organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1139-o1140

Crystal structure of 2-bromo­benzoic acid at 120 K: a redetermination

aFaculty of Chemistry, University of Gdańsk, W. Stwosza 63, 80-308 Gdańsk, Poland
*Correspondence e-mail: art@chem.univ.gda.pl

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 September 2014; accepted 17 September 2014; online 30 September 2014)

The crystal structure of the title compound, C7H5BrO2, was originally studied using photographic data at room temperature with Cu Kα radiation [Ferguson & Sim (1962[Ferguson, G. & Sim, G. A. (1962). Acta Cryst. 15, 346-350.]). Acta Cryst. 15, 346–350]. The present study was undertaken at 120 K with a CCD diffractometer using Cu Kα radiation, and resulted in improved geometrical parameters. In the mol­ecule, the carb­oxy group is inclined to the benzene ring by 18.7 (2)° and there is a close intra­molecular Br⋯O contact of 3.009 (3) Å. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with the classical R22(8) ring motif for carb­oxy­lic acids. Neighbouring dimers are linked by weak C—H⋯O hydrogen bonds, forming tapes propagating in [1-10]. Adjacent tapes inter­act by slipped parallel ππ inter­actions [inter-centroid distance = 3.991 (2), inter­planar distance = 3.509 (2) Å, slippage = 1.900 Å] to form columns approximately along the b-axis direction. Neighbouring columns inter­act dispersively, forming a three-dimensional framework structure.

1. Related literature

For the original report of the unit-cell dimensions, space group and structure of the title compound, see: Ferguson & Sim (1962[Ferguson, G. & Sim, G. A. (1962). Acta Cryst. 15, 346-350.]). For uses of the title compound in organic synthesis, see: Evano et al. (2008[Evano, G., Blanchard, N. & Toumi, M. (2008). Chem. Rev. 108, 3054-3131.]); Wolf et al. (2006[Wolf, C., Liu, S., Mei, X., August, A. T. & Casimir, M. D. (2006). J. Org. Chem. 71, 3270-3273.]), and for its physicochemical properties, see: Govindarajan et al. (2011[Govindarajan, M., Ganasan, K., Periandy, S., Mohan, S. & Tedlamelekot, F. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 779, 2003-2011.]); Sabbah & Aguilar (1996[Sabbah, R. & Aguilar, A. R. (1996). Struct. Chem. 77, 383-390.]); Swaminathan et al. (2009[Swaminathan, J., Ramalingam, M., Saleem, H., Sethuraman, V. & Ameen, M. T. (2009). Spectrochim. Acta A Mol. Biomol. Spectrosc. 774, 1247-1253.]). For related structures involving the title compound, see: Das et al. (2012[Das, U. K., Puranik, V. G. & Dastidar, P. (2012). Cryst. Growth Des. 12, 5864-5868.]); Wales et al. (2012[Wales, C., Thomas, L. H. & Wilson, C. C. (2012). CrystEngComm, 14, 7264-7274.]). For reports on Br⋯O inter­actions, see: Jones & Lozano (2004[Jones, P. G. & Lozano, V. (2004). Acta Cryst. C60, o876-o878.]); Saeed et al. (2013[Saeed, A., Qasim, M. & Simpson, J. (2013). Acta Cryst. C69, 790-793.]); Singh et al. (2009[Singh, V. P., Singh, H. B. & Butcher, R. J. (2009). Acta Cryst. E65, o2761.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H5BrO2

  • Mr = 201.01

  • Monoclinic, C 2/c

  • a = 14.7955 (4) Å

  • b = 3.99062 (15) Å

  • c = 22.9240 (8) Å

  • β = 96.906 (3)°

  • V = 1343.69 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 7.76 mm−1

  • T = 120 K

  • 0.55 × 0.35 × 0.28 mm

2.2. Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.722, Tmax = 0.991

  • 10883 measured reflections

  • 1201 independent reflections

  • 1172 reflections with I > 2σ(I)

  • Rint = 0.067

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.18

  • 1201 reflections

  • 95 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯O8i 0.81 (3) 1.84 (3) 2.643 (3) 177 (5)
C5—H5⋯O8ii 0.93 2.65 3.514 (3) 153
C6—H6⋯O9iii 0.93 2.64 3.417 (3) 141
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Burnett & Johnson, 1976[Burnett, M. N. & Johnson, C. K. (1976). ORTEPII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-Bromobenzoic acid is a reagent widely used in organic synthesis, for example in cross-coupling reactions (Evano et al., 2008; Wolf et al., 2006). The physicochemical properties of title compound, such as thermodynamic (Sabbah & Aguilar, 1996) and spectroscopic (Govindarajan et al., 2011; Swaminathan et al., 2009) properties, were studied in literature. In 1962, Ferguson and Sim (Ferguson & Sim, 1962) determined the crystal structure of the title compound (a = 14.82 Å, b = 4.10 Å, c = 25.90 Å, β = 118.26°, V = 1386.2 Å3, R = 13.20 %), using photographic data at room temperature. Redetermination of the crystal structure of 2-bromobenzoic acid at 120 K shows, that the unit cell dimensions (see: Experimental section) differs from those reported previously.

The bond lengths and angles characterizing the geometry of molecule of the title compound (Fig. 1) are similar to those found in other structures containing 2-bromobenzoic acid (Das et al., 2012; Wales et al., 2012). The benzene ring makes an angle of 18.7 (2) ° with the mean plane of the carboxy group. There is also a close intramolecular Br10···O8 contact [3.009 (3) Å; as shown in Fig. 1].

In the crystal, molecules are linked into inversion R22(8) dimers by pairs of O9–H9···O8i hydrogen bonds (Table 1 and Fig. 2). Neighbouring dimers are linked by C5–H5···O8ii and C6–H6···O9iii interactions to produce tapes along [1 -1 0] (Table 1 and Fig. 2). Adjacent tapes interact by weak ππ interactions [Cg···Cgiv = 3.991 (2) Å; Cg is the centroid of the benzene ring C1-C6; interplanar distances = 3.509 (2) Å; slippage 1.900 Å; symmetry code: (iv) x, y-1, z] to form stacked columns approximately along the b-axis (Fig. 3). The neighbouring columns interact dispersively to form a three-dimensional framework structure (Fig. 3).

Related literature top

For the original report of the unit-cell dimensions, space group and structure of the title compound, see: Ferguson & Sim (1962). For uses of the title compound in organic synthesis, see: Evano et al. (2008); Wolf et al. (2006), and for its physicochemical properties, see: Govindarajan et al. (2011); Sabbah & Aguilar (1996); Swaminathan et al. (2009). For related structures involving the title compound, see: Das et al. (2012); Wales et al. (2012). For reports on Br···O interactions, see: Jones & Lozano (2004); Saeed et al. (2013); Singh et al. (2009).

Experimental top

The 2-bromobenzoic acid was purchased from Sigma Aldrich and used without further purification. The single crystals suitable for X-ray investigations were grown by means of slow evaporation of a mixture of ethanol and water (1:1; v:v) solution (m.p. 422.6).

Refinement top

The OH H-atom was located in a difference Fourier map and refined with a distance restraint: O-H = 0.82 (2) Å. The C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms: C–H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Burnett & Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labeling. Displacement ellipsoids are drawn at the 25% probability level. The short intramolecular Br···O contact [3.009 (3) Å] is shown as a dashed line.
[Figure 2] Fig. 2. A partial view perpendicular to the ac plane of the crystal packing of the title compound. The O–H···O and C–H···O hydrogen bonds are represented by dashed lines [see Table 1 for details; symmetry codes: (i) –x+1, –y+1, –z+1; (ii) x–1/2, y+1/2, z; (iii) –x+1/2, –y + 3/2, –z+1].
[Figure 3] Fig. 3. A view along the b axis of the crystal packing of the title compound. The ππ interactions are represented by dashed lines [symmetry code: (iv) x, y+1, z].
2-Bromobenzoic acid top
Crystal data top
C7H5BrO2F(000) = 784
Mr = 201.01Dx = 1.987 Mg m3
Monoclinic, C2/cMelting point: 422.6 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54184 Å
a = 14.7955 (4) ÅCell parameters from 10883 reflections
b = 3.99062 (15) Åθ = 3.9–67.3°
c = 22.9240 (8) ŵ = 7.76 mm1
β = 96.906 (3)°T = 120 K
V = 1343.69 (8) Å3Block, white
Z = 80.55 × 0.35 × 0.28 mm
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
1201 independent reflections
Radiation source: fine-focus sealed tube1172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 10.4002 pixels mm-1θmax = 67.3°, θmin = 3.9°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 44
Tmin = 0.722, Tmax = 0.991l = 2727
10883 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.048P)2 + 4.6943P]
where P = (Fo2 + 2Fc2)/3
1201 reflections(Δ/σ)max < 0.001
95 parametersΔρmax = 0.82 e Å3
1 restraintΔρmin = 0.52 e Å3
Crystal data top
C7H5BrO2V = 1343.69 (8) Å3
Mr = 201.01Z = 8
Monoclinic, C2/cCu Kα radiation
a = 14.7955 (4) ŵ = 7.76 mm1
b = 3.99062 (15) ÅT = 120 K
c = 22.9240 (8) Å0.55 × 0.35 × 0.28 mm
β = 96.906 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
1201 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1172 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 0.991Rint = 0.067
10883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.82 e Å3
1201 reflectionsΔρmin = 0.52 e Å3
95 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3119 (2)0.3168 (9)0.40413 (14)0.0222 (7)
C20.3109 (2)0.1534 (9)0.34999 (14)0.0230 (7)
C30.2293 (2)0.0629 (9)0.31713 (16)0.0268 (8)
H30.22960.04690.28140.032*
C40.1473 (2)0.1375 (10)0.33802 (16)0.0297 (8)
H40.09270.07400.31640.036*
C50.1463 (2)0.3045 (10)0.39040 (15)0.0277 (8)
H50.09120.35800.40380.033*
C60.2278 (2)0.3931 (10)0.42318 (15)0.0265 (8)
H60.22660.50570.45860.032*
C70.3963 (2)0.4020 (9)0.44374 (15)0.0243 (7)
O80.47061 (15)0.2776 (8)0.44031 (11)0.0337 (6)
O90.38191 (16)0.6217 (8)0.48460 (11)0.0315 (6)
H90.427 (2)0.659 (12)0.5071 (15)0.033 (11)*
Br100.41826 (2)0.04521 (11)0.315985 (15)0.03005 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0158 (15)0.0262 (18)0.0240 (16)0.0011 (13)0.0009 (12)0.0025 (14)
C20.0188 (15)0.0263 (18)0.0232 (16)0.0026 (13)0.0001 (12)0.0022 (14)
C30.0231 (18)0.031 (2)0.0248 (17)0.0008 (14)0.0028 (14)0.0001 (14)
C40.0181 (16)0.036 (2)0.0326 (18)0.0030 (15)0.0053 (13)0.0049 (16)
C50.0154 (15)0.036 (2)0.0308 (17)0.0016 (14)0.0007 (13)0.0050 (16)
C60.0192 (17)0.037 (2)0.0225 (16)0.0034 (15)0.0012 (13)0.0033 (15)
C70.0209 (17)0.0309 (19)0.0207 (16)0.0011 (14)0.0009 (13)0.0034 (14)
O80.0147 (12)0.0520 (18)0.0326 (13)0.0064 (11)0.0052 (9)0.0121 (12)
O90.0183 (12)0.0472 (17)0.0277 (13)0.0030 (12)0.0035 (10)0.0109 (12)
Br100.0190 (2)0.0420 (3)0.0286 (3)0.00389 (14)0.00077 (16)0.00733 (15)
Geometric parameters (Å, º) top
C1—C21.400 (5)C4—H40.9300
C1—C61.401 (5)C5—C61.388 (5)
C1—C71.492 (5)C5—H50.9300
C2—C31.392 (5)C6—H60.9300
C2—Br101.901 (3)C7—O81.217 (4)
C3—C41.389 (5)C7—O91.319 (5)
C3—H30.9300O9—H90.803 (19)
C4—C51.375 (5)
C2—C1—C6117.5 (3)C3—C4—H4119.8
C2—C1—C7124.4 (3)C4—C5—C6119.8 (3)
C6—C1—C7118.1 (3)C4—C5—H5120.1
C3—C2—C1121.1 (3)C6—C5—H5120.1
C3—C2—Br10115.6 (3)C5—C6—C1121.5 (3)
C1—C2—Br10123.3 (2)C5—C6—H6119.2
C4—C3—C2119.7 (3)C1—C6—H6119.2
C4—C3—H3120.2O8—C7—O9122.8 (3)
C2—C3—H3120.2O8—C7—C1124.3 (3)
C5—C4—C3120.4 (3)O9—C7—C1112.9 (3)
C5—C4—H4119.8C7—O9—H9113 (3)
C6—C1—C2—C31.6 (5)C4—C5—C6—C10.1 (6)
C7—C1—C2—C3175.8 (3)C2—C1—C6—C51.3 (5)
C6—C1—C2—Br10177.6 (3)C7—C1—C6—C5176.3 (3)
C7—C1—C2—Br104.9 (5)C2—C1—C7—O817.1 (6)
C1—C2—C3—C40.5 (6)C6—C1—C7—O8160.4 (4)
Br10—C2—C3—C4178.8 (3)C2—C1—C7—O9164.8 (3)
C2—C3—C4—C51.0 (6)C6—C1—C7—O917.7 (5)
C3—C4—C5—C61.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O8i0.81 (3)1.84 (3)2.643 (3)177 (5)
C5—H5···O8ii0.932.653.514 (3)153
C6—H6···O9iii0.932.643.417 (3)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O8i0.81 (3)1.84 (3)2.643 (3)177 (5)
C5—H5···O8ii0.932.653.514 (3)153
C6—H6···O9iii0.932.643.417 (3)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+3/2, z+1.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research through the National Science Centre (NCN) in Poland, grant No. 2011/01/D/ST4/04943 (Contract No. UMO-2011/01/D/ST4/04943).

References

First citationBurnett, M. N. & Johnson, C. K. (1976). ORTEPII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDas, U. K., Puranik, V. G. & Dastidar, P. (2012). Cryst. Growth Des. 12, 5864–5868.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvano, G., Blanchard, N. & Toumi, M. (2008). Chem. Rev. 108, 3054–3131.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFerguson, G. & Sim, G. A. (1962). Acta Cryst. 15, 346–350.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGovindarajan, M., Ganasan, K., Periandy, S., Mohan, S. & Tedlamelekot, F. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 779, 2003–2011.  Web of Science CrossRef Google Scholar
First citationJones, P. G. & Lozano, V. (2004). Acta Cryst. C60, o876–o878.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSabbah, R. & Aguilar, A. R. (1996). Struct. Chem. 77, 383–390.  CrossRef Web of Science Google Scholar
First citationSaeed, A., Qasim, M. & Simpson, J. (2013). Acta Cryst. C69, 790–793.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P., Singh, H. B. & Butcher, R. J. (2009). Acta Cryst. E65, o2761.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwaminathan, J., Ramalingam, M., Saleem, H., Sethuraman, V. & Ameen, M. T. (2009). Spectrochim. Acta A Mol. Biomol. Spectrosc. 774, 1247–1253.  Web of Science CrossRef Google Scholar
First citationWales, C., Thomas, L. H. & Wilson, C. C. (2012). CrystEngComm, 14, 7264–7274.  Web of Science CSD CrossRef CAS Google Scholar
First citationWolf, C., Liu, S., Mei, X., August, A. T. & Casimir, M. D. (2006). J. Org. Chem. 71, 3270–3273.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1139-o1140
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds