research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 161-163

Crystal structure of the magnesium salt of the herbicide 2,4-D: penta­aqua­[(2,4-di­chloro­phen­oxy)acetato-κO]magnesium (2,4-di­chloro­phen­­oxy)acetate hemihydrate

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 August 2014; accepted 26 August 2014; online 3 September 2014)

In the crystal structure of the title magnesium salt of the phen­oxy herbicide (2,4-di­chloro­phen­oxy)acetic acid (2,4-D), [Mg(C8H5Cl2O3)(H2O)5](C8H5Cl2O3)·0.5H2O, the discrete cationic MgO6 complex unit comprises a carboxyl­ate O-donor from a monodentate 2,4-D anionic ligand and five water mol­ecules, resulting in a slightly distorted octa­hedral coordination sphere. The free 2,4-D anions are linked to the complex units through duplex water–carboxyl­ate O—H⋯O hydrogen bonds through the coordinating water mol­ecules. In the crystal, inter-unit O—H⋯O hydrogen-bonding inter­actions involving coordinating water mol­ecules as well as the solvent water mol­ecule (occupancy 0.5) with carboxyl­ate O-atom acceptors, give a layered structure lying parallel to (001), in which ππ ligand–cation inter­actions [minimum ring centroid separation = 3.6405 (17) Å] and a short O—H⋯Cl inter­action are also found.

1. Chemical context

The phen­oxy­acetic acids comprise an important group of chemicals which has among its members those ring-substituted representatives having selective herbicidal activity, e.g. the commercial but in some cases, now prohibited (2,4-di­chloro­phen­oxy)acetic acid (2,4-D), (2,4,5-tri­chloro­phen­oxy)acetic acid (2,4,5-T) and (4-chloro-2-methyl­phen­oxy)acetic acid (MCPA) (O'Neil, 2002[O'Neil, M. J. (2002). Editor. The Merck Index, 13th ed., pp. 491, 1028, 1610. Whitehouse Station, NJ: Merck & Co. Inc.]; Zumdahl, 2010[Zumdahl, R. L. (2010). In A History of Weed Science in the United States. New York: Elsevier.]; Cobb & Reade, 2011[Cobb, A. H. & Reade, J. P. H. (2011). In Herbicides and Plant Physiology, 2nd ed. Bognor Regis, UK: Wiley-Blackwell.]). Of inter­est have also been the structures of the metal complexes with these acids, including those with magnesium in which the monoanionic phen­oxy­acetate ligands (L) display a variety of coordination modes, all based on an octa­hedral MgO6 metal stereochemistry. These include discrete monomeric {[MgL2(H2O)4] [L = 2-(2-fluoro­phen­oxy)acetate (Kennard et al., 1986[Kennard, C. H. L., O'Reilly, E. J., Schiller, S., Smith, G. & White, A. H. (1986). Aust. J. Chem. 39, 1823-1832.]) and L = MCPA (Smith et al., 1981[Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1981). Cryst. Struct. Commun. 10, 1397-1402.])] and [MgL(H2O)5L [L = 2,4,5-T (Smith et al., 1982[Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1982). Inorg. Chim. Acta, 62, 241-246.])]} or polymeric {[MgL2(H2O)2]}n [L = phen­oxy­acetate, (4-chloro­phen­oxy)acetate or (4-fluoro­phen­oxy)acetate] (Smith et al., 1980[Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1980). J. Chem. Soc. Dalton Trans., pp. 2462-2466.]; Smith, 2012[Smith, G. (2012). Acta Cryst. E68, m1178.])}. The title complex, [Mg(C8H5Cl2O3)(H2O)5](C8H5Cl2O3)·0.5H2O, was obtained from the reaction of 2,4-D with MgCO3 in aqueous ethanol and its crystal structure is reported herein.

[Scheme 1]

2. Structural commentary

In the title complex (Fig. 1[link]), the discrete MgO6 complex units have, as expected, essentially octa­hedral stereochemistry [Mg—O bond length range = 2.031 (2)–2.094 (2) Å], comprising a carboxyl­ate O-donor from a monodentate 2,4-D ligand and five water mol­ecules. The free 2,4-D counter-anion is linked to the complex unit through an unusual duplex water–carboxyl­ate O—H⋯O hydrogen-bonding association involving the coordinating water mol­ecules O1W and O2W (Table 1[link]), giving a cyclic ring motif incorporating the Mg2+ cation [graph set R22(8)]. Except for the presence of the hemihydrate mol­ecule of solvation, the title complex is very similar to that of the Mg complex with the analogous phen­oxy herbicide, (2,4,5-tri­chloro­phen­oxy)acetic acid (Smith et al., 1982[Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1982). Inorg. Chim. Acta, 62, 241-246.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O13B 0.86 (3) 1.92 (3) 2.772 (3) 171 (3)
O1W—H12W⋯O4Wi 0.87 (3) 2.09 (3) 2.939 (3) 165 (3)
O2W—H21W⋯O14B 0.88 (2) 1.75 (2) 2.623 (3) 176 (3)
O2W—H22W⋯O14Bii 0.87 (3) 1.88 (3) 2.754 (3) 173 (3)
O3W—H31W⋯O13Aiii 0.87 (2) 1.80 (2) 2.656 (3) 167 (3)
O3W—H32W⋯Cl2Aiii 0.87 (3) 2.50 (3) 3.345 (2) 165 (3)
O4W—H41W⋯O13Ai 0.89 (2) 1.77 (2) 2.652 (3) 172 (4)
O4W—H42W⋯O2Wiv 0.88 (2) 2.19 (3) 2.980 (3) 151 (3)
O5W—H51W⋯O6Wv 0.90 (5) 1.90 (6) 2.543 (5) 127 (4)
O5W—H52W⋯O13Bvi 0.88 (4) 1.86 (4) 2.708 (4) 162 (4)
O6W—H61W⋯O14Biv 0.91 (6) 1.77 (6) 2.654 (5) 162 (7)
O6W—H62W⋯O14A 0.90 (6) 2.12 (5) 3.006 (5) 168 (5)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) x, y-1, z; (iv) -x+1, -y, -z+1; (v) x+1, y, z; (vi) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
Mol­ecular configuration and atom-naming scheme for the title compound, with displacement ellipsoids drawn at the 40% probability level. Inter-species hydrogen bonds are shown as dashed lines.

In the present complex, both 2,4-D species are essentially planar [defining torsion angles for the oxo­acetic acid side chain (C1A/B—O11A/B—C12A/B—C13A/B and O11A/B—C12A/B—C13A/B—O14A/B) being 179.0 (2) and 174.8 (2)° (ligand A), and 175.7 (2) and 178.7 (2)° (anion B), respectively]. This contrasts with the parent acid 2,4-D (Smith et al., 1976[Smith, G., Kennard, C. H. L. & White, A. H. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 791-792.]), in which the oxo­acetic acid side chain adopts a synclinal conformation (benzene ring to carboxyl group dihedral angle = 75.2°).

3. Supra­molecular features

In the crystal of the title compound, inter-unit O—H⋯O hydrogen-bonding inter­actions (Table 1[link]) involving all coordinating water mol­ecules, as well as the hemihydrate solvent mol­ecule, with carboxyl­ate O-atom acceptors, give a layered structure lying parallel (001) (Fig. 2[link]). Within these layers, weak ππ inter­actions between centrosymmetrically related 2,4-D ligand–anion species ABi are also found. The 2,4-D mol­ecules lie parallel to (10[\overline{1}]) and have a minimum ring centroid separation of 3.6405 (17) Å. A short O3W—H⋯Cl2Aiii inter­action [3.345 (2) Å] is also observed [for symmetry codes (i) and (iii), see: Table 1[link]].

[Figure 2]
Figure 2
The two-dimensional hydrogen-bonded structure of the title compound in the unit cell, viewed down the a axis. Non-associative H atoms have been omitted. For symmetry codes, see Table 1[link].

4. Synthesis and crystallization

The title compound was synthesized by the addition of excess MgCO3 to 15 ml of a hot aqueous solution of (2,4-di­chloro­phen­oxy)acetic acid (0.1 mmol) in ethanol–water (1:10 v/v). After completion of the reaction, excess MgCO3 was removed by filtration and the solution was allowed to evaporate at room temperature, providing colourless prisms of the title compound from which a specimen was cleaved for the X-ray analysis.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms on all water mol­ecules were located in difference Fourier maps. Their positional parameters were refined with restraints [O—H = 0.90 (2) Å], with Uiso(H) = 1.5Ueq(O). Other H atoms were included in the refinement at calculated positions (aromatic C—H = 0.95 Å or methyl­ene 0.99 Å), with Uiso(H) = 1.2Ueq(C), using a riding-model approximation. The site-occupancy factor for the water mol­ecule of solvation was determined as 0.502 (4) and was subsequently fixed at 0.50.

Table 2
Experimental details

Crystal data
Chemical formula [Mg(C8H5Cl2O3)(H2O)5](C8H5Cl2O3)·0.5H2O
Mr 563.44
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 7.3551 (6), 7.6579 (5), 20.7878 (14)
α, β, γ (°) 91.266 (6), 94.341 (6), 94.250 (6)
V3) 1163.84 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.59
Crystal size (mm) 0.40 × 0.12 × 0.10
 
Data collection
Diffractometer Oxford Diffraction Gemini-S CCD detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.970, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 7636, 4575, 3458
Rint 0.029
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.107, 1.04
No. of reflections 4575
No. of parameters 334
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.69, −0.51
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

The phen­oxy­acetic acids comprise an important group of chemicals which has among its members those ring-substituted representatives having selective herbicidal activity, e.g. the commercial but in some cases, now prohibited (2,4-di­chloro­phen­oxy)­acetic acid (2,4-D), (2,4,5-tri­chloro­phen­oxy)­acetic acid (2,4,5-T) and (4-chloro-2-methyl­phen­oxy)­acetic acid (MCPA) (O'Neil, 2002; Zumdahl, 2010; Cobb & Reade, 2011). Of inter­est have also been the structures of the metal complexes with these acids, including those with magnesium in which the monoanionic phen­oxy­acetate ligands (L) display a variety of coordination modes, all based on an o­cta­hedral MgO6 metal stereochemistry. These include discrete monomeric {[MgL2(H2O)4] [L = (2-fluoro­phen­oxy)­acetate (Kennard et al., 1986) and L = MCPA- (Smith et al., 1981)] and [MgL(H2O)5L [L = 2,4,5-T- (Smith et al., 1982)]} or polymeric {[MgL2(H2O)2]}n [L = 2-phen­oxy­acetate, (4-chloro­phen­oxy)­acetate or (4-fluoro­phen­oxy)­acetate] (Smith et al., 1980; Smith, 2012)}. The title complex, [Mg(C8H5Cl2O3)(H2O)5](C8H5Cl2O3)·0.5H2O, was obtained from the reaction of 2,4-D with MgCO3 in aqueous ethanol and its crystal structure is reported herein.

Structural commentary top

In the title complex (Fig. 1), the discrete MgO6 complex units have, as expected, essentially o­cta­hedral stereochemistry [Mg—O bond length range = 2.031 (2)–2.094 (2) Å], comprising a carboxyl­ate O-donor from a monodentate 2,4-D- ligand and five water molecules. The free 2,4-D- counter-anion is linked to the complex unit through an unusual duplex water–carboxyl­ate O—H···O hydrogen-bonding association involving the coordinating water molecules O1W and O2W (Table 1), giving a cyclic ring motif incorporating the Mg2+ cation [graph set R22(8)]. Except for the presence of the hemihydrate molecule of solvation, the title complex is very similar to that of the Mg complex with the analogous phen­oxy herbicide, (2,4,5-tri­chloro­phen­oxy)­acetic acid (Smith et al., 1982).

In the present complex, both 2,4-D species are essentially planar [defining torsion angles for the oxo­acetic acid side chain (C1A/B—O11A/B—C12A/B—C13A/B and O11A/B—C12A/B—C13A/B—O14A/B) being 179.0 (2) and 174.8 (2)° (ligand A), and 175.7 (2) and 178.7 (2)° (anion B), respectively]. This contrasts with the parent acid 2,4-D (Smith et al., 1976), in which the oxo­acetic acid side chain adopts a synclinal conformation (benzene ring to carboxyl group dihedral angle = 75.2°).

Supra­molecular features top

In the crystal of the title compound, inter-unit O—H···O hydrogen-bonding inter­actions (Table 1) involving all coordinating water molecules, as well as the hemihydrate solvent molecule, with carboxyl­ate O-atom acceptors, give a layered structure lying parallel (001) (Fig. 2). Within these layers, weak ππ inter­actions between centrosymmetrically related 2,4-D ligand–anion species A···Bi are also found. The 2,4-D- molecules lie parallel to (101) and have a minimum ring centroid separation of 3.6405 (17) Å. A short O3W—H···Cl2Aiii inter­action [3.345 (2) Å] is also observed [for symmetry codes (i) and (iii), see: Table 1].

Synthesis and crystallization top

The title compound was synthesized by the addition of excess MgCO3 to 15 ml of a hot aqueous solution of (2,4-di­chloro­phen­oxy)­acetic acid (0.1 mmol) in ethanol–water (1:10 v/v). After completion of the reaction, excess MgCO3 was removed by filtration and the solution was allowed to evaporate at room temperature, providing colourless prisms of the title compound from which a specimen was cleaved for the X-ray analysis.

Refinement details top

H atoms on all water molecules were located in difference Fourier maps. Their positional parameters were refined with restraints [O—H = 0.90 (2) Å], with Uiso(H) = 1.5Ueq(O). Other H atoms were included in the refinement at calculated positions (aromatic C—H = 0.95 Å or methyl­ene 0.99 Å), with Uiso(H) = 1.2Ueq(C), using a riding-model approximation. The site-occupancy factor for the water molecule of solvation was determined as 0.502 (4) and was subsequently fixed at 0.50.

Related literature top

For related literature, see: Cobb & Reade (2011); Kennard et al. (1986); O'Neil (2002); Smith (2012); Smith et al. (1976, 1980, 1981, 1982); Zumdahl (2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom-naming scheme for the title compound, with displacement ellipsoids drawn at the 40% probability level. Inter-species hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The two-dimensional hydrogen-bonded structure of the title compound in the unit cell, viewed down the a axis. Non-associative H atoms have been omitted. For symmetry codes, see Table 1.
Pentaaqua[(2,4-dichlorophenoxy)acetato-κO]magnesium (2,4-dichlorophenoxy)acetate hemihydrate top
Crystal data top
[Mg(C8H5Cl2O3)(H2O)5](C8H5Cl2O3)·0.5H2OZ = 2
Mr = 563.44F(000) = 578
Triclinic, P1Dx = 1.608 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3551 (6) ÅCell parameters from 1889 reflections
b = 7.6579 (5) Åθ = 3.5–27.2°
c = 20.7878 (14) ŵ = 0.59 mm1
α = 91.266 (6)°T = 200 K
β = 94.341 (6)°Lath, colourless
γ = 94.250 (6)°0.40 × 0.12 × 0.10 mm
V = 1163.84 (14) Å3
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
4575 independent reflections
Radiation source: Enhance (Mo) X-ray source3458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 98
Tmin = 0.970, Tmax = 0.980l = 1625
7636 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.6822P]
where P = (Fo2 + 2Fc2)/3
4575 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.69 e Å3
12 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Mg(C8H5Cl2O3)(H2O)5](C8H5Cl2O3)·0.5H2Oγ = 94.250 (6)°
Mr = 563.44V = 1163.84 (14) Å3
Triclinic, P1Z = 2
a = 7.3551 (6) ÅMo Kα radiation
b = 7.6579 (5) ŵ = 0.59 mm1
c = 20.7878 (14) ÅT = 200 K
α = 91.266 (6)°0.40 × 0.12 × 0.10 mm
β = 94.341 (6)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
4575 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
3458 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.029
7636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05012 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.69 e Å3
4575 reflectionsΔρmin = 0.51 e Å3
334 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl2A0.32241 (15)1.10346 (11)0.21550 (4)0.0581 (3)
Cl4A0.09192 (10)0.77979 (11)0.01112 (4)0.0416 (3)
Mg10.64072 (13)0.28185 (12)0.42864 (4)0.0272 (3)
O1W0.7607 (3)0.4533 (3)0.50028 (11)0.0392 (8)
O2W0.7909 (3)0.0906 (3)0.47054 (11)0.0428 (8)
O3W0.5253 (3)0.0856 (3)0.36448 (10)0.0384 (7)
O4W0.4292 (3)0.2243 (3)0.48859 (10)0.0354 (7)
O5W0.8325 (4)0.3474 (5)0.36472 (14)0.0803 (14)
O11A0.3737 (3)0.7518 (2)0.26146 (9)0.0311 (6)
O13A0.5235 (3)0.7438 (3)0.38384 (10)0.0394 (8)
O14A0.4784 (3)0.4541 (3)0.38457 (11)0.0523 (9)
C1A0.3065 (4)0.7496 (4)0.19790 (13)0.0269 (9)
C2A0.2754 (4)0.9101 (4)0.17018 (13)0.0291 (9)
C3A0.2087 (4)0.9207 (4)0.10640 (14)0.0314 (9)
C4A0.1726 (4)0.7682 (4)0.06967 (13)0.0299 (9)
C5A0.2025 (4)0.6081 (4)0.09524 (14)0.0339 (10)
C6A0.2687 (4)0.5993 (4)0.15926 (14)0.0322 (10)
C12A0.3942 (4)0.5832 (4)0.28841 (13)0.0308 (9)
C13A0.4716 (4)0.5993 (4)0.35773 (14)0.0322 (10)
Cl2B1.16172 (14)0.63544 (11)0.80594 (4)0.0560 (3)
Cl4B1.41057 (11)0.24035 (12)0.99966 (4)0.0459 (3)
O11B1.1112 (3)0.3112 (3)0.73144 (10)0.0377 (7)
O13B0.9449 (3)0.3560 (3)0.61359 (11)0.0479 (8)
O14B0.9418 (3)0.0723 (4)0.58839 (11)0.0584 (10)
C1B1.1820 (4)0.2850 (4)0.79283 (14)0.0304 (10)
C2B1.2150 (4)0.4327 (4)0.83429 (15)0.0324 (10)
C3B1.2847 (4)0.4191 (4)0.89740 (14)0.0341 (10)
C4B1.3236 (4)0.2574 (4)0.91982 (14)0.0324 (10)
C5B1.2948 (4)0.1096 (4)0.88026 (15)0.0354 (10)
C6B1.2253 (4)0.1242 (4)0.81655 (15)0.0356 (10)
C12B1.0691 (4)0.1584 (4)0.69131 (14)0.0375 (11)
C13B0.9786 (4)0.2045 (5)0.62639 (15)0.0412 (11)
O6W0.1369 (6)0.2203 (6)0.3500 (2)0.0411 (17)0.500
H3A0.188101.031000.088300.0380*
H5A0.178000.504200.069300.0410*
H6A0.288500.488400.177000.0390*
H11W0.828 (4)0.423 (5)0.5331 (13)0.0590*
H12A0.476500.518300.262800.0370*
H12W0.713 (5)0.549 (3)0.5108 (17)0.0590*
H13A0.273600.515800.286000.0370*
H21W0.838 (5)0.089 (5)0.5105 (10)0.0640*
H22W0.869 (4)0.035 (5)0.4497 (16)0.0640*
H31W0.511 (5)0.028 (2)0.3660 (17)0.0580*
H32W0.464 (4)0.108 (5)0.3286 (12)0.0580*
H41W0.451 (4)0.245 (5)0.5307 (9)0.0530*
H42W0.371 (4)0.120 (3)0.4861 (17)0.0530*
H51W0.912 (6)0.275 (6)0.382 (3)0.1210*
H52W0.900 (6)0.447 (4)0.363 (2)0.1210*
H3B1.305500.520300.925000.0410*
H5B1.322200.001400.896300.0430*
H6B1.207300.022700.789000.0430*
H12B0.986000.074600.712800.0450*
H13B1.182800.101100.684700.0450*
H61W0.126 (10)0.131 (7)0.378 (3)0.0620*0.500
H62W0.230 (7)0.296 (7)0.365 (3)0.0620*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl2A0.1102 (8)0.0252 (4)0.0356 (5)0.0087 (5)0.0197 (5)0.0018 (3)
Cl4A0.0416 (5)0.0557 (5)0.0268 (4)0.0087 (4)0.0071 (3)0.0001 (4)
Mg10.0359 (5)0.0197 (5)0.0251 (5)0.0003 (4)0.0017 (4)0.0002 (4)
O1W0.0516 (14)0.0262 (12)0.0373 (13)0.0055 (10)0.0121 (10)0.0075 (10)
O2W0.0436 (13)0.0400 (14)0.0434 (14)0.0202 (11)0.0164 (10)0.0166 (11)
O3W0.0561 (14)0.0208 (11)0.0348 (13)0.0009 (10)0.0169 (10)0.0010 (10)
O4W0.0464 (13)0.0290 (12)0.0309 (12)0.0021 (10)0.0042 (10)0.0036 (10)
O5W0.082 (2)0.095 (3)0.0573 (19)0.0509 (18)0.0218 (16)0.0094 (17)
O11A0.0489 (12)0.0209 (10)0.0232 (10)0.0040 (9)0.0023 (8)0.0071 (8)
O13A0.0628 (15)0.0246 (12)0.0295 (12)0.0012 (10)0.0020 (10)0.0065 (9)
O14A0.0907 (19)0.0218 (12)0.0419 (14)0.0064 (12)0.0159 (12)0.0106 (10)
C1A0.0289 (15)0.0283 (16)0.0234 (15)0.0018 (12)0.0010 (11)0.0055 (12)
C2A0.0371 (17)0.0261 (16)0.0238 (15)0.0014 (13)0.0007 (12)0.0020 (12)
C3A0.0342 (16)0.0314 (17)0.0296 (16)0.0079 (13)0.0013 (12)0.0088 (13)
C4A0.0266 (15)0.0413 (18)0.0216 (15)0.0028 (13)0.0005 (11)0.0024 (13)
C5A0.0363 (17)0.0318 (17)0.0324 (17)0.0004 (13)0.0006 (13)0.0040 (13)
C6A0.0386 (17)0.0265 (16)0.0312 (17)0.0007 (13)0.0016 (13)0.0066 (13)
C12A0.0438 (18)0.0188 (15)0.0302 (16)0.0040 (13)0.0015 (13)0.0070 (12)
C13A0.0425 (18)0.0249 (16)0.0299 (17)0.0063 (13)0.0025 (13)0.0065 (13)
Cl2B0.0899 (7)0.0302 (5)0.0493 (5)0.0140 (4)0.0029 (5)0.0068 (4)
Cl4B0.0388 (5)0.0653 (6)0.0332 (4)0.0054 (4)0.0018 (3)0.0070 (4)
O11B0.0491 (13)0.0354 (13)0.0278 (12)0.0029 (10)0.0017 (9)0.0037 (9)
O13B0.0471 (14)0.0538 (16)0.0409 (14)0.0040 (12)0.0052 (10)0.0117 (12)
O14B0.0687 (17)0.0742 (19)0.0330 (14)0.0209 (14)0.0021 (11)0.0153 (13)
C1B0.0288 (16)0.0316 (17)0.0314 (17)0.0016 (13)0.0049 (12)0.0051 (13)
C2B0.0362 (17)0.0245 (16)0.0380 (18)0.0055 (13)0.0075 (13)0.0051 (13)
C3B0.0339 (17)0.0333 (18)0.0351 (18)0.0024 (13)0.0040 (13)0.0014 (13)
C4B0.0259 (16)0.0419 (19)0.0298 (17)0.0047 (13)0.0018 (12)0.0058 (14)
C5B0.0335 (17)0.0345 (18)0.0389 (18)0.0049 (14)0.0021 (13)0.0091 (14)
C6B0.0411 (18)0.0278 (17)0.0380 (18)0.0039 (14)0.0017 (13)0.0024 (14)
C12B0.0383 (18)0.0406 (19)0.0339 (18)0.0043 (14)0.0042 (13)0.0005 (14)
C13B0.0361 (18)0.060 (2)0.0287 (18)0.0055 (17)0.0094 (13)0.0006 (17)
O6W0.044 (3)0.032 (3)0.047 (3)0.000 (2)0.003 (2)0.004 (2)
Geometric parameters (Å, º) top
Mg1—O1W2.065 (2)O14B—C13B1.270 (5)
Mg1—O4W2.094 (2)O6W—H61W0.91 (6)
Mg1—O5W2.053 (3)O6W—H62W0.90 (6)
Mg1—O14A2.031 (2)C1A—C6A1.388 (4)
Mg1—O2W2.067 (2)C1A—C2A1.396 (4)
Mg1—O3W2.076 (2)C2A—C3A1.385 (4)
Cl2A—C2A1.736 (3)C3A—C4A1.379 (4)
Cl4A—C4A1.745 (3)C4A—C5A1.373 (4)
Cl2B—C2B1.734 (3)C5A—C6A1.387 (4)
Cl4B—C4B1.744 (3)C12A—C13A1.508 (4)
O11A—C1A1.375 (3)C3A—H3A0.9500
O11A—C12A1.432 (3)C5A—H5A0.9500
O13A—C13A1.243 (4)C6A—H6A0.9500
O14A—C13A1.258 (4)C12A—H12A0.9900
O1W—H12W0.87 (3)C12A—H13A0.9900
O1W—H11W0.86 (3)C1B—C6B1.386 (4)
O2W—H22W0.87 (3)C1B—C2B1.402 (4)
O2W—H21W0.88 (2)C2B—C3B1.381 (4)
O3W—H31W0.870 (16)C3B—C4B1.375 (4)
O3W—H32W0.87 (3)C4B—C5B1.378 (4)
O4W—H42W0.88 (2)C5B—C6B1.393 (4)
O4W—H41W0.89 (2)C12B—C13B1.520 (4)
O5W—H51W0.90 (5)C3B—H3B0.9500
O5W—H52W0.88 (4)C5B—H5B0.9500
O11B—C1B1.366 (4)C6B—H6B0.9500
O11B—C12B1.423 (4)C12B—H13B0.9900
O13B—C13B1.235 (4)C12B—H12B0.9900
O1W—Mg1—O2W87.62 (10)C4A—C5A—C6A119.5 (3)
O1W—Mg1—O3W173.07 (10)C1A—C6A—C5A121.2 (3)
O1W—Mg1—O4W87.94 (9)O11A—C12A—C13A111.3 (2)
O1W—Mg1—O5W93.97 (12)O14A—C13A—C12A113.2 (3)
O1W—Mg1—O14A96.53 (10)O13A—C13A—C12A121.7 (3)
O2W—Mg1—O3W86.18 (9)O13A—C13A—O14A125.1 (3)
O2W—Mg1—O4W90.97 (9)C2A—C3A—H3A121.00
O2W—Mg1—O5W93.47 (12)C4A—C3A—H3A121.00
O2W—Mg1—O14A175.40 (10)C6A—C5A—H5A120.00
O3W—Mg1—O4W89.06 (9)C4A—C5A—H5A120.00
O3W—Mg1—O5W89.51 (12)C5A—C6A—H6A119.00
O3W—Mg1—O14A89.56 (10)C1A—C6A—H6A119.00
O4W—Mg1—O5W175.23 (12)O11A—C12A—H12A109.00
O4W—Mg1—O14A87.21 (10)O11A—C12A—H13A109.00
O5W—Mg1—O14A88.23 (12)C13A—C12A—H13A109.00
C1A—O11A—C12A115.3 (2)H12A—C12A—H13A108.00
Mg1—O14A—C13A146.3 (2)C13A—C12A—H12A109.00
H11W—O1W—H12W108 (3)O11B—C1B—C2B117.1 (3)
Mg1—O1W—H11W124 (3)O11B—C1B—C6B124.8 (3)
Mg1—O1W—H12W122 (2)C2B—C1B—C6B118.0 (3)
H21W—O2W—H22W102 (3)Cl2B—C2B—C1B119.0 (2)
Mg1—O2W—H21W127 (2)Cl2B—C2B—C3B119.6 (2)
Mg1—O2W—H22W123 (2)C1B—C2B—C3B121.4 (3)
Mg1—O3W—H31W134 (2)C2B—C3B—C4B119.2 (3)
Mg1—O3W—H32W122 (2)Cl4B—C4B—C3B119.2 (2)
H31W—O3W—H32W103 (3)Cl4B—C4B—C5B119.8 (2)
Mg1—O4W—H41W119 (2)C3B—C4B—C5B121.0 (3)
Mg1—O4W—H42W120 (2)C4B—C5B—C6B119.5 (3)
H41W—O4W—H42W104 (3)C1B—C6B—C5B120.8 (3)
H51W—O5W—H52W103 (4)O11B—C12B—C13B110.8 (3)
Mg1—O5W—H51W93 (3)O13B—C13B—C12B122.0 (3)
Mg1—O5W—H52W128 (3)O14B—C13B—C12B113.0 (3)
C1B—O11B—C12B116.2 (2)O13B—C13B—O14B125.0 (3)
H61W—O6W—H62W109 (6)C2B—C3B—H3B120.00
C2A—C1A—C6A117.7 (3)C4B—C3B—H3B120.00
O11A—C1A—C6A124.6 (3)C4B—C5B—H5B120.00
O11A—C1A—C2A117.6 (2)C6B—C5B—H5B120.00
Cl2A—C2A—C1A120.1 (2)C5B—C6B—H6B120.00
C1A—C2A—C3A121.7 (3)C1B—C6B—H6B120.00
Cl2A—C2A—C3A118.2 (2)O11B—C12B—H12B110.00
C2A—C3A—C4A118.8 (3)O11B—C12B—H13B109.00
C3A—C4A—C5A121.1 (3)C13B—C12B—H13B110.00
Cl4A—C4A—C3A119.3 (2)H12B—C12B—H13B108.00
Cl4A—C4A—C5A119.6 (2)C13B—C12B—H12B109.00
O1W—Mg1—O14A—C13A56.7 (4)C2A—C3A—C4A—C5A0.3 (4)
O3W—Mg1—O14A—C13A126.6 (4)C3A—C4A—C5A—C6A0.6 (5)
O4W—Mg1—O14A—C13A144.3 (4)Cl4A—C4A—C5A—C6A179.2 (2)
O5W—Mg1—O14A—C13A37.1 (4)C4A—C5A—C6A—C1A0.4 (4)
C12A—O11A—C1A—C2A176.9 (3)O11A—C12A—C13A—O13A5.8 (4)
C12A—O11A—C1A—C6A3.6 (4)O11A—C12A—C13A—O14A174.8 (2)
C1A—O11A—C12A—C13A179.0 (2)O11B—C1B—C2B—Cl2B0.9 (4)
Mg1—O14A—C13A—O13A60.7 (5)O11B—C1B—C2B—C3B179.4 (3)
Mg1—O14A—C13A—C12A118.7 (3)C6B—C1B—C2B—Cl2B179.9 (2)
C12B—O11B—C1B—C2B176.6 (3)C6B—C1B—C2B—C3B1.4 (4)
C12B—O11B—C1B—C6B4.3 (4)O11B—C1B—C6B—C5B179.1 (3)
C1B—O11B—C12B—C13B175.7 (2)C2B—C1B—C6B—C5B1.7 (4)
C6A—C1A—C2A—C3A0.2 (4)Cl2B—C2B—C3B—C4B178.9 (2)
O11A—C1A—C6A—C5A179.4 (3)C1B—C2B—C3B—C4B0.4 (5)
C2A—C1A—C6A—C5A0.1 (4)C2B—C3B—C4B—Cl4B179.7 (2)
O11A—C1A—C2A—C3A179.7 (3)C2B—C3B—C4B—C5B0.3 (4)
C6A—C1A—C2A—Cl2A179.2 (2)Cl4B—C4B—C5B—C6B180.0 (2)
O11A—C1A—C2A—Cl2A0.3 (4)C3B—C4B—C5B—C6B0.0 (5)
Cl2A—C2A—C3A—C4A179.3 (2)C4B—C5B—C6B—C1B1.1 (5)
C1A—C2A—C3A—C4A0.1 (5)O11B—C12B—C13B—O13B1.9 (4)
C2A—C3A—C4A—Cl4A179.0 (2)O11B—C12B—C13B—O14B178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O13B0.86 (3)1.92 (3)2.772 (3)171 (3)
O1W—H12W···O4Wi0.87 (3)2.09 (3)2.939 (3)165 (3)
O2W—H21W···O14B0.88 (2)1.75 (2)2.623 (3)176 (3)
O2W—H22W···O14Bii0.87 (3)1.88 (3)2.754 (3)173 (3)
O3W—H31W···O13Aiii0.87 (2)1.80 (2)2.656 (3)167 (3)
O3W—H32W···Cl2Aiii0.87 (3)2.50 (3)3.345 (2)165 (3)
O4W—H41W···O13Ai0.89 (2)1.77 (2)2.652 (3)172 (4)
O4W—H42W···O2Wiv0.88 (2)2.19 (3)2.980 (3)151 (3)
O5W—H51W···O6Wv0.90 (5)1.90 (6)2.543 (5)127 (4)
O5W—H52W···O13Bvi0.88 (4)1.86 (4)2.708 (4)162 (4)
O6W—H61W···O14Biv0.91 (6)1.77 (6)2.654 (5)162 (7)
O6W—H62W···O14A0.90 (6)2.12 (5)3.006 (5)168 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y1, z; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O13B0.86 (3)1.92 (3)2.772 (3)171 (3)
O1W—H12W···O4Wi0.87 (3)2.09 (3)2.939 (3)165 (3)
O2W—H21W···O14B0.88 (2)1.75 (2)2.623 (3)176 (3)
O2W—H22W···O14Bii0.87 (3)1.88 (3)2.754 (3)173 (3)
O3W—H31W···O13Aiii0.870 (16)1.802 (17)2.656 (3)167 (3)
O3W—H32W···Cl2Aiii0.87 (3)2.50 (3)3.345 (2)165 (3)
O4W—H41W···O13Ai0.89 (2)1.772 (19)2.652 (3)172 (4)
O4W—H42W···O2Wiv0.88 (2)2.19 (3)2.980 (3)151 (3)
O5W—H51W···O6Wv0.90 (5)1.90 (6)2.543 (5)127 (4)
O5W—H52W···O13Bvi0.88 (4)1.86 (4)2.708 (4)162 (4)
O6W—H61W···O14Biv0.91 (6)1.77 (6)2.654 (5)162 (7)
O6W—H62W···O14A0.90 (6)2.12 (5)3.006 (5)168 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y1, z; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mg(C8H5Cl2O3)(H2O)5](C8H5Cl2O3)·0.5H2O
Mr563.44
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)7.3551 (6), 7.6579 (5), 20.7878 (14)
α, β, γ (°)91.266 (6), 94.341 (6), 94.250 (6)
V3)1163.84 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.40 × 0.12 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
7636, 4575, 3458
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.107, 1.04
No. of reflections4575
No. of parameters334
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.51

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), PLATON (Spek, 2009).

 

Acknowledgements

The author acknowledges support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationCobb, A. H. & Reade, J. P. H. (2011). In Herbicides and Plant Physiology, 2nd ed. Bognor Regis, UK: Wiley-Blackwell.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKennard, C. H. L., O'Reilly, E. J., Schiller, S., Smith, G. & White, A. H. (1986). Aust. J. Chem. 39, 1823–1832.  CSD CrossRef CAS Google Scholar
First citationO'Neil, M. J. (2002). Editor. The Merck Index, 13th ed., pp. 491, 1028, 1610. Whitehouse Station, NJ: Merck & Co. Inc.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. (2012). Acta Cryst. E68, m1178.  CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Kennard, C. H. L. & White, A. H. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 791–792.  CSD CrossRef Web of Science Google Scholar
First citationSmith, G., O'Reilly, E. J. & Kennard, C. H. L. (1980). J. Chem. Soc. Dalton Trans., pp. 2462–2466.  Google Scholar
First citationSmith, G., O'Reilly, E. J. & Kennard, C. H. L. (1981). Cryst. Struct. Commun. 10, 1397–1402.  CAS Google Scholar
First citationSmith, G., O'Reilly, E. J. & Kennard, C. H. L. (1982). Inorg. Chim. Acta, 62, 241–246.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZumdahl, R. L. (2010). In A History of Weed Science in the United States. New York: Elsevier.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 161-163
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds