organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-cyclo­hexyl-1-(propan-2-yl­­idene)thio­semicarbazide

aSchool of Chemical Sciences and Food Technology, Faculty of Resource Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia, and bDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan Serawak, Malaysia
*Correspondence e-mail: dnorafizan@frst.unimas.my

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 4 September 2014; accepted 9 September 2014; online 13 September 2014)

In the title compound, C10H19N3S, the cyclo­hexyl group adopts a chair conformation and adopts a position approximately syn to the thione S atom. The CN2S thio­urea moiety makes dihedral angle of 13.13 (10)° with the propan-2-yl­idene­amino group. An intra­molecular N—H⋯N hydrogen bond is noted. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops.

1. Related literature

For the applications and biological activity of thio­semicarbazide derivatives, see: Brokl et al. (1974[Brokl, M., Dour, S. J. & Kerst, A. (1974). US Patent US3830917A.]), Jiang et al. (2006[Jiang, Z. G., Lebowitz, M. S. & Ghanbari, H. A. (2006). CNS Drug Rev. 12, 72-90.]). For the crystal structures of related compounds, see: Affan et al. (2011[Affan, M. A., Salam, M. A., Ahmad, F. B., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1193.]); Miroslaw et al. (2011[Miroslaw, B., Szulczyk, D., Koziol, A. E. & Struga, M. (2011). Acta Cryst. E67, o3010.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H19N3S

  • Mr = 213.34

  • Orthorhombic, P b c a

  • a = 13.6668 (10) Å

  • b = 8.3356 (5) Å

  • c = 21.4683 (16) Å

  • V = 2445.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 301 K

  • 0.50 × 0.19 × 0.19 mm

2.2. Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.892, Tmax = 0.957

  • 31768 measured reflections

  • 3028 independent reflections

  • 2051 reflections with I > 2σ(I)

  • Rint = 0.061

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.135

  • S = 1.04

  • 3028 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯N3 0.86 2.18 2.592 (2) 109
N2—H2C⋯S1i 0.86 2.80 3.6170 (18) 158
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Synthesis and crystallization top

A mixture of 4-cyclo­hexyl­thio­semicarbazide (0.174 g, 1 mmol), KOH (0.112 g, 0.05 mmol) and di­phenyl­tin(IV) chloride (0.344 g, 1 mmol) in methanol was heated under reflux for 4–5 h. The reaction mixture was allowed to cool to room temperature for 1 h. The white precipitate formed was filtered and washed with acetone. Crystals suitable for X-ray study were obtained by recrystallization from acetone (0.240 g, 42% yield). M.pt = 390–393 K. IR (KBr): vNH-cyclo­hexyl (3336), vS=C—NH (3221), vcyclo­hexyl (2929,2850), vC=N (1527), vC=S (1263,881), vN—N (1106) cm-1. All the chemicals were purchased from Sigma Aldrich (Germany).

Refinement top

Non-methine C-bound H atoms were positioned geometrically with C—H = 0.96–0.97 Å, and with Uiso(H)= 1.2–1.5Ueq(C). The N-bound H atoms were positioned geometrically with N—H = 0.86 Å, and with Uiso(H)= 1.2Ueq(N). The methine-bound H atom was located from a Fourier map and refined isotropically. A rotating model was applied in the refinement of the methyl hydrogen atoms.

Related literature top

For the applications and biological activity of thiosemicarbazide, see: Brokl et al. (1974), Jiang et al. (2006). For the crystal structures of related compounds, see: Affan et al. (2011); Miroslaw et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I) viewed down the c axis. The dashed lines indicate intermolecular hydrogen bonds
4-Cyclohexyl-1-(propan-2-ylidene)thiosemicarbazide top
Crystal data top
C10H19N3SF(000) = 928
Mr = 213.34Dx = 1.159 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7621 reflections
a = 13.6668 (10) Åθ = 2.9–28.3°
b = 8.3356 (5) ŵ = 0.24 mm1
c = 21.4683 (16) ÅT = 301 K
V = 2445.7 (3) Å3Block, yellow
Z = 80.50 × 0.19 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3028 independent reflections
Radiation source: fine-focus sealed tube2051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 83.66 pixels mm-1θmax = 28.3°, θmin = 2.9°
ω scanh = 1816
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1110
Tmin = 0.892, Tmax = 0.957l = 2827
31768 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.9515P]
where P = (Fo2 + 2Fc2)/3
3028 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C10H19N3SV = 2445.7 (3) Å3
Mr = 213.34Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.6668 (10) ŵ = 0.24 mm1
b = 8.3356 (5) ÅT = 301 K
c = 21.4683 (16) Å0.50 × 0.19 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3028 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2051 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.957Rint = 0.061
31768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
3028 reflectionsΔρmin = 0.30 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.59037 (4)0.01795 (7)0.41721 (3)0.0582 (2)
N10.51795 (12)0.26158 (19)0.35150 (7)0.0477 (4)
H1D0.47480.33630.34830.057*
N20.46292 (11)0.23807 (19)0.45107 (7)0.0447 (4)
H2C0.46300.19420.48730.054*
N30.40374 (11)0.36924 (19)0.43836 (7)0.0462 (4)
C10.67225 (14)0.3396 (2)0.30141 (9)0.0489 (5)
H1A0.70930.31190.33840.059*
H1B0.65300.45130.30480.059*
C20.73660 (16)0.3179 (3)0.24406 (11)0.0580 (6)
H2A0.79140.39160.24630.070*
H2B0.76250.20960.24360.070*
C30.68044 (18)0.3477 (3)0.18483 (10)0.0623 (6)
H3A0.72230.32610.14930.075*
H3B0.66090.45950.18300.075*
C40.59057 (17)0.2423 (3)0.18135 (10)0.0589 (6)
H4A0.61040.13080.17860.071*
H4B0.55380.26820.14400.071*
C50.52547 (14)0.2654 (3)0.23839 (9)0.0488 (5)
H5A0.50010.37410.23870.059*
H5B0.47040.19230.23610.059*
C60.58140 (13)0.2352 (2)0.29786 (8)0.0393 (4)
H1C0.6010 (13)0.123 (2)0.2991 (8)0.041 (5)*
C70.52063 (13)0.1809 (2)0.40478 (8)0.0387 (4)
C80.36147 (14)0.4386 (2)0.48408 (9)0.0426 (4)
C90.29760 (19)0.5788 (3)0.46846 (11)0.0714 (7)
H9A0.29640.59370.42410.107*
H9B0.32310.67360.48800.107*
H9C0.23240.55910.48320.107*
C100.36946 (17)0.3939 (3)0.55073 (9)0.0549 (5)
H10A0.43610.36710.56020.082*
H10B0.32830.30300.55900.082*
H10C0.34910.48250.57610.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0625 (4)0.0585 (3)0.0536 (3)0.0258 (3)0.0105 (3)0.0124 (2)
N10.0531 (9)0.0453 (9)0.0446 (9)0.0189 (7)0.0155 (8)0.0074 (7)
N20.0499 (9)0.0451 (9)0.0391 (9)0.0104 (7)0.0105 (7)0.0057 (7)
N30.0469 (9)0.0448 (9)0.0468 (9)0.0105 (7)0.0142 (7)0.0068 (7)
C10.0468 (11)0.0532 (11)0.0467 (11)0.0001 (9)0.0012 (9)0.0088 (9)
C20.0457 (11)0.0557 (12)0.0725 (15)0.0087 (10)0.0167 (11)0.0103 (11)
C30.0777 (15)0.0583 (13)0.0509 (13)0.0037 (11)0.0270 (12)0.0024 (10)
C40.0682 (14)0.0682 (14)0.0403 (11)0.0013 (11)0.0001 (10)0.0082 (10)
C50.0443 (11)0.0535 (11)0.0486 (12)0.0024 (9)0.0008 (9)0.0040 (9)
C60.0428 (10)0.0348 (9)0.0403 (10)0.0084 (8)0.0083 (8)0.0016 (7)
C70.0358 (9)0.0391 (9)0.0410 (10)0.0015 (7)0.0050 (8)0.0017 (8)
C80.0429 (10)0.0390 (9)0.0460 (11)0.0000 (8)0.0128 (8)0.0011 (8)
C90.0828 (16)0.0633 (14)0.0682 (15)0.0310 (13)0.0326 (13)0.0157 (12)
C100.0661 (13)0.0528 (11)0.0458 (12)0.0046 (11)0.0055 (10)0.0092 (9)
Geometric parameters (Å, º) top
S1—C71.6803 (18)C3—H3B0.9700
N1—C71.328 (2)C4—C51.526 (3)
N1—C61.458 (2)C4—H4A0.9700
N1—H1D0.8600C4—H4B0.9700
N2—C71.355 (2)C5—C61.509 (3)
N2—N31.387 (2)C5—H5A0.9700
N2—H2C0.8600C5—H5B0.9700
N3—C81.277 (2)C6—H1C0.973 (19)
C1—C61.518 (3)C8—C101.483 (3)
C1—C21.524 (3)C8—C91.497 (3)
C1—H1A0.9700C9—H9A0.9600
C1—H1B0.9700C9—H9B0.9600
C2—C31.506 (3)C9—H9C0.9600
C2—H2A0.9700C10—H10A0.9600
C2—H2B0.9700C10—H10B0.9600
C3—C41.512 (3)C10—H10C0.9600
C3—H3A0.9700
C7—N1—C6125.98 (15)C6—C5—C4111.24 (16)
C7—N1—H1D117.0C6—C5—H5A109.4
C6—N1—H1D117.0C4—C5—H5A109.4
C7—N2—N3118.20 (15)C6—C5—H5B109.4
C7—N2—H2C120.9C4—C5—H5B109.4
N3—N2—H2C120.9H5A—C5—H5B108.0
C8—N3—N2118.00 (16)N1—C6—C5109.97 (14)
C6—C1—C2111.30 (16)N1—C6—C1111.11 (15)
C6—C1—H1A109.4C5—C6—C1111.16 (16)
C2—C1—H1A109.4N1—C6—H1C106.7 (11)
C6—C1—H1B109.4C5—C6—H1C108.9 (11)
C2—C1—H1B109.4C1—C6—H1C108.9 (11)
H1A—C1—H1B108.0N1—C7—N2115.93 (16)
C3—C2—C1111.62 (18)N1—C7—S1124.19 (14)
C3—C2—H2A109.3N2—C7—S1119.87 (14)
C1—C2—H2A109.3N3—C8—C10126.46 (18)
C3—C2—H2B109.3N3—C8—C9116.44 (18)
C1—C2—H2B109.3C10—C8—C9117.10 (17)
H2A—C2—H2B108.0C8—C9—H9A109.5
C2—C3—C4111.10 (18)C8—C9—H9B109.5
C2—C3—H3A109.4H9A—C9—H9B109.5
C4—C3—H3A109.4C8—C9—H9C109.5
C2—C3—H3B109.4H9A—C9—H9C109.5
C4—C3—H3B109.4H9B—C9—H9C109.5
H3A—C3—H3B108.0C8—C10—H10A109.5
C3—C4—C5111.13 (17)C8—C10—H10B109.5
C3—C4—H4A109.4H10A—C10—H10B109.5
C5—C4—H4A109.4C8—C10—H10C109.5
C3—C4—H4B109.4H10A—C10—H10C109.5
C5—C4—H4B109.4H10B—C10—H10C109.5
H4A—C4—H4B108.0
C7—N2—N3—C8169.08 (17)C2—C1—C6—N1177.51 (16)
C6—C1—C2—C354.9 (2)C2—C1—C6—C554.7 (2)
C1—C2—C3—C455.4 (2)C6—N1—C7—N2172.31 (17)
C2—C3—C4—C555.8 (2)C6—N1—C7—S17.2 (3)
C3—C4—C5—C655.9 (2)N3—N2—C7—N12.8 (2)
C7—N1—C6—C5145.50 (19)N3—N2—C7—S1177.70 (13)
C7—N1—C6—C191.0 (2)N2—N3—C8—C100.4 (3)
C4—C5—C6—N1178.77 (16)N2—N3—C8—C9179.53 (18)
C4—C5—C6—C155.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···N30.862.182.592 (2)109
C6—H1C···S10.97 (3)2.69 (2)3.142 (2)108.9 (12)
C10—H10A···N20.962.402.811 (3)106
N2—H2C···S1i0.862.803.6170 (18)158
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···N30.862.182.592 (2)109
N2—H2C···S1i0.862.803.6170 (18)158
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors thank the Ministry of Science, Technology and Innovation (MOSTI), for a research grant [RAGS/ST01(1)/1040/2013 (07)] and to The Centre of Instrumentation (CRIM), Universiti Kebangsaan Malaysia, for use of the X-ray crystallographic facility.

References

First citationAffan, M. A., Salam, M. A., Ahmad, F. B., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrokl, M., Dour, S. J. & Kerst, A. (1974). US Patent US3830917A.  Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationJiang, Z. G., Lebowitz, M. S. & Ghanbari, H. A. (2006). CNS Drug Rev. 12, 72–90.  Web of Science CrossRef Google Scholar
First citationMiroslaw, B., Szulczyk, D., Koziol, A. E. & Struga, M. (2011). Acta Cryst. E67, o3010.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds