research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 256-258

Crystal structure of 4-amino­pyridinium 5-(5-chloro-2,4-di­nitro­phenyl)-1,3-di­methyl-2,6-dioxo-1,2,3,6-tetra­hydropyrimidin-4-olate hemihydrate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 September 2014; accepted 22 September 2014; online 27 September 2014)

The title mol­ecular salt, C5H7N2+·C12H8ClN4O7·0.5H2O, crystallizes as a hemihydrate. The two rings in the barbiturate anion are not coplanar but make a dihedral angle of 43.17 (16)°. The two nitro groups deviate from the ring to which they are attached; the nitro group ortho with respect to the ring junction is more deviated [39.3 (4)°] than that in the para position [4.2 (5)°], probably to overcome steric hindrance. As a result of this, the latter nitro group is more involved in delocalizing the negative charge of the anion than the former nitro group. In the crystal, the cations and anions are linked via N—H⋯O hydrogen bonds forming zigzag chains along [10-1]. The chains are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming slabs lying parallel to (10-1). Further C—H⋯O hydrogen bonds link the slabs, forming a three-dimensional structure.

1. Chemical context

Barbiturates occupy an important place in pharmacopoeia due to their central nervous system (CNS) depressing nature (Nogrady, 1988[Nogrady, T. (1988). Medicinal Chemistry. New York: Oxford University Press.]; Ashutoshkar, 1993[Ashutoshkar (1993). Medicinal Chemistry. New Delhi: Wiley Eastern Ltd.]; Hardman et al., 2001[Hardman, J. G., Limbird, L. E. & Gilman, A. G. (2001). Editors. The Pharmacological Basis of Therapeutics, 10th ed. New York. McGraw-Hill.]; Yadav, 2004[Yadav, A. V. (2004). Pharmacology and Toxicology, 11th ed. Mumbai: Nirali Prakas.]; Nadkarni et al., 2005[Nadkarni, S., LaJoie, J. & Devinsky, O. (2005). Neurology, 64, S2-11.]). Many barbiturates are ideal drugs for treating major epilepsy (Olsen et al., 1986[Olsen, R. W., Wamsley, J. K., Lee, R. J. & Lomax, P. (1986). Adv. Neurol. 44, 365-378.]; Dhiman, 2013[Dhiman, P. (2013). J. Drug Discov. Ther. 1, 15-22.]). In a continuation of our previous work on the synthesis of crystalline barbiturates and, in particular, similar nitro-substituted aromatic compounds (Babykala et al., 2014[Babykala, R., Rajamani, K., Muthulakshmi, S. & Kalaivani, D. (2014). J. Chem. Crystallogr. 44, 243-254.]), we report herein on the synthesis and crystal structure of the title mol­ecular salt.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title salt is depicted in Fig. 1[link]. The two rings in the barbiturate anion (N3/N4/C7–C10 and C1–C6) are not coplanar but are inclined to one another by 43.17 (16)°. The two nitro groups on the benzene ring (N1/O1/O2 and N2/O3/O4) deviate to different extents from the plane of the ring. The dihedral angle for the former group, adjacent to the ring junction, is 39.3 (4)° while for the later it is 4.2 (5)°. as a result of this, the latter nitro group is more involved in delocalizing the negative charge of the anion than the former. The cation is protonated at the pyridine N atom, as has been observed previously (Babykala et al., 2014[Babykala, R., Rajamani, K., Muthulakshmi, S. & Kalaivani, D. (2014). J. Chem. Crystallogr. 44, 243-254.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, the cations and anions are linked via N—H⋯O hydrogen bonds (Fig. 2[link] and Table 1[link]) forming zigzag chains along [10[\overline{1}]]. The chains are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming slabs lying parallel to (10[\overline{1}]). Further C—H⋯O hydrogen bonds link the slabs, forming a three-dimensional structure (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯O8i 0.90 (2) 2.09 (2) 2.947 (4) 158 (4)
N6—H6B⋯O9ii 0.90 (2) 2.05 (2) 2.918 (4) 162 (4)
N5—H5A⋯O7iii 0.91 (2) 1.89 (4) 2.667 (4) 141 (5)
O9—H9A⋯O6iv 0.89 (2) 1.99 (5) 2.707 (3) 136 (6)
O9—H9B⋯O6 0.90 (2) 1.83 (3) 2.707 (3) 167 (9)
C15—H15⋯O4v 0.93 2.41 3.276 (5) 156
C16—H16⋯O2 0.93 2.46 3.190 (5) 136
C17—H17⋯O8i 0.93 2.56 3.290 (4) 136
Symmetry codes: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y, -z; (iii) -x+2, -y+1, -z; (iv) [-x+2, y, -z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) indicated the presence of 31 hits for barbiturate salts. These including five with a substituted benzene ring in position 5 of the barbiturate. In these five compounds, the organic cations vary: tri­ethyl­ammonium with 1,3-dimethyl-2,6-dioxo-5-(2,4,6-tri­nitro­phen­yl)-1,2,3,6-tetra­hydro­pyrimidin-4-olate (LEGWIF; Rajamani & Kalaivani, 2012[Rajamani, K. & Kalaivani, D. (2012). Acta Cryst. E68, o2395.]), 2-amino­pyridinium with 5-(5-chloro-2,4-di­nitro­phen­yl)-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetra­hydropyrim­idin-6-olate (OCEWUQ; Babykala et al., 2014[Babykala, R., Rajamani, K., Muthulakshmi, S. & Kalaivani, D. (2014). J. Chem. Crystallogr. 44, 243-254.]), 2-methyl­pyridinium with 5-(2,4-di­nitro­phen­yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-4-olate (YAVSOF; Sridevi & Kalaivani, 2012[Sridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044.]), N,N-di­methyl­anilinium with 1,3-dimethyl-2,6-dioxo-5-(2,4,6-tri­nitro­phen­yl)-1,2,3,6-tetrahydro­pyrimidin-4-olate (JOKGIB; Babykala et al., 2014[Babykala, R., Rajamani, K., Muthulakshmi, S. & Kalaivani, D. (2014). J. Chem. Crystallogr. 44, 243-254.]) and quinolinium with 1,3-dimethyl-2,6-dioxo-5-(2,4,6-tri­nitro­phen­yl)-1,2,3,6-tetra­hydro­pyrimidin-4-olate monohydrate (JOKGUN; Babykala et al., 2014[Babykala, R., Rajamani, K., Muthulakshmi, S. & Kalaivani, D. (2014). J. Chem. Crystallogr. 44, 243-254.]). Compound OCEWUQ is composed of the same barbiturate anion as in the title compound. The difference lies in the nature of the cation, 2-amino­pyrdinium in OCEWUQ and 4-amino­pyridinium in the title salt.

The dihedral angle between the benzene ring and the barbiturate ring varies from ca 42.64° in YAVSOF to ca 51.88° in OCEWUQ, compared to only 43.17 (16)° in the title salt. This difference is surprising considering that the barbiturate anion is the same in both OCEWUQ and the title salt.

5. Synthesis and crystallization

To 1,3-di­chloro-4,6-di­nitro­benzene (2.36 g, 0.01 mol) dissolved in 20 ml of absolute alcohol, was added 1,3-di­methyl­barbituric acid (0.01 mol, 1.56 g) dissolved in 30 ml of absolute alcohol. The mixture was heated to 313 K and 4-amino­pyridine (0.02 mol, 1.88 g) dissolved in 20 ml of absolute ethanol was added. The mixture was shaken well for 2–3 h and kept as such at 298 K. After 24 h, the excess of solvent was removed by distillation under reduced pressure and to the resulting slurry was added to 50 ml of dry ether and the mixture was refrig­erated for 5 h. The maroon-red-coloured solid obtained was filtered, powdered well and washed with 50 ml of dry ether. The dry solid was recrystallized from absolute ethanol and slow evaporation of this solvent at 293 K yielded good quality single crystals (yield 75%; m.p. 488 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The cation NH and NH2 H atoms were located in a difference Fourier map and freely refined. The water H atoms were also located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C5H7N2+·C12H8ClN4O7·0.5H2O
Mr 459.81
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 17.7242 (5), 14.2576 (5), 17.4321 (7)
β (°) 116.259 (3)
V3) 3950.6 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.35 × 0.35 × 0.30
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.911, 0.930
No. of measured, independent and observed [I > 2σ(I)] reflections 38331, 3868, 2686
Rint 0.029
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.175, 1.07
No. of reflections 3868
No. of parameters 306
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.46
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Barbiturates occupy an important place in pharmacopoeia due to their central nervous system (CNS) depressing nature (Nogrady, 1988; Ashutoshkar, 1993; Hardman et al., 2001; Yadav, 2004; Nadkarni et al., 2005). Many barbiturates are ideal drugs for treating major epilepsy (Olsen et al., 1986; Dhiman, 2013). In a continuation of our previous work on the synthesis of crystalline barbiturates and, in particular, similar nitro-substituted aromatic compounds (Babykala et al., 2014), we report herein on the synthesis and crystal structure of the title molecular salt.

Structural commentary top

The molecular structure of the title salt is depicted in Fig 1. The two rings in the barbiturate anion (N3/N4/C7–C10 and C1–C6) are not coplanar but are inclined to one another by 43.17 (16)°. The two nitro groups on the benzene ring (N1/O1/O2 and N2/O3/O4) deviate to different extents from the plane of the ring. The dihedral angle for the former group, adjacent to the ring junction, is 39.3 (4)° while for the later it is 4.2 (5)°. as a result of this, the latter nitro group is more involved in delocalizing the negative charge of the anion than the former. The cation is protonated at the pyridine N atom, as has been observed previously (Babykala et al., 2014).

Supra­molecular features top

In the crystal, the cations and anions are linked via N—H···O hydrogen bonds (Fig. 2 and Table 1) forming zigzag chains along [101]. The chains are linked by O—H···O and C—H···O hydrogen bonds, forming slabs lying parallel to (101). Further C—H···O hydrogen bonds link the slabs, forming a three-dimensional structure (Fig. 2 and Table 1).

Database survey top

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen, 2002) indicated the presence of 31 hits for barbiturate salts. These including five with a substituted benzene ring in position 5 of the barbiturate. In these five compounds, the organic cations vary: tri­ethyl­ammonium with 1,3-di­methyl-2,6-dioxo-5-(2,4,6-tri­nitro­phenyl)-1,2,3,6-tetra­hydro­pyrimidin-4-olate (LEGWIF; Rajamani & Kalaivani, 2012), 2-amino­pyridinium with 5-(5-chloro-2,4-di­nitro­phenyl)-1,3-di­methyl-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-6-olate (OCEWUQ; Babykala et al., 2014), 2-methyl­pyridinium with 5-(2,4-di­nitro­phenyl)-1,3-di­methyl-2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-4-olate (YAVSOF; Sridevi & Kalaivani, 2012), N,N-di­methyl­anilinium with 1,3-di­methyl-2,6-dioxo-5-(2,4,6-tri­nitro­phenyl)-1,2,3,6-tetra­hydro­pyrimidin-4-olate (JOKGIB; Babykala et al., 2014) and quinolinium with 1,3-di­methyl-2,6-dioxo-5-(2,4,6-tri­nitro­phenyl)-1,2,3,6-tetra­hydro­pyrimidin-4-olate monohydrate (JOKGUN; Babykala et al., 2014). Compound OCEWUQ is composed of the same barbiturate anion as in the title compound. The difference lies in the nature of the cation, 2-amino­pyrdinium in OCEWUQ and 4-amino­pyridinium in the title salt.

The dihedral angle between the benzene ring and the barbiturate ring varies from ca 42.64° in YAVSOF to ca 51.88° in OCEWUQ, compared to only 43.17 (16)° in the title salt. This difference is surprising considering that the barbiturate anion is the same in both OCEWUQ and the title salt.

Synthesis and crystallization top

To 1,3-di­chloro-4,6-di­nitro­benzene (2.36 g, 0.01 mol) dissolved in 20 ml of absolute alcohol, was added 1,3-di­methyl­barbituric acid (0.01 mol, 1.56 g) dissolved in 30 ml of absolute alcohol. The mixture was heated to 313 K and 4-amino­pyridine (0.02 mol, 1.88 g) dissolved in 20 ml of absolute ethanol was added. The mixture was shaken well for 2–3 h and kept as such at 298 K. After 24 h, the excess of solvent was removed by distillation under reduced pressure and to the resulting slurry was added to 50 ml of dry ether and the mixture was refrigerated for 5 h. The maroon-red-coloured solid obtained was filtered, powdered well and washed with 50 ml of dry ether. The dry solid was recrystallized from absolute ethanol and slow evaporation of this solvent at 293 K yielded good quality single crystals (yield 75%; m.p. 488 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The cation NH and NH2 H atoms were located in a difference Fourier map and freely refined. The water H atoms were also located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Allen (2002); Ashutoshkar (1993); Babykala et al. (2014); Dhiman (2013); Hardman & Limbird (2001); Kalaivani & Rajamani (2012); Nadkarni et al. (2005); Nogrady (1988); Olsen et al. (1986); Sridevi & Kalaivani (2012); Yadav (2004).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
4-Aminopyridinium 5-(5-chloro-2,4-dinitrophenyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate hemihydrate top
Crystal data top
C5H7N2+·C12H8ClN4O7·0.5H2OF(000) = 1896
Mr = 459.81Dx = 1.546 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.7242 (5) ÅCell parameters from 9949 reflections
b = 14.2576 (5) Åθ = 2.6–29.5°
c = 17.4321 (7) ŵ = 0.25 mm1
β = 116.259 (3)°T = 293 K
V = 3950.6 (2) Å3Block, red
Z = 80.35 × 0.35 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
3868 independent reflections
Radiation source: fine-focus sealed tube2686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scanθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2121
Tmin = 0.911, Tmax = 0.930k = 1717
38331 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0628P)2 + 9.3104P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3868 reflectionsΔρmax = 0.47 e Å3
306 parametersΔρmin = 0.46 e Å3
7 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0010 (2)
Crystal data top
C5H7N2+·C12H8ClN4O7·0.5H2OV = 3950.6 (2) Å3
Mr = 459.81Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.7242 (5) ŵ = 0.25 mm1
b = 14.2576 (5) ÅT = 293 K
c = 17.4321 (7) Å0.35 × 0.35 × 0.30 mm
β = 116.259 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3868 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2686 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.930Rint = 0.029
38331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0567 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.47 e Å3
3868 reflectionsΔρmin = 0.46 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9919 (2)0.4245 (2)0.09141 (19)0.0514 (7)
C20.9091 (2)0.4328 (3)0.0311 (2)0.0629 (9)
H20.88330.38390.00690.075*
C30.8647 (2)0.5132 (3)0.0273 (2)0.0601 (9)
C40.90337 (19)0.5859 (3)0.0836 (2)0.0547 (8)
C50.98582 (19)0.5748 (2)0.14353 (19)0.0495 (7)
H51.01110.62390.18140.059*
C61.03389 (18)0.4946 (2)0.15101 (17)0.0437 (7)
C71.11882 (18)0.48772 (19)0.22105 (18)0.0430 (6)
C81.14416 (18)0.4037 (2)0.26856 (18)0.0455 (7)
C91.27389 (19)0.4806 (2)0.3673 (2)0.0513 (7)
C101.17194 (19)0.5664 (2)0.2441 (2)0.0477 (7)
C111.3064 (2)0.6394 (3)0.3416 (3)0.0748 (11)
H11A1.29390.67910.37900.112*
H11B1.29890.67410.29150.112*
H11C1.36350.61800.37070.112*
C121.2465 (3)0.3194 (2)0.3945 (2)0.0692 (10)
H12A1.29930.32990.44360.104*
H12B1.25220.26830.36150.104*
H12C1.20430.30440.41280.104*
C130.9905 (2)0.0191 (2)0.1371 (2)0.0523 (7)
C140.9221 (2)0.0263 (2)0.2186 (2)0.0554 (8)
H140.90620.02500.25540.067*
C150.8793 (2)0.1080 (3)0.2431 (2)0.0681 (10)
H150.83450.11220.29740.082*
C160.9629 (3)0.1772 (2)0.1155 (2)0.0678 (10)
H160.97610.23030.08110.081*
C171.0100 (2)0.1002 (2)0.0844 (2)0.0611 (9)
H171.05430.09980.02960.073*
N11.0356 (3)0.3400 (2)0.08368 (18)0.0696 (9)
N20.7784 (2)0.5168 (4)0.0404 (2)0.0866 (11)
N31.24936 (15)0.55831 (17)0.31628 (17)0.0516 (6)
N41.22188 (16)0.40446 (17)0.34170 (16)0.0501 (6)
N50.8988 (2)0.1819 (2)0.1926 (2)0.0717 (9)
N61.0343 (2)0.0582 (2)0.1099 (2)0.0680 (8)
O11.1078 (2)0.34820 (19)0.09283 (19)0.0855 (9)
O20.9948 (2)0.26692 (19)0.06391 (18)0.1055 (12)
O30.7499 (2)0.4483 (3)0.0835 (2)0.1351 (16)
O40.7378 (2)0.5880 (3)0.0505 (3)0.1303 (15)
Cl10.85552 (6)0.68966 (8)0.08676 (7)0.0830 (4)
O61.10297 (16)0.33059 (16)0.25208 (15)0.0653 (7)
O71.15599 (14)0.64213 (15)0.20372 (16)0.0623 (6)
O81.34014 (15)0.47883 (18)0.43275 (16)0.0736 (7)
O91.00000.1893 (2)0.25000.0645 (9)
H9A0.948 (2)0.211 (4)0.235 (6)0.077*0.50
H9B1.032 (3)0.233 (4)0.242 (5)0.077*0.50
H6A1.076 (2)0.063 (3)0.0563 (14)0.101 (16)*
H6B1.027 (3)0.108 (2)0.144 (2)0.094 (14)*
H5A0.863 (3)0.230 (3)0.219 (4)0.15 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.064 (2)0.0464 (17)0.0424 (16)0.0042 (14)0.0222 (15)0.0029 (13)
C20.071 (2)0.065 (2)0.0419 (17)0.0195 (18)0.0153 (16)0.0024 (15)
C30.0458 (18)0.082 (3)0.0455 (17)0.0061 (17)0.0142 (15)0.0130 (17)
C40.0445 (17)0.071 (2)0.0501 (17)0.0070 (15)0.0222 (14)0.0110 (16)
C50.0481 (17)0.0539 (17)0.0468 (16)0.0012 (14)0.0213 (14)0.0007 (14)
C60.0488 (16)0.0450 (15)0.0390 (14)0.0011 (12)0.0211 (13)0.0025 (12)
C70.0428 (15)0.0395 (14)0.0443 (15)0.0008 (12)0.0170 (13)0.0007 (12)
C80.0475 (17)0.0426 (16)0.0468 (16)0.0002 (13)0.0213 (14)0.0027 (12)
C90.0446 (17)0.0486 (17)0.0564 (18)0.0052 (13)0.0184 (15)0.0006 (14)
C100.0465 (16)0.0365 (15)0.0583 (18)0.0049 (12)0.0214 (14)0.0016 (13)
C110.051 (2)0.052 (2)0.109 (3)0.0096 (16)0.023 (2)0.006 (2)
C120.076 (2)0.056 (2)0.065 (2)0.0086 (17)0.0219 (19)0.0184 (17)
C130.0562 (19)0.0458 (17)0.0588 (19)0.0003 (14)0.0289 (16)0.0030 (14)
C140.067 (2)0.0455 (17)0.0488 (17)0.0005 (15)0.0206 (16)0.0062 (14)
C150.075 (2)0.064 (2)0.059 (2)0.0048 (19)0.0240 (19)0.0018 (18)
C160.084 (3)0.0486 (19)0.067 (2)0.0006 (17)0.031 (2)0.0085 (16)
C170.064 (2)0.0541 (19)0.0539 (19)0.0043 (16)0.0157 (16)0.0057 (15)
N10.114 (3)0.0483 (17)0.0422 (15)0.0056 (18)0.0302 (17)0.0011 (12)
N20.056 (2)0.130 (3)0.057 (2)0.009 (2)0.0095 (17)0.006 (2)
N30.0410 (13)0.0394 (13)0.0662 (16)0.0003 (10)0.0164 (12)0.0025 (12)
N40.0502 (15)0.0428 (13)0.0506 (14)0.0046 (11)0.0163 (12)0.0071 (11)
N50.089 (2)0.0544 (18)0.070 (2)0.0143 (16)0.0329 (19)0.0057 (15)
N60.072 (2)0.0522 (17)0.070 (2)0.0058 (15)0.0228 (17)0.0007 (15)
O10.128 (3)0.0666 (17)0.085 (2)0.0329 (18)0.069 (2)0.0169 (14)
O20.165 (3)0.0499 (16)0.0685 (18)0.0136 (18)0.0213 (19)0.0118 (13)
O30.074 (2)0.177 (4)0.100 (3)0.016 (2)0.010 (2)0.039 (3)
O40.069 (2)0.168 (4)0.107 (3)0.027 (2)0.0044 (19)0.009 (3)
Cl10.0616 (6)0.0980 (8)0.0897 (7)0.0296 (5)0.0339 (5)0.0120 (6)
O60.0729 (16)0.0525 (13)0.0598 (14)0.0150 (11)0.0197 (12)0.0101 (11)
O70.0590 (14)0.0386 (12)0.0809 (16)0.0041 (10)0.0232 (12)0.0085 (11)
O80.0564 (15)0.0718 (16)0.0683 (16)0.0030 (12)0.0055 (13)0.0030 (13)
O90.074 (2)0.0376 (17)0.091 (3)0.0000.044 (2)0.000
Geometric parameters (Å, º) top
C1—C21.382 (5)C12—N41.466 (4)
C1—C61.396 (4)C12—H12A0.9600
C1—N11.469 (5)C12—H12B0.9600
C2—C31.374 (5)C12—H12C0.9600
C2—H20.9300C13—N61.311 (4)
C3—C41.384 (5)C13—C141.405 (5)
C3—N21.463 (5)C13—C171.421 (4)
C4—C51.379 (4)C14—C151.352 (5)
C4—Cl11.718 (4)C14—H140.9300
C5—C61.397 (4)C15—N51.316 (5)
C5—H50.9300C15—H150.9300
C6—C71.463 (4)C16—N51.322 (5)
C7—C101.404 (4)C16—C171.340 (5)
C7—C81.412 (4)C16—H160.9300
C8—O61.231 (3)C17—H170.9300
C8—N41.403 (4)N1—O11.224 (4)
C9—O81.223 (4)N1—O21.228 (4)
C9—N41.365 (4)N2—O31.199 (5)
C9—N31.367 (4)N2—O41.210 (5)
C10—O71.251 (4)N5—H5A0.91 (2)
C10—N31.397 (4)N6—H6A0.898 (18)
C11—N31.469 (4)N6—H6B0.896 (18)
C11—H11A0.9600O9—H9A0.89 (2)
C11—H11B0.9600O9—H9B0.90 (2)
C11—H11C0.9600
C2—C1—C6122.8 (3)H12A—C12—H12B109.5
C2—C1—N1115.2 (3)N4—C12—H12C109.5
C6—C1—N1121.8 (3)H12A—C12—H12C109.5
C3—C2—C1120.0 (3)H12B—C12—H12C109.5
C3—C2—H2120.0N6—C13—C14122.4 (3)
C1—C2—H2120.0N6—C13—C17121.0 (3)
C2—C3—C4119.9 (3)C14—C13—C17116.7 (3)
C2—C3—N2116.1 (4)C15—C14—C13119.6 (3)
C4—C3—N2123.9 (4)C15—C14—H14120.2
C5—C4—C3118.5 (3)C13—C14—H14120.2
C5—C4—Cl1116.6 (3)N5—C15—C14122.2 (3)
C3—C4—Cl1124.9 (3)N5—C15—H15118.9
C4—C5—C6124.3 (3)C14—C15—H15118.9
C4—C5—H5117.9N5—C16—C17123.6 (3)
C6—C5—H5117.9N5—C16—H16118.2
C1—C6—C5114.5 (3)C17—C16—H16118.2
C1—C6—C7125.9 (3)C16—C17—C13118.4 (3)
C5—C6—C7119.5 (3)C16—C17—H17120.8
C10—C7—C8120.7 (3)C13—C17—H17120.8
C10—C7—C6119.8 (3)O1—N1—O2124.7 (4)
C8—C7—C6119.3 (3)O1—N1—C1118.2 (3)
O6—C8—N4117.5 (3)O2—N1—C1116.9 (4)
O6—C8—C7125.4 (3)O3—N2—O4122.2 (4)
N4—C8—C7117.1 (3)O3—N2—C3118.5 (4)
O8—C9—N4121.3 (3)O4—N2—C3119.3 (4)
O8—C9—N3121.4 (3)C9—N3—C10123.8 (3)
N4—C9—N3117.2 (3)C9—N3—C11117.7 (3)
O7—C10—N3117.7 (3)C10—N3—C11118.4 (3)
O7—C10—C7124.9 (3)C9—N4—C8123.6 (2)
N3—C10—C7117.3 (3)C9—N4—C12118.8 (3)
N3—C11—H11A109.5C8—N4—C12117.6 (3)
N3—C11—H11B109.5C15—N5—C16119.5 (3)
H11A—C11—H11B109.5C15—N5—H5A110 (4)
N3—C11—H11C109.5C16—N5—H5A130 (4)
H11A—C11—H11C109.5C13—N6—H6A121 (3)
H11B—C11—H11C109.5C13—N6—H6B122 (2)
N4—C12—H12A109.5H6A—N6—H6B116 (3)
N4—C12—H12B109.5H9A—O9—H9B111 (3)
C6—C1—C2—C30.9 (5)C13—C14—C15—N50.8 (6)
N1—C1—C2—C3173.8 (3)N5—C16—C17—C130.5 (6)
C1—C2—C3—C40.4 (5)N6—C13—C17—C16179.8 (4)
C1—C2—C3—N2178.1 (3)C14—C13—C17—C160.5 (5)
C2—C3—C4—C51.0 (5)C2—C1—N1—O1137.5 (3)
N2—C3—C4—C5178.5 (3)C6—C1—N1—O137.2 (4)
C2—C3—C4—Cl1179.4 (3)C2—C1—N1—O238.7 (4)
N2—C3—C4—Cl13.1 (5)C6—C1—N1—O2146.5 (3)
C3—C4—C5—C60.5 (5)C2—C3—N2—O35.4 (5)
Cl1—C4—C5—C6179.1 (2)C4—C3—N2—O3177.0 (4)
C2—C1—C6—C51.3 (4)C2—C3—N2—O4175.4 (4)
N1—C1—C6—C5173.0 (3)C4—C3—N2—O42.2 (6)
C2—C1—C6—C7174.5 (3)O8—C9—N3—C10175.5 (3)
N1—C1—C6—C711.2 (5)N4—C9—N3—C105.3 (5)
C4—C5—C6—C10.6 (4)O8—C9—N3—C111.4 (5)
C4—C5—C6—C7175.5 (3)N4—C9—N3—C11177.8 (3)
C1—C6—C7—C10143.2 (3)O7—C10—N3—C9178.3 (3)
C5—C6—C7—C1041.2 (4)C7—C10—N3—C93.4 (4)
C1—C6—C7—C841.3 (4)O7—C10—N3—C111.4 (4)
C5—C6—C7—C8134.4 (3)C7—C10—N3—C11179.7 (3)
C10—C7—C8—O6178.1 (3)O8—C9—N4—C8178.1 (3)
C6—C7—C8—O66.4 (5)N3—C9—N4—C82.7 (4)
C10—C7—C8—N43.5 (4)O8—C9—N4—C120.2 (5)
C6—C7—C8—N4172.0 (2)N3—C9—N4—C12179.4 (3)
C8—C7—C10—O7177.0 (3)O6—C8—N4—C9179.9 (3)
C6—C7—C10—O77.5 (5)C7—C8—N4—C91.6 (4)
C8—C7—C10—N31.2 (4)O6—C8—N4—C122.2 (4)
C6—C7—C10—N3174.3 (3)C7—C8—N4—C12176.4 (3)
N6—C13—C14—C15180.0 (3)C14—C15—N5—C160.8 (6)
C17—C13—C14—C150.7 (5)C17—C16—N5—C150.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O8i0.90 (2)2.09 (2)2.947 (4)158 (4)
N6—H6B···O9ii0.90 (2)2.05 (2)2.918 (4)162 (4)
N5—H5A···O7iii0.91 (2)1.89 (4)2.667 (4)141 (5)
O9—H9A···O6iv0.89 (2)1.99 (5)2.707 (3)136 (6)
O9—H9B···O60.90 (2)1.83 (3)2.707 (3)167 (9)
C15—H15···O4v0.932.413.276 (5)156
C16—H16···O20.932.463.190 (5)136
C17—H17···O8i0.932.563.290 (4)136
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x+2, y, z; (iii) x+2, y+1, z; (iv) x+2, y, z+1/2; (v) x+3/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O8i0.898 (18)2.09 (2)2.947 (4)158 (4)
N6—H6B···O9ii0.896 (18)2.05 (2)2.918 (4)162 (4)
N5—H5A···O7iii0.91 (2)1.89 (4)2.667 (4)141 (5)
O9—H9A···O6iv0.89 (2)1.99 (5)2.707 (3)136 (6)
O9—H9B···O60.90 (2)1.83 (3)2.707 (3)167 (9)
C15—H15···O4v0.932.413.276 (5)156
C16—H16···O20.932.463.190 (5)136
C17—H17···O8i0.932.563.290 (4)136
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x+2, y, z; (iii) x+2, y+1, z; (iv) x+2, y, z+1/2; (v) x+3/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C12H8ClN4O7·0.5H2O
Mr459.81
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.7242 (5), 14.2576 (5), 17.4321 (7)
β (°) 116.259 (3)
V3)3950.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.35 × 0.35 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.911, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
38331, 3868, 2686
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.175, 1.07
No. of reflections3868
No. of parameters306
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.46

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors are grateful to the SERB–DST, New Delhi, for financial support and the SAIF, IIT Madras, for the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAshutoshkar (1993). Medicinal Chemistry. New Delhi: Wiley Eastern Ltd.  Google Scholar
First citationBabykala, R., Rajamani, K., Muthulakshmi, S. & Kalaivani, D. (2014). J. Chem. Crystallogr. 44, 243–254.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhiman, P. (2013). J. Drug Discov. Ther. 1, 15–22.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHardman, J. G., Limbird, L. E. & Gilman, A. G. (2001). Editors. The Pharmacological Basis of Therapeutics, 10th ed. New York. McGraw-Hill.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNadkarni, S., LaJoie, J. & Devinsky, O. (2005). Neurology, 64, S2–11.  CrossRef PubMed CAS Google Scholar
First citationNogrady, T. (1988). Medicinal Chemistry. New York: Oxford University Press.  Google Scholar
First citationOlsen, R. W., Wamsley, J. K., Lee, R. J. & Lomax, P. (1986). Adv. Neurol. 44, 365–378.  CAS PubMed Google Scholar
First citationRajamani, K. & Kalaivani, D. (2012). Acta Cryst. E68, o2395.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, A. V. (2004). Pharmacology and Toxicology, 11th ed. Mumbai: Nirali Prakas.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 256-258
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds