research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 259-261

Crystal structure of di­methyl 3,3′-[(4-chloro­phen­yl)methyl­ene]bis­­(1H-indole-2-carboxyl­ate)

aChemical Engineering Department, Nanjing College of Chemical Technology, Geguan Road No.265 Nanjing, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 September 2014; accepted 15 September 2014; online 27 September 2014)

In the title compound, C27H21ClN2O4, the mean planes of the two indole ring systems (r.m.s. deviations = 0.021 and 0.024 Å) are approximately perpendicular to one another, with a dihedral angle of 79.54 (12)°. The benzene ring is twisted with respect to the mean planes of the two indole ring systems at angles of 80.14 (15) and 86.30 (15)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming inversion dimers with an R22(18) ring motif. The dimers are linked by a further N—H⋯O hydrogen bond, forming chains along [100]. There are intra- and inter­molecular C—H⋯π inter­actions present, the latter linking the chains to form a three-dimensional supra­molecular structure.

1. Chemical context

Indole derivatives are found abundantly in a variety of natural plants and exhibit various physiological properties (Poter et al., 1977[Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88-93.]; Sundberg, 1996[Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.]). Among them, bis-indolymethane derivatives have been found to be potentially bioactive compounds (Chang et al., 1999[Chang, Y. C., Riby, J., Chang, G. H., Peng, B. C., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825-834.]; Ge et al., 1999[Ge, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199-3203.]). In recent years, the synthesis and applications of bis-indolymethane derivatives have been studied widely. The title compound is one of the bis-indolymethane derivatives used as a precursor for MRI contrast agents (Ni, 2008[Ni, Y. (2008). CMIR, 4, 96-112.]). We report herein on its synthesis and crystal structure. Similar structures are reported by Sun et al. (2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.], 2013[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, o1516.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The benzene ring (C1–C6) is twisted with respect to the two indole rings, (N1/C8–C15) and (N2/CC18–C25), making dihedral angles of 80.14 (15) and 83.30 (15)°, respectively. The indole ring systems make a dihedral angle of 79.54 (12)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming inversion dimers with an R22(18) ring motif (Fig. 2[link] and Table 1[link]). The dimers are linked by a further N—H⋯O hydrogen bond, forming chains along [100] (Fig. 2[link] and Table 1[link]). There are intra- and inter­molecular C—H⋯π inter­actions present (Table 1[link]); the latter link the chains to form a three-dimensional supra­molecular structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg3, Cg4 and Cg5 are the centroids of the N1/C8/C9/C14/C15, C1–C6, C9–C14 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.04 2.862 (3) 159
N1—H1A⋯O3ii 0.86 2.08 2.923 (4) 168
C20—H20ACg1 0.93 2.89 3.568 (4) 131
C10—H10ACg3 0.93 2.90 3.705 (5) 146
C27—H27ACg4iii 0.96 2.78 3.719 (5) 166
C11—H11ACg5iv 0.93 2.88 3.750 (4) 156
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x+1, y, z; (iii) -x+2, -y+1, -z+1; (iv) -x+2, -y, -z+1.
[Figure 2]
Figure 2
A perspective view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

3. Synthesis and crystallization

Methyl indole-2-carboxyl­ate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; 4-chloro­benzaldehyde (7.0 g, 50 mmol) was added and the mixture heated to reflux. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling the white product formed was filtered off and washed thoroughly with methanol; yield 95%. The reaction was followed by TLC (CHCl3:hexane = 1:1). Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically, and constrained to ride on their parent atoms: N—H = 0.86 Å and C—H = 0.93, 0.96, and 0.98 Å for aromatic, methyl and methine H atoms, respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(N,C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C27H21ClN2O4
Mr 472.91
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 10.126 (2), 11.090 (2), 12.246 (2)
α, β, γ (°) 109.58 (3), 111.50 (3), 91.32 (3)
V3) 1188.7 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.943, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 4651, 4381, 2728
Rint 0.024
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.177, 1.01
No. of reflections 4381
No. of parameters 307
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.33
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), and SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Chemical context top

Indole derivatives are found abundantly in a variety of natural plants and exhibit various physiological properties (Poter et al., 1977; Sundberg, 1996). Among them, bis-indolymethane derivatives have been found to be potentially bioactive compounds (Chang et al., 1999; Ge et al., 1999). In recent years, the synthesis and applications of bis-indolymethane derivatives have been studied widely. The title compound is one of the bis-indolymethane derivatives used as a precursor for MRI contrast agents (Ni, 2008). We report herein on its synthesis and crystal structure. Similar structures are reported by Sun et al. (2012, 2013).

Structural commentary top

The molecular structure of the title compound is shown in Fig. 1. The benzene ring (C1–C6) is twisted with respect to the two indole rings, (N1/C8–C15) and (N2/CC18–C25), making dihedral angles of 80.14 (15) and 83.30 (15)°, respectively. The indole ring systems make a dihedral angle of 79.54 (12)°.

In the crystal, molecules are linked by N—H···O hydrogen bonds, forming inversion dimers with an R22(18) ring motif (Fig. 2 and Table 1). The dimers are linked by a further N—H···O hydrogen bond, forming chains along [100] (Fig. 2 and Table 1). There are intra- and inter­molecular C—H···π inter­actions present (Table 1); the latter link the chains to form a three-dimensional supra­molecular structure.

Synthesis and crystallization top

Methyl indole-2-carboxyl­ate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; 4-chloro­benzaldehyde (7.0 g, 50 mmol) was added and the mixture heated to reflux. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling the white product formed was filtered off and washed thoroughly with methanol; yield 95%. The reaction was followed by TLC (CHCl3:hexane = 1:1). Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically, and constrained to ride on their parent atoms: N—H = 0.86 Å and C—H = 0.93, 0.96, and 0.98 Å for aromatic, methyl and methine H atoms, respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(N,C) for other H atoms.

Related literature top

For the physiological properties of indole derivatives, see: Poter et al. (1977); Sundberg (1996). For bis-indolymethane derivatives with potential bioactivity, see: Chang et al. (1999); Ge et al. (1999). For the use of the title compound as a precursor for MRI Contrast Agents, see: Ni (2008). For similar structures, see: Sun et al. (2012, 2013).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A perspective view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
Dimethyl 3,3'-[(4-chlorophenyl)methylene]bis(1H-indole-2-carboxylate) top
Crystal data top
C27H21ClN2O4Z = 2
Mr = 472.91F(000) = 492
Triclinic, P1Dx = 1.321 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.126 (2) ÅCell parameters from 25 reflections
b = 11.090 (2) Åθ = 9–13°
c = 12.246 (2) ŵ = 0.20 mm1
α = 109.58 (3)°T = 293 K
β = 111.50 (3)°Block, colourless
γ = 91.32 (3)°0.30 × 0.20 × 0.10 mm
V = 1188.7 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2728 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.4°, θmin = 1.9°
ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.943, Tmax = 0.981l = 1413
4651 measured reflections3 standard reflections every 200 reflections
4381 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
4381 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C27H21ClN2O4γ = 91.32 (3)°
Mr = 472.91V = 1188.7 (4) Å3
Triclinic, P1Z = 2
a = 10.126 (2) ÅMo Kα radiation
b = 11.090 (2) ŵ = 0.20 mm1
c = 12.246 (2) ÅT = 293 K
α = 109.58 (3)°0.30 × 0.20 × 0.10 mm
β = 111.50 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2728 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.943, Tmax = 0.9813 standard reflections every 200 reflections
4651 measured reflections intensity decay: 1%
4381 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
4381 reflectionsΔρmin = 0.33 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.48461 (11)0.07229 (11)0.16877 (9)0.0792 (4)
O11.1884 (2)0.5955 (2)0.8803 (2)0.0542 (6)
N11.3863 (3)0.3971 (3)0.7210 (3)0.0494 (7)
H1A1.47450.43320.76760.059*
C10.8128 (3)0.1650 (3)0.5022 (3)0.0481 (8)
H1B0.85480.12500.55930.058*
N20.8964 (3)0.3420 (3)0.9111 (2)0.0472 (7)
H2A0.84960.36120.95900.057*
O21.4243 (2)0.6008 (2)0.9253 (2)0.0643 (7)
C20.6959 (3)0.0963 (3)0.3918 (3)0.0486 (8)
H2B0.65990.01100.37450.058*
O30.6953 (2)0.4961 (2)0.8462 (2)0.0649 (7)
C30.6339 (3)0.1556 (3)0.3084 (3)0.0505 (8)
O40.7917 (3)0.5349 (2)0.7210 (2)0.0649 (7)
C40.6861 (4)0.2805 (4)0.3326 (3)0.0636 (10)
H4A0.64290.31980.27520.076*
C50.8042 (4)0.3484 (3)0.4436 (3)0.0544 (9)
H5A0.84010.43340.45990.065*
C60.8694 (3)0.2916 (3)0.5305 (3)0.0392 (7)
C70.9952 (3)0.3692 (3)0.6546 (3)0.0379 (7)
H7A0.98670.46080.67080.045*
C81.1433 (3)0.3553 (3)0.6522 (3)0.0387 (7)
C91.1884 (3)0.2641 (3)0.5618 (3)0.0420 (7)
C101.1168 (4)0.1620 (3)0.4438 (3)0.0520 (8)
H10A1.01690.14140.40820.062*
C111.1962 (4)0.0937 (3)0.3823 (4)0.0610 (10)
H11A1.14920.02690.30420.073*
C121.3474 (4)0.1226 (4)0.4348 (4)0.0628 (10)
H12A1.39830.07290.39170.075*
C131.4211 (4)0.2216 (3)0.5474 (4)0.0586 (9)
H13A1.52110.24120.58140.070*
C141.3401 (3)0.2928 (3)0.6098 (3)0.0458 (8)
C151.2682 (3)0.4352 (3)0.7465 (3)0.0421 (7)
C161.2854 (3)0.5492 (3)0.8566 (3)0.0435 (7)
C171.4544 (5)0.7217 (4)1.0310 (4)0.0861 (14)
H17A1.55660.75021.07400.129*
H17B1.41650.70891.08830.129*
H17C1.41020.78631.00070.129*
C180.9788 (3)0.3408 (3)0.7625 (3)0.0377 (7)
C191.0442 (3)0.2506 (3)0.8189 (3)0.0407 (7)
C201.1385 (3)0.1625 (3)0.7983 (3)0.0501 (8)
H20A1.17380.15530.73660.060*
C211.1774 (4)0.0877 (4)0.8703 (4)0.0604 (9)
H21A1.23900.02890.85670.073*
C221.1255 (4)0.0985 (4)0.9646 (4)0.0640 (10)
H22A1.15500.04741.01310.077*
C231.0335 (4)0.1817 (3)0.9869 (3)0.0565 (9)
H23A1.00040.18891.05000.068*
C240.9908 (3)0.2555 (3)0.9116 (3)0.0447 (8)
C250.8887 (3)0.3933 (3)0.8212 (3)0.0407 (7)
C260.7834 (3)0.4793 (3)0.7995 (3)0.0459 (8)
C270.6854 (5)0.6167 (4)0.6893 (5)0.0922 (15)
H27A0.70090.65110.63190.138*
H27B0.69430.68680.76480.138*
H27C0.59070.56620.65010.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0580 (6)0.0938 (8)0.0525 (6)0.0045 (5)0.0014 (4)0.0102 (5)
O10.0494 (14)0.0606 (14)0.0504 (13)0.0031 (11)0.0266 (11)0.0107 (11)
N10.0327 (14)0.0601 (17)0.0575 (17)0.0042 (12)0.0215 (13)0.0205 (14)
C10.0460 (18)0.0504 (19)0.0497 (18)0.0086 (15)0.0175 (15)0.0222 (16)
N20.0437 (15)0.0562 (16)0.0462 (15)0.0066 (13)0.0277 (13)0.0134 (13)
O20.0417 (13)0.0720 (16)0.0589 (14)0.0074 (12)0.0128 (11)0.0088 (13)
C20.0441 (18)0.0450 (18)0.0527 (19)0.0006 (15)0.0176 (16)0.0154 (16)
O30.0427 (13)0.0794 (18)0.0800 (17)0.0187 (12)0.0360 (13)0.0249 (14)
C30.0404 (18)0.060 (2)0.0435 (18)0.0072 (16)0.0130 (15)0.0140 (16)
O40.0632 (16)0.0732 (16)0.0851 (18)0.0372 (13)0.0431 (14)0.0447 (15)
C40.064 (2)0.077 (3)0.052 (2)0.014 (2)0.0130 (18)0.038 (2)
C50.053 (2)0.057 (2)0.054 (2)0.0014 (16)0.0153 (17)0.0287 (17)
C60.0328 (15)0.0458 (17)0.0434 (16)0.0069 (13)0.0193 (13)0.0169 (14)
C70.0379 (16)0.0390 (16)0.0417 (16)0.0073 (13)0.0209 (13)0.0150 (13)
C80.0359 (16)0.0418 (16)0.0437 (16)0.0053 (13)0.0202 (13)0.0174 (14)
C90.0438 (17)0.0433 (17)0.0496 (18)0.0077 (14)0.0279 (15)0.0195 (15)
C100.0517 (19)0.0517 (19)0.059 (2)0.0041 (16)0.0320 (17)0.0169 (17)
C110.075 (3)0.050 (2)0.064 (2)0.0047 (18)0.043 (2)0.0122 (18)
C120.073 (3)0.055 (2)0.082 (3)0.0176 (19)0.057 (2)0.022 (2)
C130.050 (2)0.063 (2)0.080 (3)0.0171 (17)0.0406 (19)0.030 (2)
C140.0425 (18)0.0501 (19)0.0564 (19)0.0112 (15)0.0290 (15)0.0232 (16)
C150.0378 (16)0.0469 (17)0.0461 (17)0.0055 (14)0.0200 (14)0.0190 (15)
C160.0374 (17)0.0534 (19)0.0427 (17)0.0011 (15)0.0181 (14)0.0194 (15)
C170.077 (3)0.083 (3)0.058 (2)0.031 (2)0.012 (2)0.002 (2)
C180.0292 (14)0.0415 (16)0.0382 (15)0.0022 (12)0.0131 (12)0.0104 (13)
C190.0333 (15)0.0455 (17)0.0398 (16)0.0016 (13)0.0139 (13)0.0125 (14)
C200.0413 (18)0.056 (2)0.058 (2)0.0120 (15)0.0219 (16)0.0249 (17)
C210.048 (2)0.063 (2)0.079 (3)0.0170 (17)0.0232 (19)0.038 (2)
C220.055 (2)0.076 (3)0.068 (2)0.009 (2)0.0157 (19)0.045 (2)
C230.055 (2)0.072 (2)0.0490 (19)0.0034 (19)0.0202 (17)0.0316 (18)
C240.0423 (17)0.0509 (19)0.0394 (16)0.0007 (15)0.0160 (14)0.0154 (15)
C250.0334 (15)0.0467 (17)0.0413 (16)0.0015 (13)0.0177 (13)0.0125 (14)
C260.0348 (16)0.0480 (18)0.0482 (18)0.0024 (14)0.0178 (14)0.0085 (15)
C270.088 (3)0.090 (3)0.117 (4)0.050 (3)0.043 (3)0.056 (3)
Geometric parameters (Å, º) top
Cl1—C31.745 (3)C9—C141.413 (4)
O1—C161.203 (4)C10—C111.370 (5)
N1—C141.365 (4)C10—H10A0.9300
N1—C151.384 (4)C11—C121.406 (5)
N1—H1A0.8600C11—H11A0.9300
C1—C21.380 (4)C12—C131.363 (5)
C1—C61.382 (4)C12—H12A0.9300
C1—H1B0.9300C13—C141.402 (4)
N2—C241.370 (4)C13—H13A0.9300
N2—C251.378 (4)C15—C161.457 (4)
N2—H2A0.8600C17—H17A0.9600
O2—C161.336 (4)C17—H17B0.9600
O2—C171.448 (4)C17—H17C0.9600
C2—C31.367 (5)C18—C251.383 (4)
C2—H2B0.9300C18—C191.441 (4)
O3—C261.213 (4)C19—C201.408 (4)
C3—C41.365 (5)C19—C241.412 (4)
O4—C261.329 (4)C20—C211.368 (5)
O4—C271.451 (4)C20—H20A0.9300
C4—C51.388 (5)C21—C221.406 (5)
C4—H4A0.9300C21—H21A0.9300
C5—C61.384 (4)C22—C231.361 (5)
C5—H5A0.9300C22—H22A0.9300
C6—C71.526 (4)C23—C241.392 (5)
C7—C181.520 (4)C23—H23A0.9300
C7—C81.521 (4)C25—C261.457 (4)
C7—H7A0.9800C27—H27A0.9600
C8—C151.382 (4)C27—H27B0.9600
C8—C91.448 (4)C27—H27C0.9600
C9—C101.411 (4)
C14—N1—C15108.9 (3)C14—C13—H13A121.4
C14—N1—H1A125.6N1—C14—C13129.0 (3)
C15—N1—H1A125.6N1—C14—C9108.2 (3)
C2—C1—C6122.0 (3)C13—C14—C9122.8 (3)
C2—C1—H1B119.0C8—C15—N1110.2 (3)
C6—C1—H1B119.0C8—C15—C16129.1 (3)
C24—N2—C25108.9 (2)N1—C15—C16120.7 (3)
C24—N2—H2A125.5O1—C16—O2123.8 (3)
C25—N2—H2A125.5O1—C16—C15125.2 (3)
C16—O2—C17116.1 (3)O2—C16—C15110.9 (3)
C3—C2—C1118.9 (3)O2—C17—H17A109.5
C3—C2—H2B120.5O2—C17—H17B109.5
C1—C2—H2B120.5H17A—C17—H17B109.5
C4—C3—C2121.1 (3)O2—C17—H17C109.5
C4—C3—Cl1118.7 (3)H17A—C17—H17C109.5
C2—C3—Cl1120.2 (3)H17B—C17—H17C109.5
C26—O4—C27116.5 (3)C25—C18—C19106.3 (3)
C3—C4—C5119.4 (3)C25—C18—C7125.4 (3)
C3—C4—H4A120.3C19—C18—C7128.2 (2)
C5—C4—H4A120.3C20—C19—C24118.2 (3)
C6—C5—C4121.0 (3)C20—C19—C18135.0 (3)
C6—C5—H5A119.5C24—C19—C18106.7 (3)
C4—C5—H5A119.5C21—C20—C19119.1 (3)
C1—C6—C5117.5 (3)C21—C20—H20A120.4
C1—C6—C7121.9 (3)C19—C20—H20A120.4
C5—C6—C7120.5 (3)C20—C21—C22121.0 (3)
C18—C7—C8112.7 (2)C20—C21—H21A119.5
C18—C7—C6110.0 (2)C22—C21—H21A119.5
C8—C7—C6114.8 (2)C23—C22—C21121.8 (3)
C18—C7—H7A106.2C23—C22—H22A119.1
C8—C7—H7A106.2C21—C22—H22A119.1
C6—C7—H7A106.2C22—C23—C24117.4 (3)
C15—C8—C9105.6 (3)C22—C23—H23A121.3
C15—C8—C7123.1 (3)C24—C23—H23A121.3
C9—C8—C7131.3 (3)N2—C24—C23129.3 (3)
C10—C9—C14117.8 (3)N2—C24—C19108.3 (3)
C10—C9—C8135.1 (3)C23—C24—C19122.5 (3)
C14—C9—C8107.1 (3)N2—C25—C18109.8 (3)
C11—C10—C9119.3 (3)N2—C25—C26116.6 (3)
C11—C10—H10A120.4C18—C25—C26133.4 (3)
C9—C10—H10A120.4O3—C26—O4123.4 (3)
C10—C11—C12121.3 (3)O3—C26—C25123.4 (3)
C10—C11—H11A119.3O4—C26—C25113.2 (3)
C12—C11—H11A119.3O4—C27—H27A109.5
C13—C12—C11121.6 (3)O4—C27—H27B109.5
C13—C12—H12A119.2H27A—C27—H27B109.5
C11—C12—H12A119.2O4—C27—H27C109.5
C12—C13—C14117.2 (3)H27A—C27—H27C109.5
C12—C13—H13A121.4H27B—C27—H27C109.5
C6—C1—C2—C30.4 (5)C14—N1—C15—C16176.7 (3)
C1—C2—C3—C40.2 (5)C17—O2—C16—O12.2 (5)
C1—C2—C3—Cl1179.2 (2)C17—O2—C16—C15174.5 (3)
C2—C3—C4—C50.1 (5)C8—C15—C16—O12.9 (5)
Cl1—C3—C4—C5179.6 (3)N1—C15—C16—O1173.6 (3)
C3—C4—C5—C60.4 (6)C8—C15—C16—O2179.6 (3)
C2—C1—C6—C50.1 (5)N1—C15—C16—O23.1 (4)
C2—C1—C6—C7177.8 (3)C8—C7—C18—C25151.8 (3)
C4—C5—C6—C10.2 (5)C6—C7—C18—C2578.6 (3)
C4—C5—C6—C7177.4 (3)C8—C7—C18—C1932.3 (4)
C1—C6—C7—C1839.6 (4)C6—C7—C18—C1997.2 (3)
C5—C6—C7—C18138.0 (3)C25—C18—C19—C20176.3 (3)
C1—C6—C7—C888.9 (3)C7—C18—C19—C200.2 (5)
C5—C6—C7—C893.6 (3)C25—C18—C19—C241.0 (3)
C18—C7—C8—C1565.3 (4)C7—C18—C19—C24177.5 (3)
C6—C7—C8—C15167.7 (3)C24—C19—C20—C211.5 (4)
C18—C7—C8—C9113.9 (3)C18—C19—C20—C21178.6 (3)
C6—C7—C8—C913.2 (4)C19—C20—C21—C220.5 (5)
C15—C8—C9—C10177.0 (3)C20—C21—C22—C231.0 (6)
C7—C8—C9—C103.8 (6)C21—C22—C23—C240.6 (5)
C15—C8—C9—C141.7 (3)C25—N2—C24—C23179.4 (3)
C7—C8—C9—C14177.5 (3)C25—N2—C24—C190.4 (3)
C14—C9—C10—C111.4 (5)C22—C23—C24—N2177.5 (3)
C8—C9—C10—C11179.9 (3)C22—C23—C24—C192.8 (5)
C9—C10—C11—C120.5 (5)C20—C19—C24—N2176.9 (3)
C10—C11—C12—C131.7 (6)C18—C19—C24—N20.9 (3)
C11—C12—C13—C140.8 (5)C20—C19—C24—C233.3 (5)
C15—N1—C14—C13179.6 (3)C18—C19—C24—C23178.9 (3)
C15—N1—C14—C90.7 (3)C24—N2—C25—C180.2 (3)
C12—C13—C14—N1178.5 (3)C24—N2—C25—C26174.8 (3)
C12—C13—C14—C91.2 (5)C19—C18—C25—N20.8 (3)
C10—C9—C14—N1177.5 (3)C7—C18—C25—N2177.4 (3)
C8—C9—C14—N11.5 (3)C19—C18—C25—C26173.1 (3)
C10—C9—C14—C132.3 (5)C7—C18—C25—C263.5 (5)
C8—C9—C14—C13178.8 (3)C27—O4—C26—O31.7 (5)
C9—C8—C15—N11.3 (3)C27—O4—C26—C25176.8 (3)
C7—C8—C15—N1178.0 (3)N2—C25—C26—O37.7 (4)
C9—C8—C15—C16175.5 (3)C18—C25—C26—O3165.9 (3)
C7—C8—C15—C165.2 (5)N2—C25—C26—O4173.8 (3)
C14—N1—C15—C80.4 (3)C18—C25—C26—O412.6 (5)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3, Cg4 and Cg5 are the centroids of the N1/C8/C9/C14/C15, C1–C6, C9–C14 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.042.862 (3)159
N1—H1A···O3ii0.862.082.923 (4)168
C20—H20A···Cg10.932.893.568 (4)131
C10—H10A···Cg30.932.903.705 (5)146
C27—H27A···Cg4iii0.962.783.719 (5)166
C11—H11A···Cg5iv0.932.883.750 (4)156
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3, Cg4 and Cg5 are the centroids of the N1/C8/C9/C14/C15, C1–C6, C9–C14 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.042.862 (3)159
N1—H1A···O3ii0.862.082.923 (4)168
C20—H20A···Cg10.932.893.568 (4)131
C10—H10A···Cg30.932.903.705 (5)146
C27—H27A···Cg4iii0.962.783.719 (5)166
C11—H11A···Cg5iv0.932.883.750 (4)156
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC27H21ClN2O4
Mr472.91
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.126 (2), 11.090 (2), 12.246 (2)
α, β, γ (°)109.58 (3), 111.50 (3), 91.32 (3)
V3)1188.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.943, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
4651, 4381, 2728
Rint0.024
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.177, 1.01
No. of reflections4381
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.33

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support. Funding for this research was provided by Nanjing College of Chemical Technology (NHKY-2013–02).

References

First citationChang, Y. C., Riby, J., Chang, G. H., Peng, B. C., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGe, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199–3203.  Web of Science PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNi, Y. (2008). CMIR, 4, 96–112.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPorter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.  CSD CrossRef IUCr Journals Google Scholar
First citationSun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, o1516.  CSD CrossRef IUCr Journals Google Scholar
First citationSundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 259-261
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds