 (2) ŵ = 0.28 mm1
c = 10.677 (2) ÅT = 173 K
α = 62.520 (9)°0.35 × 0.30 × 0.28 mm
β = 75.874 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
3822 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3324 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.926Rint = 0.023
14229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
3822 reflectionsΔρmin = 0.30 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.05546 (6)0.22505 (6)1.07307 (7)0.06363 (18)
F10.72246 (14)0.77531 (13)0.68591 (13)0.0641 (3)
F20.69987 (15)0.81354 (13)0.23893 (12)0.0675 (4)
F30.60803 (12)0.16340 (12)0.85938 (13)0.0628 (3)
F41.49311 (11)0.44174 (14)0.79601 (15)0.0679 (4)
F51.39871 (13)0.60799 (15)0.79606 (16)0.0717 (4)
F61.41608 (12)0.61650 (13)0.99444 (13)0.0641 (3)
N10.66935 (13)0.55105 (12)0.51095 (14)0.0308 (3)
H10.59840.59430.47090.037*
N20.78988 (14)0.33879 (13)0.61862 (17)0.0392 (3)
H20.85220.39120.61560.047*
O10.86135 (14)0.59246 (13)0.56208 (18)0.0583 (4)
O20.59312 (11)0.34257 (11)0.55010 (13)0.0374 (3)
O30.87566 (11)0.24450 (11)0.90357 (13)0.0390 (3)
C10.70453 (17)0.85551 (18)0.5500 (2)0.0403 (4)
C20.67730 (18)0.99811 (19)0.5047 (2)0.0499 (5)
H2A0.67331.04040.56690.060*
C30.6561 (2)1.07764 (19)0.3669 (3)0.0555 (5)
H30.63671.17660.33350.067*
C40.6621 (2)1.0175 (2)0.2763 (2)0.0560 (5)
H40.64751.07350.18090.067*
C50.68988 (18)0.87424 (18)0.32706 (19)0.0419 (4)
C60.71198 (15)0.78873 (15)0.46415 (18)0.0339 (3)
C70.75540 (16)0.63483 (16)0.51697 (18)0.0355 (4)
C80.68046 (15)0.40302 (15)0.56139 (16)0.0296 (3)
C90.81003 (16)0.18930 (15)0.68433 (18)0.0332 (3)
C100.92643 (16)0.12655 (16)0.63537 (19)0.0384 (4)
H100.98990.18330.55150.046*
C110.95320 (16)0.01844 (17)0.70618 (19)0.0382 (4)
H111.03450.06080.67190.046*
C120.86001 (16)0.09984 (15)0.82683 (17)0.0315 (3)
C130.74046 (17)0.04027 (17)0.87751 (17)0.0369 (4)
H130.67520.09710.95930.044*
C140.71953 (17)0.10336 (17)0.80564 (18)0.0370 (4)
C151.00506 (16)0.30610 (15)0.88616 (16)0.0324 (3)
C161.03725 (17)0.37490 (16)0.79989 (17)0.0365 (4)
H160.97380.37170.74520.044*
C171.16171 (17)0.44842 (17)0.79308 (17)0.0366 (4)
H171.18430.49580.73350.044*
C181.25330 (16)0.45299 (16)0.87284 (17)0.0340 (3)
C191.22220 (17)0.38360 (17)0.95874 (18)0.0372 (4)
H191.28570.38651.01320.045*
C201.09787 (17)0.31014 (16)0.96449 (18)0.0368 (4)
C211.38909 (18)0.53102 (19)0.8653 (2)0.0426 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0639 (3)0.0762 (4)0.0827 (4)0.0180 (3)0.0260 (3)0.0621 (3)
F10.0877 (9)0.0590 (7)0.0562 (7)0.0061 (6)0.0288 (6)0.0267 (6)
F20.1045 (10)0.0538 (7)0.0453 (6)0.0072 (7)0.0209 (7)0.0190 (5)
F30.0616 (7)0.0458 (6)0.0604 (7)0.0227 (5)0.0026 (6)0.0204 (5)
F40.0379 (6)0.0673 (8)0.0858 (9)0.0064 (5)0.0052 (6)0.0309 (7)
F50.0624 (8)0.0797 (9)0.1068 (10)0.0300 (7)0.0318 (7)0.0716 (8)
F60.0514 (7)0.0652 (7)0.0604 (7)0.0206 (6)0.0210 (6)0.0168 (6)
N10.0298 (6)0.0220 (6)0.0409 (7)0.0023 (5)0.0152 (5)0.0113 (5)
N20.0356 (7)0.0221 (6)0.0619 (9)0.0018 (5)0.0261 (7)0.0132 (6)
O10.0441 (7)0.0319 (6)0.1053 (12)0.0034 (5)0.0421 (8)0.0241 (7)
O20.0350 (6)0.0266 (5)0.0551 (7)0.0012 (4)0.0212 (5)0.0168 (5)
O30.0319 (6)0.0237 (5)0.0490 (7)0.0025 (4)0.0073 (5)0.0071 (5)
C10.0345 (8)0.0365 (8)0.0518 (10)0.0056 (7)0.0105 (7)0.0191 (8)
C20.0396 (9)0.0396 (10)0.0765 (14)0.0066 (8)0.0031 (9)0.0336 (10)
C30.0423 (10)0.0263 (8)0.0855 (15)0.0017 (7)0.0064 (10)0.0175 (9)
C40.0546 (12)0.0350 (9)0.0571 (12)0.0039 (8)0.0148 (9)0.0003 (9)
C50.0435 (9)0.0342 (8)0.0445 (9)0.0045 (7)0.0098 (8)0.0133 (7)
C60.0285 (7)0.0256 (7)0.0453 (9)0.0039 (6)0.0094 (7)0.0122 (7)
C70.0324 (8)0.0265 (7)0.0471 (9)0.0016 (6)0.0133 (7)0.0132 (7)
C80.0294 (7)0.0242 (7)0.0339 (7)0.0005 (6)0.0088 (6)0.0110 (6)
C90.0333 (8)0.0243 (7)0.0448 (9)0.0018 (6)0.0196 (7)0.0128 (7)
C100.0292 (8)0.0287 (8)0.0473 (9)0.0035 (6)0.0087 (7)0.0075 (7)
C110.0285 (8)0.0289 (8)0.0487 (9)0.0026 (6)0.0056 (7)0.0122 (7)
C120.0331 (8)0.0230 (7)0.0380 (8)0.0025 (6)0.0137 (6)0.0110 (6)
C130.0357 (8)0.0327 (8)0.0359 (8)0.0018 (7)0.0055 (7)0.0115 (7)
C140.0368 (8)0.0345 (8)0.0410 (9)0.0092 (7)0.0111 (7)0.0192 (7)
C150.0324 (8)0.0219 (7)0.0353 (8)0.0018 (6)0.0083 (6)0.0065 (6)
C160.0411 (9)0.0320 (8)0.0347 (8)0.0004 (7)0.0149 (7)0.0102 (7)
C170.0427 (9)0.0324 (8)0.0348 (8)0.0006 (7)0.0069 (7)0.0156 (7)
C180.0351 (8)0.0259 (7)0.0352 (8)0.0006 (6)0.0058 (7)0.0095 (6)
C190.0351 (8)0.0358 (8)0.0441 (9)0.0018 (7)0.0131 (7)0.0190 (7)
C200.0416 (9)0.0299 (8)0.0412 (9)0.0003 (7)0.0088 (7)0.0179 (7)
C210.0379 (9)0.0400 (9)0.0488 (10)0.0031 (7)0.0074 (8)0.0207 (8)
Geometric parameters (Å, º) top
Cl1—C201.7214 (17)C4—C51.373 (3)
F1—C11.344 (2)C4—H40.9500
F2—C51.345 (2)C5—C61.375 (2)
F3—C141.3444 (19)C6—C71.501 (2)
F4—C211.339 (2)C9—C101.372 (2)
F5—C211.315 (2)C9—C141.380 (2)
F6—C211.325 (2)C10—C111.389 (2)
N1—C71.3566 (19)C10—H100.9500
N1—C81.4070 (18)C11—C121.376 (2)
N1—H10.8800C11—H110.9500
N2—C81.331 (2)C12—C131.383 (2)
N2—C91.4180 (19)C13—C141.369 (2)
N2—H20.8800C13—H130.9500
O1—C71.214 (2)C15—C161.378 (2)
O2—C81.2152 (18)C15—C201.379 (2)
O3—C121.3767 (18)C16—C171.379 (2)
O3—C151.3776 (18)C16—H160.9500
C1—C21.371 (2)C17—C181.378 (2)
C1—C61.379 (2)C17—H170.9500
C2—C31.370 (3)C18—C191.380 (2)
C2—H2A0.9500C18—C211.494 (2)
C3—C41.371 (3)C19—C201.377 (2)
C3—H30.9500C19—H190.9500
C7—N1—C8127.52 (12)C12—C11—C10118.92 (15)
C7—N1—H1116.2C12—C11—H11120.5
C8—N1—H1116.2C10—C11—H11120.5
C8—N2—C9122.64 (13)C11—C12—O3123.56 (14)
C8—N2—H2118.7C11—C12—C13121.33 (14)
C9—N2—H2118.7O3—C12—C13115.09 (13)
C12—O3—C15118.26 (12)C14—C13—C12117.68 (15)
F1—C1—C2118.69 (17)C14—C13—H13121.2
F1—C1—C6117.85 (15)C12—C13—H13121.2
C2—C1—C6123.45 (17)F3—C14—C13118.10 (15)
C3—C2—C1117.89 (18)F3—C14—C9118.80 (14)
C3—C2—H2A121.1C13—C14—C9123.05 (15)
C1—C2—H2A121.1O3—C15—C16119.66 (14)
C2—C3—C4121.44 (17)O3—C15—C20120.24 (14)
C2—C3—H3119.3C16—C15—C20119.85 (14)
C4—C3—H3119.3C15—C16—C17119.88 (15)
C3—C4—C5118.30 (19)C15—C16—H16120.1
C3—C4—H4120.8C17—C16—H16120.1
C5—C4—H4120.8C18—C17—C16119.86 (15)
F2—C5—C4119.35 (17)C18—C17—H17120.1
F2—C5—C6117.60 (15)C16—C17—H17120.1
C4—C5—C6123.02 (18)C17—C18—C19120.59 (15)
C5—C6—C1115.89 (15)C17—C18—C21120.41 (15)
C5—C6—C7123.76 (15)C19—C18—C21118.99 (15)
C1—C6—C7120.09 (15)C20—C19—C18119.12 (15)
O1—C7—N1124.19 (14)C20—C19—H19120.4
O1—C7—C6120.04 (14)C18—C19—H19120.4
N1—C7—C6115.76 (13)C19—C20—C15120.69 (15)
O2—C8—N2124.43 (14)C19—C20—Cl1120.01 (13)
O2—C8—N1119.65 (13)C15—C20—Cl1119.28 (12)
N2—C8—N1115.91 (12)F5—C21—F6107.35 (15)
C10—C9—C14117.81 (14)F5—C21—F4106.12 (15)
C10—C9—N2120.57 (14)F6—C21—F4105.84 (15)
C14—C9—N2121.43 (14)F5—C21—C18112.98 (15)
C9—C10—C11121.19 (15)F6—C21—C18112.64 (14)
C9—C10—H10119.4F4—C21—C18111.43 (14)
C11—C10—H10119.4
F1—C1—C2—C3178.48 (16)C15—O3—C12—C1119.0 (2)
C6—C1—C2—C30.2 (3)C15—O3—C12—C13162.55 (14)
C1—C2—C3—C40.2 (3)C11—C12—C13—C141.7 (2)
C2—C3—C4—C50.2 (3)O3—C12—C13—C14179.82 (14)
C3—C4—C5—F2178.29 (18)C12—C13—C14—F3175.87 (15)
C3—C4—C5—C60.1 (3)C12—C13—C14—C91.6 (3)
F2—C5—C6—C1178.30 (15)C10—C9—C14—F3176.97 (15)
C4—C5—C6—C10.1 (3)N2—C9—C14—F32.0 (2)
F2—C5—C6—C74.2 (2)C10—C9—C14—C130.5 (2)
C4—C5—C6—C7174.03 (16)N2—C9—C14—C13175.52 (15)
F1—C1—C6—C5178.56 (15)C12—O3—C15—C16101.84 (17)
C2—C1—C6—C50.1 (2)C12—O3—C15—C2083.96 (18)
F1—C1—C6—C77.1 (2)O3—C15—C16—C17173.73 (14)
C2—C1—C6—C7174.21 (15)C20—C15—C16—C170.5 (2)
C8—N1—C7—O13.9 (3)C15—C16—C17—C180.1 (2)
C8—N1—C7—C6175.67 (14)C16—C17—C18—C190.6 (2)
C5—C6—C7—O1121.8 (2)C16—C17—C18—C21179.38 (15)
C1—C6—C7—O152.1 (2)C17—C18—C19—C200.4 (2)
C5—C6—C7—N158.6 (2)C21—C18—C19—C20179.20 (15)
C1—C6—C7—N1127.49 (16)C18—C19—C20—C150.3 (2)
C9—N2—C8—O25.5 (3)C18—C19—C20—Cl1178.96 (12)
C9—N2—C8—N1174.92 (14)O3—C15—C20—C19173.50 (14)
C7—N1—C8—O2178.80 (15)C16—C15—C20—C190.7 (2)
C7—N1—C8—N21.6 (2)O3—C15—C20—Cl15.2 (2)
C8—N2—C9—C10122.32 (18)C16—C15—C20—Cl1179.39 (12)
C8—N2—C9—C1462.8 (2)C17—C18—C21—F59.8 (2)
C14—C9—C10—C110.6 (2)C19—C18—C21—F5171.34 (15)
N2—C9—C10—C11174.45 (15)C17—C18—C21—F6131.67 (17)
C9—C10—C11—C120.6 (3)C19—C18—C21—F649.5 (2)
C10—C11—C12—O3179.01 (15)C17—C18—C21—F4109.55 (18)
C10—C11—C12—C130.6 (3)C19—C18—C21—F469.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.881.972.8157 (17)161
C2—H2A···Cg2ii0.952.893.661 (2)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.881.972.8157 (17)161
C2—H2A···Cg2ii0.952.893.661 (2)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012R1A1B3003337).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKamel, A., Al-Dosary, S., Ibrahim, S. & Ahmed, M. A. (2007). Food Chem. 100, 1590–1593.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y., Li, F. & Li, Y. (2008). Acta Cryst. E64, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalokhe, S., Sarkar, A., Kulkarni, A., Mukherjee, S. & Pal, J. K. (2006). Pestic. Biochem. Physiol. 85, 84–90.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds