research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 238-241

Crystal structure of 3-{1′-[3,5-bis­­(tri­fluoro­meth­yl)phen­yl]ferrocenyl}-4-bromo­thio­phene

aTechnische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie, D-09107 Chemnitz, Germany
*Correspondence e-mail: heinrich.lang@chemie.tu-chemnitz.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 August 2014; accepted 15 September 2014; online 24 September 2014)

The mol­ecular structure of the title compound, [Fe(C9H6BrS)(C13H7F6)], consists of a ferrocene backbone with a bis­(tri­fluoro­meth­yl)phenyl group at one cyclo­penta­dienyl ring and a thio­phene heterocycle at the other cyclo­penta­dienyl ring. The latter is disordered over two sets of sites in a 0.6:0.4 ratio. In the crystal structure, intra­molecular ππ inter­actions between the thienyl and the phenyl substituent [centroid–centroid distance 3.695 (4) Å] and additional weak T-shaped ππ inter­actions between the thienyl and the phenyl-substituted cyclo­penta­dienyl ring [4.688 (6) Å] consolidate the crystal packing.

1. Chemical context

The use of ferrocenyl (Fc) functionalized thio­phenes as redox-active metal-based monomers offers the possibility of designing new conductive materials, such as polymers and mol­ecular wires (see, for example: MacDiarmid et al., 2001[MacDiarmid, A. G. (2001). Angew. Chem. Int. Ed. 40, 2581-2590.]; Barsch et al., 1994[Barsch, U., Beck, F., Hambitzer, G., Holze, R., Lippe, J. & Stassen, I. (1994). J. Electroanal. Chem. 369, 97-101.]; Heeger et al., 2001[Heeger, A. J. (2001). Angew. Chem. Int. Ed. 40, 2591-2611.]; Speck et al., 2012[Speck, J. M., Claus, R., Hildebrandt, A., Rüffer, T., Erasmus, E., van As, L., Swarts, J. C. & Lang, H. (2012). Organometallics, 31, 6373-6380.]; Pfaff et al., 2013[Pfaff, U., Hildebrandt, A., Schaarschmidt, D., Rüffer, T., Low, P. J. & Lang, H. (2013). Organometallics, 32, 6106-6117.]; Hildebrandt et al., 2011[Hildebrandt, A., Pfaff, U. & Lang, H. (2011). Rev. Inorg. Chem. 31, 111-141.]; Hildebrandt & Lang, 2013[Hildebrandt, A. & Lang, H. (2013). Organometallics, 32, 5640-5653.]; Wolf, 2001[Wolf, M. O. (2001). Adv. Mater. 13, 545-553.]; Zhu & Wolf, 2000[Zhu, Y. & Wolf, M. O. (2000). J. Am. Chem. Soc. 122, 10121-10125.]; Zotti et al., 1995[Zotti, G., Zecchin, S., Schiavon, G., Berlin, A., Pagani, G. & Canavesi, A. (1995). Chem. Mater. 7, 2309-2315.]). The electrochemical inter­action between the thio­phene donor and the ferrocenyl acceptor with different conjugated 2-Fc—C≡C-(5-cC4H2S)n(cC4H3S) (n = 0, 1, 2), 2-Fc—C≡C-[5-(3,4-OCH2CH2O)(cC4S)]n(3,4-OCH2CH2O)cC4HS (n = 0, 1, 2) and 2,5-(Fc—C≡C)2-(cC4H2S)n (n = 1, 2, 3), 2,5-(Fc—C≡C)2-[(3,4-OCH2CH2O)(cC4S)]n (n = 1, 2, 3) were studied by Zhu & Wolf (1999[Zhu, Y. & Wolf, M. O. (1999). Chem. Mater. 11, 2995-3001.]). The results of the spectro- and electrochemical measurements showed an inter­esting insight into the conductibility, which may lead to an improvement of sensor technology using conductive polymers. Electron-withdrawing and donating groups on the ferrocenyl or the thienyl moieties have been used to modify the charge-transfer properties. This has been shown for a series of different 2,5-diferrocenyl thio­phenes (Speck et al., 2014[Speck, J. M., Korb, M., Rüffer, T., Hildebrandt, A. & Lang, H. (2014). Organometallics, doi: 10.1021/om500062h.]). In continuation of this work, we present herein the synthesis and crystal structure of 3-{1′-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]-1,1′-ferrocenedi­yl}-4-bromo­thio­phene, [Fe((C9H6BrS)C13H7F6)], (I)[link]. The synthesis of this compound was realized using typical Negishi C,C-cross-coupling reaction conditions.

[Scheme 1]

2. Structural commentary

The title compound contains one mol­ecule in the asymmetric unit with an intra­molecular ππ distance between the centroids (D) of the thio­phene and the phenyl substituents (Fig. 1[link]) of 3.695 (4) Å (Table 1[link]) (Sinnokrot et al., 2002[Sinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887-10893.]) favoured by the nearly coplanar cylo­penta­dienyl rings [D(C5H4)—Fe—D(C5H4): 175.84 (3) and 175.66 (3)°] in the ferrocenyl backbone. For the disordered part (′-labeled, see: Refinement and additional Figure in the supporting information), however, the distance of 3.871 (6) Å is too long for a ππ inter­action caused by the increased torsion angle between the substituents in the 1- and 1′-position [9.2 (4)° for the main part; 16.7 (5)° for the disordered part]. The mean planes of the cyclo­penta­dienyl rings and the bonded aromatic rings are almost coplanar with each other [C6H3—C5H4, 16.2 (3)°; C4H3S—C5H4, 17.3 (6) (main part) and 16.9 (10)° (other part)] and thus, a nearly parallel arranged stacking between the phenyl and the thio­phene rings [8.9 (3)° for the main part and 9.7 (6)° for the other part] is realized.

Table 1
T-shaped ππ inter­action geometries (Å, °) for (I)[link]

DD DD α(i)
C6H3(CF3)2⋯C4H2BrS(ii) 3.695 (4) 8.8 (3)
C4H2BrS⋯C5H4(iii) 4.943 (4) 88.3 (3)
C4H2BrS(iv)⋯C5H4(iii) 4.688 (6) 86.8 (5)
D denotes the centroids of the respective aromatic rings. (i) The angle α is described by the inter­section of the involved aromatics. (ii) Intra­molecular inter­action. (iii) Inter­molecular inter­action with symmetry code: –x + [{3\over 2}], y – [{1\over 2}], –z + [{3\over 2}]. (iv): Disordered (′-labeled) part.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing short intra­molecular ππ inter­actions between the thienyl and the phenyl substituents, with displacement ellipsoids drawn at the 50% probability level. All hydrogen atoms, the minor disordered part of the structure and further ππ inter­actions have been omitted for clarity.

3. Supra­molecular features

Inter­molecular T-shaped ππ inter­actions between the thienyl and the phenyl-substituted cyclo­penta­dienyl rings (Fig. 2[link]) are observed. The disordered part (labeled with ′) exhibits a stronger inter­action of 4.688 (6) Å; in contrast, it is 4.943 (4) Å for the other disordered part, which is rather weak (Table 1[link]).

[Figure 2]
Figure 2
Inter­molecular T-shaped ππ inter­actions between the thienyl and the phenyl-substituted cyclo­penta­dienyl rings, with displacement ellipsoids drawn at the 50% probability level. All hydrogen atoms, the minor disordered part of the structure and further ππ distances have been omitted for clarity. [Symmetry code: (A) − x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}].]

4. Database survey

The only reported examples of 3-ferrocenyl-substituted five-membered group-VI heterocycles (Speck et al., 2012[Speck, J. M., Claus, R., Hildebrandt, A., Rüffer, T., Erasmus, E., van As, L., Swarts, J. C. & Lang, H. (2012). Organometallics, 31, 6373-6380.]; Hildebrandt et al., 2011[Hildebrandt, A., Pfaff, U. & Lang, H. (2011). Rev. Inorg. Chem. 31, 111-141.]; Claus et al., 2011[Claus, R. (2011). Dissertation. TU Chemnitz, Germany.]) exhibit a similar co-planarity between non-sterically hindered thio­phenes and the cyclo­penta­dienyl rings [10.4 (2)°, Speck et al., 2012[Speck, J. M., Claus, R., Hildebrandt, A., Rüffer, T., Erasmus, E., van As, L., Swarts, J. C. & Lang, H. (2012). Organometallics, 31, 6373-6380.]; −6.4 (4)°, Claus et al., 2011[Claus, R. (2011). Dissertation. TU Chemnitz, Germany.]], but a high distortion for thio­phenes bearing further ortho-substituents [40.1 (9) to 56.6 (9)°, Speck et al., 2012[Speck, J. M., Claus, R., Hildebrandt, A., Rüffer, T., Erasmus, E., van As, L., Swarts, J. C. & Lang, H. (2012). Organometallics, 31, 6373-6380.]; 70.9 (3) and 42.7 (3)°, Hildebrandt et al., 2011[Hildebrandt, A., Pfaff, U. & Lang, H. (2011). Rev. Inorg. Chem. 31, 111-141.]]. The conformations of reported ferrocene derivatives bearing aromatic substituents in the 1 and 1′ positions range from anti­periplanar [180.0 (4), plane twisting 13.99 (15)°, Braga et al., 2003[Braga, D., Polito, M., Bracaccini, M., D'Addario, D., Tagliavini, E., Sturba, L. & Grepioni, F. (2003). Organometallics, 22, 2142-2150.]] and anti­clinal [147.02 (14), plane twisting 33.7 (9)°, Deck et al., 2004[Deck, P. A., Konaté, M. M., Kelly, B. V. & Slebodnick, C. (2004). Organometallics, 23, 1089-1097.]] to synperiplanar [0.3 (3)°, Deck et al., 2000[Deck, P. A., Lane, M. J., Montgomery, J. L., Slebodnick, C. & Fronczek, F. R. (2000). Organometallics, 19, 1013-1024.]; −0.5 (9)°, Blanchard et al., 2000[Blanchard, M. D., Hughes, R. P., Concolino, T. E. & Rheingold, A. L. (2000). Chem. Mater. 12, 1604-1610.]; 4.09 (19)°, Gallagher et al., 2010[Gallagher, J. F., Alley, S., Brosnan, M. & Lough, A. J. (2010). Acta Cryst. B66, 196-205.]; −6.5 (6)°, Hursthouse et al., 2003[Hursthouse, M. B., Light, M. E. & Butler, I. R. (2003). Private Communication.]; 14.4 (8)°, Foxman et al., 1991[Foxman, B. M., Gronbeck, D. A. & Rosenblum, M. (1991). J. Organomet. Chem. 413, 287-294.]] with plane twists from 12.8 (9) (Gallagher et al., 2010[Gallagher, J. F., Alley, S., Brosnan, M. & Lough, A. J. (2010). Acta Cryst. B66, 196-205.]) to 82.8 (4)° (Foxman et al., 1993[Foxman, B. M., Gronbeck, D. A., Khruschova, N. & Rosenblum, M. (1993). J. Org. Chem. 58, 4078-4082.]). Furthermore, for all synperiplanar examples, intra­molecular inter­actions between the aromatic planes are present with distances smaller than 3.42 Å (Hursthouse et al., 2003[Hursthouse, M. B., Light, M. E. & Butler, I. R. (2003). Private Communication.]).

5. Synthesis and crystallization

1-Bromo-1′-(3,5-bis­(tri­fluoro­meth­yl)phen­yl)ferrocene was prepared according to synthetic methodologies reported by Speck et al. (2014[Speck, J. M., Korb, M., Rüffer, T., Hildebrandt, A. & Lang, H. (2014). Organometallics, doi: 10.1021/om500062h.]). The synthesis of ferrocenyl thio­phene (I) was realized using typical Negishi C,C-cross-coupling conditions by reacting 1-bromo-1′-(3,5-bis­(tri­fluoro­meth­yl)phen­yl)ferrocene with 3,4-di­bromo­thio­phene (Negishi et al., 1977[Negishi, E., King, A. O. & Okukado, N. (1977). J. Org. Chem. 42, 1821-1823.]).

Synthesis of (I)[link]: For the Negishi C,C-cross-coupling reaction, 1-bromo-1′-(3,5-bis­(tri­fluoro­meth­yl)phen­yl)ferrocene (1.0 g, 2.10 mmol) was dissolved in 50 ml of tetra­hydro­furan (THF) and 1.2 equivalents (0.9 ml, 2.52 mmol) of a 2.5 M solution of n-butyl­lithium in n-hexane were added dropwise at 193 K. After 1 h of stirring at this temperature, 1.2 equivalents (0.71 g, 2.52 mmol) of [ZnCl2·2THF] were added in a single portion. The reaction was kept for 10 min at this temperature and was then allowed to warm to 273 K during an additional hour. Afterwards, 0.25 mol% of [P(t-C4H9)2C(CH3)2CH2Pd(μ-Cl)]2 and 1.5 equivalents (0.76 g, 3.15 mmol) of 3,4-di­bromo­thio­phene were added in a single portion. The resulting mixture was stirred for 10 h at 323 K. After evaporation of all volatiles, the crude product was dissolved in 30 ml of di­chloro­methane and was washed twice with 50 ml portions of water. The organic phase was dried over MgSO4 and the solvent was removed with a rotary evaporator. The remaining orange solid was purified by column chromatography on silica gel using a n-hexa­ne/diethyl ether 1/1 (v/v) mixture. Red crystals of (I)[link] were obtained by slow evaporation of a saturated n-hexa­ne/methanol 1/5 (v/v) solution at ambient temperature. Yield: 660 mg (1.18 mmol, 56% based on 1-bromo-1′-(3,5-bis­(tri­fluoro­meth­yl)phen­yl)ferrocene). IR (KBr, cm−1): ν = 1275 (s, C—F), 1504 (s, C=C), 1615 (m, C=C) 2848, 3095 (w, C—H). 1H NMR (500.3 MHz, CDCl3, 298 K, ppm): δ = 7.61 (s, 3H, C8H3F6), 7.09 (d, 1H, JH,H = 3.6 Hz, C4H2S), 6.90 (d, 1H, JH,H = 3.6 Hz, C4H2S), 4.73 (pt, 2H, JH,H = 1.9 Hz, C5H4), 4.69 (pt, 2H, JH,H = 1.9 Hz, C5H4), 4.46 (pt, 2H, JH,H = 1.9 Hz, C5H4), 4.25 (pt, 2H, JH,H = 1.9 Hz, C5H4). 13C{1H} NMR (125.7 MHz, CDCl3, 298 K, ppm): δ = 140.64 (s, Ci-C6H3), 135.56 (s, Ci-C4H2S), 131.54 (q, JC,F = 33 Hz, Ci-C6H3), 125,63 (m, C6H3), 124.88 (s, C4H2S), 123.50 (q, JC,F =273 Hz, CF3), 121.12 (s, C4H2S), 119.05 (m, C6H3), 109.78 (s, Ci-C4H2S), 82.98 (s, Ci-C5H4), 82.01 (s, Ci-C5H4), 71.40 (s, C5H4), 70.17 (s, C5H4), 68.81 (s, C5H4), 68.20 (s, C5H4). HRMS (ESI–TOF, M+): C23H16F6FeSO: m/z = 557.9291 (calc. 557.9171).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bonded hydrogen atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for the aromatic protons. The thienyl and the attached cyclo­penta­dienyl ring were refined as disordered over two sets of sites with occupancies of 0.6 and 0.4. The spatial proximity of the sulfur and the bromine atom of the disordered part required DFIX [C1—C2 1.51 (2), C2—C3 1.33 (2), C3—C4 1.35 (2) S1—C1 1.62 (2), S1—C4 1.82 (2), C3—Br1 1.94 (2) Å) and DANG (C4—Br1 2.75 (4), C1—C3 2.27 (4), C2—C4 2.38 (4), C4—Br1 2.75 (4) Å] instructions, which were used for the minor disordered part (′-labeled). For both disordered parts, some anisotropic displacement ellipsoids were rather elongated and hence SIMU/ISOR restraints (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) were also applied. Both cyclo­penta­dienyl rings were generated by using the AFIX 56 command. For atom pair C9/C9′, a further EADP instruction was applied to achieve reasonable anisotropic displacement ellipsoids.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C9H6BrS)(C13H7F6)]
Mr 559.14
Crystal system, space group Monoclinic, C2/c
Temperature (K) 110
a, b, c (Å) 18.056 (5), 10.294 (5), 21.451 (5)
β (°) 93.268 (5)
V3) 3981 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.93
Crystal size (mm) 0.4 × 0.4 × 0.2
 
Data collection
Diffractometer Oxford Gemini CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.])
Tmin, Tmax 0.436, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11002, 3687, 2887
Rint 0.035
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.00
No. of reflections 3687
No. of parameters 357
No. of restraints 258
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.94, −0.61
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]), SHELXS2013, SHELXL2013 and SHELXTL(Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The use of ferrocenyl (Fc) functionalized thio­phenes as redox-active metal-based monomers offers the possibility of designing new conductive materials, such as polymers and molecular wires (see, for example: MacDiarmid et al., 2001; Barsch et al., 1994; Heeger et al., 2001; Speck et al., 2012; Pfaff et al., 2013; Hildebrandt et al., 2011; Hildebrandt & Lang, 2013; Wolf, 2001; Zhu & Wolf, 2000; Zotti et al., 1995). The electrochemical inter­action between the thio­phene donor and the ferrocenyl acceptor with different conjugated 2-Fc—C C-(5-cC4H2S)n(cC4H3S) (n = 0, 1, 2), 2-Fc—C C-[5-(3,4-OCH2CH2O)(cC4S)]n(3,4-OCH2CH2O)cC4HS (n = 0, 1, 2) and 2,5-(Fc—CC)2-(cC4H2S)n (n = 1, 2, 3), 2,5-(Fc—C C)2-[(3,4-OCH2CH2O)(cC4S)]n (n = 1, 2, 3) were studied by Zhu & Wolf (1999). The results of the spectro- and electrochemical measurements showed an inter­esting insight into the conductibility, which may lead to an improvement of sensor technology using conductive polymers. Electron-withdrawing and donating groups on the ferrocenyl or the thio­phenyl moieties have been used to modify the charge-transfer properties. This has been shown for a series of different 2,5-diferrocenyl thio­phenes (Speck et al., 2014). In continuation of this work, we present herein the synthesis and crystal structure of 3-{1'-[3,5-bis­(tri­fluoro­methyl)­phenyl]-1,1'-ferrocenediyl}-4-bromo­thio­phene, [Fe(C13H7F6)(C9H6BrS)], (I). The synthesis of this compound was realized using typical Negishi C,C-cross-coupling reaction conditions.

Structural commentary top

The title compound contains one molecule in the asymmetric unit with an intra­molecular ππ distances between the centroids (D) of the thio­phene and the phenyl substituents (Fig. 1) of 3.695 (4) Å (Table 1) (Sinnokrot et al., 2002) favoured by the nearly coplanar cylo­penta­dienyl rings [D(C5H4)—Fe—D(C5H4): 175.84 (3) and 175.66 (3)°] in the ferrocenyl backbone. For the disordered part ('-labeled, see: Refinement and additional Figure in the supporting information), however, the distance of 3.871 (6) Å is too long for a ππ inter­action caused by the increased torsion angle between the substituents in the 1- and 1'- position [9.2 (4)° for the main part; 16.7 (5)° for the disordered part]. The mean planes of the cyclo­penta­dienyl rings and the bonded aromatic rings are almost coplanar with each other [C6H3—C5H4, 16.2 (3)°; C4H3S—C5H4, 17.3 (6) (main part) and 16.9 (10)° (other part)] and thus, a nearly parallel arranged stacking between the phenyl and the thio­phene rings [8.9 (3)° for the main part and 9.7 (6)° for the other part] is realized.

Supra­molecular features top

Inter­molecular T-shaped ππ inter­actions between the thienyl and the phenyl-substituted cyclo­penta­dienyl rings (Fig. 2) are observed. The disordered part (labeled with ') exhibits a stronger inter­action of 4.688 (6) Å, in contrast to 4.943 (4) Å for the other disordered part which is rather weak (Table 1).

Database survey top

The only reported examples of 3-ferrocenyl-substituted five-membered group-VI heterocycles (Speck et al., 2012; Hildebrandt et al., 2011; Claus et al., 2011) exhibit a similar co-planarity between non-sterically hindered thio­phenes and the cyclo­penta­dienyl rings [10.4 (2)°, Speck et al., 2012; –6.4 (4)°, Claus et al., 2011], but a high distortion for thio­phenes bearing further ortho-substituents [40.1 (9) to 56.6 (9)°, Speck et al., 2012; 70.9 (3) and 42.7 (3)°, Hildebrandt et al., 2011]. The conformations of reported ferrocene derivatives bearing aromatic substituents in the 1 and 1' positions range from anti­periplanar [180.0 (4), plane twisting 13.99 (15)°, Braga et al., 2003) and anti­clinal [147.02 (14), plane twisting 33.7 (9)°, Deck et al., 2004] to synperiplanar [0.3 (3)°, Deck et al., 2000; –0.5 (9)°, Blanchard et al., 2000; 4.09 (19)°, Gallagher et al., 2010; –6.5 (6)°, Hursthouse et al., 2003; 14.4 (8)°, Foxman et al., 1991] with plane twists from 12.8 (9) (Gallagher et al., 2010) to 82.8 (4)° (Foxman et al., 1993). Furthermore, for all synperiplanar examples, intra­molecular inter­actions between the aromatic planes are present with distances smaller than 3.42 Å (Hursthouse et al., 2003).

Synthesis and crystallization top

1-Bromo-1'-(3,5-bis­(tri­fluoro­methyl)­phenyl)­ferrocene was prepared according to synthetic methodologies reported by Speck et al. (2014). The synthesis of ferrocenyl thio­phene was realized using typical Negishi C,C-cross-coupling conditions by reacting 1-bromo-1'-(3,5-bis­(tri­fluoro­methyl)­phenyl)­ferrocene with 3,4-di­bromo­thio­phene (Negishi et al., 1977).

Synthesis of (I): For the Negishi C,C-cross-coupling reaction, 1-bromo-1'-(3,5-bis­(tri­fluoro­methyl)­phenyl)­ferrocene (1.0 g, 2.10 mmol) was dissolved in 50 ml of tetra­hydro­furan (THF) and 1.2 equivalents (0.9 ml, 2.52 mmol) of a 2.5 M solution of n-butyl­lithium in n-hexane were added dropwise at 193 K. After 1 h of stirring at this temperature, 1.2 equivalents (0.71 g, 2.52 mmol) of [ZnCl2·2THF] were added in a single portion. The reaction was kept for 10 min at this temperature and was then allowed to warm to 273 K during an additional hour. Afterwards, 0.25 mol% of [P(t-C4H9)2C(CH3)2CH2Pd(µ-Cl)]2 and 1.5 equivalents (0.76 g, 3.15 mmol) of 3,4-di­bromo­thio­phene were added in a single portion. The resulting mixture was stirred for 10 h at 323 K. After evaporation of all volatiles, the crude product was dissolved in 30 ml of di­chloro­methane and was washed twice with 50 ml portions of water. The organic phase was dried over MgSO4 and the solvent was removed with a rotary evaporator. The remaining orange solid was purified by column chromatography on silica gel using a n-hexane/di­ethyl ether 1/1 (v/v) mixture. Red crystals of (I) were obtained by slow evaporation of a saturated n-hexane/methanol 1/5 (v/v) solution at ambient temperature. Yield: 660 mg (1.18 mmol, 56% based on 1-bromo-1'-(3,5-bis­(tri­fluoro­methyl)­phenyl)­ferrocene). IR (KBr, cm-1): ν = 1275 (s, C—F), 1504 (s, C=C), 1615 (m, C=C) 2848, 3095 (w, C—H). 1H NMR (500.3 MHz, CDCl3, 298 K, p.p.m.): δ = 7.61 (s, 3H, C8H3F6), 7.09 (d, 1H, JH,H = 3.6 Hz, C4H2S), 6.90 (d, 1H, JH,H = 3.6 Hz, C4H2S), 4.73 (pt, 2H, JH,H = 1.9 Hz, C5H4), 4.69 (pt, 2H, JH,H = 1.9 Hz, C5H4), 4.46 (pt, 2H, JH,H = 1.9 Hz, C5H4), 4.25 (pt, 2H, JH,H = 1.9 Hz, C5H4). 13C{1H} NMR (125.7 MHz, CDCl3, 298 K): δ = 140.64 (s, Ci-C6H3), 135.56 (s, Ci-C4H2S), 131.54 (q, JC,F = 33 Hz, Ci-C6H3), 125,63 (m, C6H3), 124.88 (s, C4H2S), 123.50 (q, JC,F =273 Hz, CF3), 121.12 (s, C4H2S), 119.05 (m, C6H3), 109.78 (s, Ci-C4H2S), 82.98 (s, Ci-C5H4), 82.01 (s, Ci-C5H4), 71.40 (s, C5H4), 70.17 (s, C5H4), 68.81 (s, C5H4), 68.20 (s, C5H4). HRMS (ESI–TOF, M+): C23H16F6FeSO: m/z = 557.9291 (calc. 557.9171).

Refinement details top

C-bonded hydrogen atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for the aromatic protons. The thio­phenyl and the attached cyclo­penta­dienyl ring were refined as disordered over two sets of sites with occupancies of 0.6 and 0.4. The spatial proximity of the sulfur and the bromine atom of the disordered part required DFIX [C1—C2 1.51 (2), C2—C3 1.33 (2), C3—C4 1.35 (2) S1—C1 1.62 (2), S1—C4 1.82 (2), C3—Br1 1.94 (2) Å) and DANG (C4—Br1 2.75 (4), C1—C3 2.27 (4), C2—C4 2.38 (4), C4—Br1 2.75 (4) Å] instructions, which were used for the minor disordered part ('-labeled). For both disordered parts, some anisotropic displacement ellipsoids were rather elongated and hence SIMU/ISOR restraints (McArdle, 1995; Sheldrick, 2008) were also applied. Both cyclo­penta­dienyl rings were generated by using the AFIX 56 command. For atom pair C9/C9', a further EADP instruction was applied to achieve reasonable anisotropic displacement ellipsoids.

Related literature top

For related literature, see: Barsch et al. (1994); Blanchard et al. (2000); Braga et al. (2003); Claus (2011); Deck et al. (2000, 2004); Foxman et al. (1991, 1993); Gallagher et al. (2010); Heeger (2001); Hildebrandt & Lang (2013); Hildebrandt et al. (2011); Hursthouse et al. (2003); MacDiarmid (2001); McArdle (1995); Negishi et al. (1977); Pfaff et al. (2013); Sheldrick (2008); Sinnokrot et al. (2002); Speck et al. (2012, 2014); Wolf (2001); Zhu & Wolf (1999, 2000); Zotti et al. (1995).

Structure description top

The use of ferrocenyl (Fc) functionalized thio­phenes as redox-active metal-based monomers offers the possibility of designing new conductive materials, such as polymers and molecular wires (see, for example: MacDiarmid et al., 2001; Barsch et al., 1994; Heeger et al., 2001; Speck et al., 2012; Pfaff et al., 2013; Hildebrandt et al., 2011; Hildebrandt & Lang, 2013; Wolf, 2001; Zhu & Wolf, 2000; Zotti et al., 1995). The electrochemical inter­action between the thio­phene donor and the ferrocenyl acceptor with different conjugated 2-Fc—C C-(5-cC4H2S)n(cC4H3S) (n = 0, 1, 2), 2-Fc—C C-[5-(3,4-OCH2CH2O)(cC4S)]n(3,4-OCH2CH2O)cC4HS (n = 0, 1, 2) and 2,5-(Fc—CC)2-(cC4H2S)n (n = 1, 2, 3), 2,5-(Fc—C C)2-[(3,4-OCH2CH2O)(cC4S)]n (n = 1, 2, 3) were studied by Zhu & Wolf (1999). The results of the spectro- and electrochemical measurements showed an inter­esting insight into the conductibility, which may lead to an improvement of sensor technology using conductive polymers. Electron-withdrawing and donating groups on the ferrocenyl or the thio­phenyl moieties have been used to modify the charge-transfer properties. This has been shown for a series of different 2,5-diferrocenyl thio­phenes (Speck et al., 2014). In continuation of this work, we present herein the synthesis and crystal structure of 3-{1'-[3,5-bis­(tri­fluoro­methyl)­phenyl]-1,1'-ferrocenediyl}-4-bromo­thio­phene, [Fe(C13H7F6)(C9H6BrS)], (I). The synthesis of this compound was realized using typical Negishi C,C-cross-coupling reaction conditions.

The title compound contains one molecule in the asymmetric unit with an intra­molecular ππ distances between the centroids (D) of the thio­phene and the phenyl substituents (Fig. 1) of 3.695 (4) Å (Table 1) (Sinnokrot et al., 2002) favoured by the nearly coplanar cylo­penta­dienyl rings [D(C5H4)—Fe—D(C5H4): 175.84 (3) and 175.66 (3)°] in the ferrocenyl backbone. For the disordered part ('-labeled, see: Refinement and additional Figure in the supporting information), however, the distance of 3.871 (6) Å is too long for a ππ inter­action caused by the increased torsion angle between the substituents in the 1- and 1'- position [9.2 (4)° for the main part; 16.7 (5)° for the disordered part]. The mean planes of the cyclo­penta­dienyl rings and the bonded aromatic rings are almost coplanar with each other [C6H3—C5H4, 16.2 (3)°; C4H3S—C5H4, 17.3 (6) (main part) and 16.9 (10)° (other part)] and thus, a nearly parallel arranged stacking between the phenyl and the thio­phene rings [8.9 (3)° for the main part and 9.7 (6)° for the other part] is realized.

Inter­molecular T-shaped ππ inter­actions between the thienyl and the phenyl-substituted cyclo­penta­dienyl rings (Fig. 2) are observed. The disordered part (labeled with ') exhibits a stronger inter­action of 4.688 (6) Å, in contrast to 4.943 (4) Å for the other disordered part which is rather weak (Table 1).

The only reported examples of 3-ferrocenyl-substituted five-membered group-VI heterocycles (Speck et al., 2012; Hildebrandt et al., 2011; Claus et al., 2011) exhibit a similar co-planarity between non-sterically hindered thio­phenes and the cyclo­penta­dienyl rings [10.4 (2)°, Speck et al., 2012; –6.4 (4)°, Claus et al., 2011], but a high distortion for thio­phenes bearing further ortho-substituents [40.1 (9) to 56.6 (9)°, Speck et al., 2012; 70.9 (3) and 42.7 (3)°, Hildebrandt et al., 2011]. The conformations of reported ferrocene derivatives bearing aromatic substituents in the 1 and 1' positions range from anti­periplanar [180.0 (4), plane twisting 13.99 (15)°, Braga et al., 2003) and anti­clinal [147.02 (14), plane twisting 33.7 (9)°, Deck et al., 2004] to synperiplanar [0.3 (3)°, Deck et al., 2000; –0.5 (9)°, Blanchard et al., 2000; 4.09 (19)°, Gallagher et al., 2010; –6.5 (6)°, Hursthouse et al., 2003; 14.4 (8)°, Foxman et al., 1991] with plane twists from 12.8 (9) (Gallagher et al., 2010) to 82.8 (4)° (Foxman et al., 1993). Furthermore, for all synperiplanar examples, intra­molecular inter­actions between the aromatic planes are present with distances smaller than 3.42 Å (Hursthouse et al., 2003).

For related literature, see: Barsch et al. (1994); Blanchard et al. (2000); Braga et al. (2003); Claus (2011); Deck et al. (2000, 2004); Foxman et al. (1991, 1993); Gallagher et al. (2010); Heeger (2001); Hildebrandt & Lang (2013); Hildebrandt et al. (2011); Hursthouse et al. (2003); MacDiarmid (2001); McArdle (1995); Negishi et al. (1977); Pfaff et al. (2013); Sheldrick (2008); Sinnokrot et al. (2002); Speck et al. (2012, 2014); Wolf (2001); Zhu & Wolf (1999, 2000); Zotti et al. (1995).

Synthesis and crystallization top

1-Bromo-1'-(3,5-bis­(tri­fluoro­methyl)­phenyl)­ferrocene was prepared according to synthetic methodologies reported by Speck et al. (2014). The synthesis of ferrocenyl thio­phene was realized using typical Negishi C,C-cross-coupling conditions by reacting 1-bromo-1'-(3,5-bis­(tri­fluoro­methyl)­phenyl)­ferrocene with 3,4-di­bromo­thio­phene (Negishi et al., 1977).

Synthesis of (I): For the Negishi C,C-cross-coupling reaction, 1-bromo-1'-(3,5-bis­(tri­fluoro­methyl)­phenyl)­ferrocene (1.0 g, 2.10 mmol) was dissolved in 50 ml of tetra­hydro­furan (THF) and 1.2 equivalents (0.9 ml, 2.52 mmol) of a 2.5 M solution of n-butyl­lithium in n-hexane were added dropwise at 193 K. After 1 h of stirring at this temperature, 1.2 equivalents (0.71 g, 2.52 mmol) of [ZnCl2·2THF] were added in a single portion. The reaction was kept for 10 min at this temperature and was then allowed to warm to 273 K during an additional hour. Afterwards, 0.25 mol% of [P(t-C4H9)2C(CH3)2CH2Pd(µ-Cl)]2 and 1.5 equivalents (0.76 g, 3.15 mmol) of 3,4-di­bromo­thio­phene were added in a single portion. The resulting mixture was stirred for 10 h at 323 K. After evaporation of all volatiles, the crude product was dissolved in 30 ml of di­chloro­methane and was washed twice with 50 ml portions of water. The organic phase was dried over MgSO4 and the solvent was removed with a rotary evaporator. The remaining orange solid was purified by column chromatography on silica gel using a n-hexane/di­ethyl ether 1/1 (v/v) mixture. Red crystals of (I) were obtained by slow evaporation of a saturated n-hexane/methanol 1/5 (v/v) solution at ambient temperature. Yield: 660 mg (1.18 mmol, 56% based on 1-bromo-1'-(3,5-bis­(tri­fluoro­methyl)­phenyl)­ferrocene). IR (KBr, cm-1): ν = 1275 (s, C—F), 1504 (s, C=C), 1615 (m, C=C) 2848, 3095 (w, C—H). 1H NMR (500.3 MHz, CDCl3, 298 K, p.p.m.): δ = 7.61 (s, 3H, C8H3F6), 7.09 (d, 1H, JH,H = 3.6 Hz, C4H2S), 6.90 (d, 1H, JH,H = 3.6 Hz, C4H2S), 4.73 (pt, 2H, JH,H = 1.9 Hz, C5H4), 4.69 (pt, 2H, JH,H = 1.9 Hz, C5H4), 4.46 (pt, 2H, JH,H = 1.9 Hz, C5H4), 4.25 (pt, 2H, JH,H = 1.9 Hz, C5H4). 13C{1H} NMR (125.7 MHz, CDCl3, 298 K): δ = 140.64 (s, Ci-C6H3), 135.56 (s, Ci-C4H2S), 131.54 (q, JC,F = 33 Hz, Ci-C6H3), 125,63 (m, C6H3), 124.88 (s, C4H2S), 123.50 (q, JC,F =273 Hz, CF3), 121.12 (s, C4H2S), 119.05 (m, C6H3), 109.78 (s, Ci-C4H2S), 82.98 (s, Ci-C5H4), 82.01 (s, Ci-C5H4), 71.40 (s, C5H4), 70.17 (s, C5H4), 68.81 (s, C5H4), 68.20 (s, C5H4). HRMS (ESI–TOF, M+): C23H16F6FeSO: m/z = 557.9291 (calc. 557.9171).

Refinement details top

C-bonded hydrogen atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for the aromatic protons. The thio­phenyl and the attached cyclo­penta­dienyl ring were refined as disordered over two sets of sites with occupancies of 0.6 and 0.4. The spatial proximity of the sulfur and the bromine atom of the disordered part required DFIX [C1—C2 1.51 (2), C2—C3 1.33 (2), C3—C4 1.35 (2) S1—C1 1.62 (2), S1—C4 1.82 (2), C3—Br1 1.94 (2) Å) and DANG (C4—Br1 2.75 (4), C1—C3 2.27 (4), C2—C4 2.38 (4), C4—Br1 2.75 (4) Å] instructions, which were used for the minor disordered part ('-labeled). For both disordered parts, some anisotropic displacement ellipsoids were rather elongated and hence SIMU/ISOR restraints (McArdle, 1995; Sheldrick, 2008) were also applied. Both cyclo­penta­dienyl rings were generated by using the AFIX 56 command. For atom pair C9/C9', a further EADP instruction was applied to achieve reasonable anisotropic displacement ellipsoids.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing short intramolecular ππ interactions between the thiophenyl and the phenyl substituents, with displacement ellipsoids drawn at the 50% probability level. All hydrogen atoms, the minor disordered part of the structure and further ππ interactions have been omitted for clarity.
[Figure 2] Fig. 2. Intermolecular T-shaped ππ interactions between the thiophenyl and the phenyl-substituted cyclopentadienyl rings, with displacement ellipsoids drawn at the 50% probability level. All hydrogen atoms, the minor disordered part of the structure and further ππ distances have been omitted for clarity. [Symmetry code: (A) 3/2-x, –1/2 + y, 3/2-z.]
3-{1'-[3,5-Bis(trifluoromethyl)phenyl]ferrocenyl}-4-bromothiophene top
Crystal data top
[Fe(C9H6BrS)(C13H7F6)]F(000) = 2208
Mr = 559.14Dx = 1.866 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.056 (5) ÅCell parameters from 3003 reflections
b = 10.294 (5) Åθ = 3.8–27.2°
c = 21.451 (5) ŵ = 2.93 mm1
β = 93.268 (5)°T = 110 K
V = 3981 (2) Å3Block, orange
Z = 80.4 × 0.4 × 0.2 mm
Data collection top
Oxford Gemini CCD
diffractometer
2887 reflections with I > 2σ(I)
ω scansRint = 0.035
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
θmax = 25.5°, θmin = 2.9°
Tmin = 0.436, Tmax = 1.000h = 2121
11002 measured reflectionsk = 1212
3687 independent reflectionsl = 2325
Refinement top
Refinement on F2258 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0737P)2 + 7.0529P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.004
3687 reflectionsΔρmax = 0.94 e Å3
357 parametersΔρmin = 0.61 e Å3
Crystal data top
[Fe(C9H6BrS)(C13H7F6)]V = 3981 (2) Å3
Mr = 559.14Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.056 (5) ŵ = 2.93 mm1
b = 10.294 (5) ÅT = 110 K
c = 21.451 (5) Å0.4 × 0.4 × 0.2 mm
β = 93.268 (5)°
Data collection top
Oxford Gemini CCD
diffractometer
3687 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2887 reflections with I > 2σ(I)
Tmin = 0.436, Tmax = 1.000Rint = 0.035
11002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044258 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.00Δρmax = 0.94 e Å3
3687 reflectionsΔρmin = 0.61 e Å3
357 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used, when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.59952 (12)0.21423 (19)0.60297 (8)0.0419 (4)0.6
Br10.63183 (5)0.10861 (8)0.73209 (4)0.0409 (2)0.6
C10.6910 (4)0.2085 (6)0.6296 (3)0.0323 (13)0.6
H10.72720.26540.61680.039*0.6
C20.7045 (3)0.1088 (5)0.6724 (3)0.0259 (11)0.6
C30.6392 (4)0.0394 (6)0.6811 (3)0.0297 (13)0.6
C40.5776 (5)0.0824 (8)0.6470 (3)0.0342 (17)0.6
H40.53070.04540.64770.041*0.6
C50.7792 (3)0.0860 (8)0.7008 (3)0.0274 (17)0.6
C60.7990 (4)0.0156 (9)0.7562 (3)0.034 (2)0.6
H60.76670.03010.78040.041*0.6
C70.8769 (4)0.0272 (8)0.7683 (3)0.037 (2)0.6
H70.90450.00950.80170.045*0.6
C80.9052 (3)0.1047 (6)0.7204 (3)0.0367 (18)0.6
H80.95460.12770.71690.044*0.6
C90.8449 (3)0.1410 (6)0.6786 (2)0.0303 (14)0.6
H90.84780.19200.64310.036*0.6
S1'0.56009 (19)0.0774 (3)0.7152 (2)0.0816 (12)0.4
Br1'0.64769 (11)0.25200 (13)0.61634 (6)0.0613 (4)0.4
C1'0.6502 (7)0.0577 (13)0.7354 (8)0.063 (4)0.4
H1'0.67530.10510.76690.076*0.4
C2'0.6844 (6)0.0381 (9)0.6999 (5)0.037 (2)0.4
C3'0.6298 (7)0.1011 (10)0.6644 (5)0.046 (3)0.4
C4'0.5597 (7)0.0537 (14)0.6654 (7)0.060 (4)0.4
H4'0.51830.08660.64290.072*0.4
C5'0.7644 (4)0.0653 (12)0.7128 (5)0.030 (3)0.4
C6'0.8083 (7)0.0167 (14)0.7647 (5)0.035 (3)0.4
H6'0.79160.03460.79670.042*0.4
C7'0.8823 (5)0.0602 (13)0.7592 (5)0.040 (3)0.4
H7'0.92250.04240.78690.047*0.4
C8'0.8841 (5)0.1356 (10)0.7039 (5)0.039 (3)0.4
H8'0.92570.17590.68900.047*0.4
C9'0.8113 (5)0.1388 (9)0.6752 (4)0.0303 (14)0.4
H9'0.79680.18140.63830.036*0.4
C100.81000 (19)0.1698 (3)0.61277 (16)0.0300 (8)
C110.8794 (2)0.1132 (4)0.59760 (18)0.0387 (9)
H110.88700.06010.56350.046*
C120.9345 (2)0.1522 (4)0.6438 (2)0.0467 (10)
H120.98440.12910.64510.056*
C130.9005 (2)0.2321 (4)0.6870 (2)0.0442 (10)
H130.92410.27120.72180.053*
C140.8247 (2)0.2427 (3)0.66885 (18)0.0345 (8)
H140.78980.28960.68990.041*
C150.73864 (19)0.1567 (3)0.57697 (14)0.0271 (7)
C160.7274 (2)0.0608 (3)0.53160 (15)0.0311 (8)
H160.76510.00180.52470.037*
C170.6609 (2)0.0524 (3)0.49668 (16)0.0356 (9)
C180.6033 (2)0.1366 (4)0.50595 (16)0.0345 (8)
H180.55850.12960.48250.041*
C190.6138 (2)0.2321 (4)0.55113 (15)0.0318 (8)
C200.6805 (2)0.2420 (3)0.58615 (15)0.0299 (8)
H200.68650.30670.61630.036*
C210.6527 (3)0.0494 (4)0.44666 (19)0.0481 (11)
C220.5538 (2)0.3269 (4)0.56256 (17)0.0434 (10)
F10.67577 (17)0.1660 (2)0.46565 (11)0.0628 (8)
F20.6945 (2)0.0225 (3)0.39867 (11)0.0786 (10)
F30.5850 (2)0.0629 (4)0.42356 (19)0.1139 (16)
F40.52097 (15)0.3028 (3)0.61561 (11)0.0669 (8)
F50.50019 (14)0.3292 (3)0.51730 (11)0.0582 (7)
F60.57912 (16)0.4492 (2)0.56767 (14)0.0655 (8)
Fe10.85187 (3)0.05282 (5)0.68322 (2)0.02830 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0414 (11)0.0476 (11)0.0357 (9)0.0166 (9)0.0064 (8)0.0030 (8)
Br10.0436 (5)0.0359 (4)0.0437 (4)0.0049 (3)0.0063 (3)0.0053 (3)
C10.025 (3)0.029 (3)0.042 (3)0.017 (3)0.007 (3)0.003 (2)
C20.029 (3)0.022 (2)0.028 (2)0.005 (2)0.005 (2)0.002 (2)
C30.031 (3)0.029 (3)0.030 (3)0.004 (3)0.002 (3)0.003 (3)
C40.028 (4)0.039 (4)0.036 (4)0.004 (3)0.005 (3)0.007 (3)
C50.033 (3)0.029 (3)0.020 (3)0.005 (3)0.001 (3)0.001 (3)
C60.038 (4)0.043 (4)0.021 (3)0.008 (3)0.002 (3)0.001 (3)
C70.039 (4)0.037 (4)0.035 (3)0.007 (3)0.009 (3)0.002 (3)
C80.039 (4)0.029 (3)0.040 (4)0.001 (3)0.011 (3)0.003 (3)
C90.024 (4)0.0264 (19)0.039 (2)0.003 (3)0.005 (3)0.0004 (18)
S1'0.0422 (18)0.0499 (17)0.156 (4)0.0105 (14)0.037 (2)0.023 (2)
Br1'0.0844 (11)0.0503 (8)0.0479 (7)0.0304 (8)0.0074 (7)0.0028 (5)
C1'0.062 (7)0.044 (6)0.085 (7)0.010 (5)0.007 (5)0.006 (6)
C2'0.033 (4)0.032 (4)0.048 (4)0.002 (4)0.006 (4)0.011 (4)
C3'0.039 (5)0.043 (5)0.056 (5)0.013 (4)0.009 (4)0.020 (4)
C4'0.043 (6)0.071 (7)0.064 (7)0.018 (5)0.001 (5)0.028 (5)
C5'0.028 (4)0.031 (5)0.032 (5)0.010 (4)0.010 (4)0.007 (4)
C6'0.035 (5)0.044 (5)0.026 (5)0.007 (4)0.005 (4)0.006 (4)
C7'0.033 (5)0.047 (6)0.039 (5)0.003 (4)0.004 (4)0.011 (4)
C8'0.038 (6)0.039 (5)0.042 (6)0.007 (5)0.013 (5)0.007 (5)
C9'0.024 (4)0.0264 (19)0.039 (2)0.003 (3)0.005 (3)0.0004 (18)
C100.031 (2)0.0257 (17)0.0336 (18)0.0006 (14)0.0084 (15)0.0061 (14)
C110.039 (2)0.042 (2)0.036 (2)0.0058 (18)0.0173 (17)0.0097 (17)
C120.028 (2)0.051 (2)0.062 (3)0.0058 (19)0.0121 (19)0.012 (2)
C130.030 (2)0.038 (2)0.064 (3)0.0095 (17)0.0013 (19)0.0023 (19)
C140.033 (2)0.0271 (18)0.043 (2)0.0035 (15)0.0017 (16)0.0000 (15)
C150.0324 (19)0.0267 (17)0.0229 (16)0.0003 (15)0.0074 (14)0.0068 (13)
C160.041 (2)0.0266 (18)0.0267 (17)0.0064 (15)0.0072 (15)0.0029 (14)
C170.054 (3)0.0280 (18)0.0248 (17)0.0008 (17)0.0014 (17)0.0025 (14)
C180.041 (2)0.0336 (19)0.0281 (18)0.0007 (16)0.0017 (16)0.0015 (15)
C190.036 (2)0.0347 (19)0.0249 (17)0.0057 (16)0.0043 (15)0.0016 (14)
C200.040 (2)0.0271 (17)0.0235 (17)0.0034 (15)0.0065 (15)0.0001 (13)
C210.069 (3)0.037 (2)0.038 (2)0.006 (2)0.002 (2)0.0067 (18)
C220.043 (2)0.055 (3)0.031 (2)0.0147 (19)0.0054 (18)0.0054 (18)
F10.116 (2)0.0309 (13)0.0419 (13)0.0021 (13)0.0113 (14)0.0070 (10)
F20.161 (3)0.0460 (15)0.0316 (13)0.0019 (17)0.0266 (16)0.0061 (11)
F30.087 (3)0.115 (3)0.133 (3)0.034 (2)0.053 (2)0.093 (3)
F40.0594 (17)0.101 (2)0.0415 (14)0.0347 (16)0.0151 (12)0.0019 (14)
F50.0474 (15)0.0777 (18)0.0474 (14)0.0252 (13)0.0145 (11)0.0153 (13)
F60.0636 (18)0.0427 (15)0.088 (2)0.0220 (13)0.0152 (15)0.0183 (13)
Fe10.0262 (3)0.0287 (3)0.0302 (3)0.0004 (2)0.0033 (2)0.0008 (2)
Geometric parameters (Å, º) top
S1—C11.717 (6)C7'—Fe12.052 (12)
S1—C41.713 (8)C7'—H7'0.9300
Br1—C31.885 (7)C8'—C9'1.4200
C1—C21.389 (8)C8'—Fe12.066 (9)
C1—H10.9300C8'—H8'0.9300
C2—C31.399 (8)C9'—Fe12.107 (9)
C2—C51.469 (7)C9'—H9'0.9300
C3—C41.370 (10)C10—C141.430 (5)
C4—H40.9300C10—C111.436 (5)
C5—C91.4200C10—C151.468 (5)
C5—C61.4200C10—Fe12.043 (3)
C5—Fe11.990 (8)C11—C121.422 (6)
C6—C71.4200C11—Fe12.027 (4)
C6—Fe12.007 (9)C11—H110.9300
C6—H60.9300C12—C131.407 (6)
C7—C81.4200C12—Fe12.033 (4)
C7—Fe12.029 (8)C12—H120.9300
C7—H70.9300C13—C141.406 (5)
C8—C91.4200C13—Fe12.043 (4)
C8—Fe12.026 (6)C13—H130.9300
C8—H80.9300C14—Fe12.035 (4)
C9—Fe12.002 (6)C14—H140.9300
C9—H90.9300C15—C161.392 (5)
S1'—C1'1.672 (13)C15—C201.391 (5)
S1'—C4'1.721 (13)C16—C171.381 (5)
Br1'—C3'1.902 (11)C16—H160.9300
C1'—C2'1.410 (14)C17—C181.377 (5)
C1'—H1'0.9300C17—C211.501 (5)
C2'—C3'1.373 (13)C18—C191.386 (5)
C2'—C5'1.483 (13)C18—H180.9300
C3'—C4'1.359 (14)C19—C201.386 (5)
C4'—H4'0.9300C19—C221.489 (5)
C5'—C6'1.4200C20—H200.9300
C5'—C9'1.4200C21—F31.300 (6)
C5'—Fe12.118 (11)C21—F11.327 (5)
C6'—C7'1.4200C21—F21.339 (5)
C6'—Fe12.084 (14)C22—F51.332 (4)
C6'—H6'0.9300C22—F41.336 (5)
C7'—C8'1.4200C22—F61.341 (5)
C1—S1—C492.1 (4)C13—C12—H12126.0
C2—C1—S1112.0 (5)C11—C12—H12126.0
C2—C1—H1124.0Fe1—C12—H12126.1
S1—C1—H1124.0C12—C13—C14108.5 (4)
C1—C2—C3110.4 (6)C12—C13—Fe169.4 (2)
C1—C2—C5121.0 (6)C14—C13—Fe169.5 (2)
C3—C2—C5128.5 (6)C12—C13—H13125.8
C4—C3—C2115.3 (6)C14—C13—H13125.8
C4—C3—Br1119.3 (5)Fe1—C13—H13126.9
C2—C3—Br1125.4 (5)C13—C14—C10108.9 (3)
C3—C4—S1110.2 (6)C13—C14—Fe170.1 (2)
C3—C4—H4124.9C10—C14—Fe169.8 (2)
S1—C4—H4124.9C13—C14—H14125.6
C9—C5—C6108.0C10—C14—H14125.6
C9—C5—C2124.2 (5)Fe1—C14—H14126.1
C6—C5—C2127.7 (5)C16—C15—C20117.7 (3)
C9—C5—Fe169.6 (3)C16—C15—C10121.3 (3)
C6—C5—Fe169.8 (3)C20—C15—C10121.0 (3)
C2—C5—Fe1129.5 (5)C17—C16—C15120.7 (3)
C7—C6—C5108.0C17—C16—H16119.6
C7—C6—Fe170.3 (3)C15—C16—H16119.6
C5—C6—Fe168.5 (3)C18—C17—C16121.5 (3)
C7—C6—H6126.0C18—C17—C21119.9 (4)
C5—C6—H6126.0C16—C17—C21118.6 (4)
Fe1—C6—H6126.8C17—C18—C19118.2 (4)
C6—C7—C8108.0C17—C18—H18120.9
C6—C7—Fe168.6 (3)C19—C18—H18120.9
C8—C7—Fe169.4 (3)C18—C19—C20120.8 (3)
C6—C7—H7126.0C18—C19—C22120.5 (3)
C8—C7—H7126.0C20—C19—C22118.7 (3)
Fe1—C7—H7127.6C19—C20—C15121.1 (3)
C9—C8—C7108.0C19—C20—H20119.5
C9—C8—Fe168.4 (3)C15—C20—H20119.5
C7—C8—Fe169.6 (3)F3—C21—F1107.0 (4)
C9—C8—H8126.0F3—C21—F2106.7 (4)
C7—C8—H8126.0F1—C21—F2104.0 (3)
Fe1—C8—H8127.5F3—C21—C17113.5 (4)
C8—C9—C5108.0F1—C21—C17113.3 (3)
C8—C9—Fe170.3 (3)F2—C21—C17111.6 (4)
C5—C9—Fe168.7 (3)F5—C22—F4106.5 (3)
C8—C9—H9126.0F5—C22—F6105.9 (3)
C5—C9—H9126.0F4—C22—F6105.7 (3)
Fe1—C9—H9126.6F5—C22—C19113.4 (3)
C1'—S1'—C4'92.0 (7)F4—C22—C19112.4 (3)
C2'—C1'—S1'113.2 (11)F6—C22—C19112.4 (4)
C2'—C1'—H1'123.4C5—Fe1—C941.68 (12)
S1'—C1'—H1'123.4C5—Fe1—C641.62 (17)
C3'—C2'—C1'107.9 (11)C9—Fe1—C669.9 (2)
C3'—C2'—C5'132.5 (10)C5—Fe1—C11126.2 (2)
C1'—C2'—C5'118.8 (10)C9—Fe1—C11106.21 (19)
C4'—C3'—C2'117.5 (11)C6—Fe1—C11165.1 (2)
C4'—C3'—Br1'119.3 (9)C5—Fe1—C869.79 (16)
C2'—C3'—Br1'123.2 (8)C9—Fe1—C841.28 (10)
C3'—C4'—S1'108.7 (10)C6—Fe1—C869.5 (2)
C3'—C4'—H4'125.6C11—Fe1—C8117.8 (2)
S1'—C4'—H4'125.6C5—Fe1—C769.7 (2)
C6'—C5'—C9'108.0C9—Fe1—C769.49 (16)
C6'—C5'—C2'125.1 (9)C6—Fe1—C741.19 (17)
C9'—C5'—C2'126.8 (9)C11—Fe1—C7152.3 (2)
C6'—C5'—Fe169.0 (4)C8—Fe1—C740.99 (13)
C9'—C5'—Fe170.0 (4)C5—Fe1—C14124.2 (2)
C2'—C5'—Fe1124.8 (8)C9—Fe1—C14159.5 (2)
C5'—C6'—C7'108.0C6—Fe1—C14109.5 (2)
C5'—C6'—Fe171.5 (4)C11—Fe1—C1468.76 (15)
C7'—C6'—Fe168.7 (4)C8—Fe1—C14159.0 (2)
C5'—C6'—H6'126.0C7—Fe1—C14124.4 (2)
C7'—C6'—H6'126.0C5—Fe1—C12161.4 (2)
Fe1—C6'—H6'125.3C9—Fe1—C12121.8 (2)
C8'—C7'—C6'108.0C6—Fe1—C12153.4 (2)
C8'—C7'—Fe170.4 (4)C11—Fe1—C1240.99 (16)
C6'—C7'—Fe171.2 (4)C8—Fe1—C12102.9 (2)
C8'—C7'—H7'126.0C7—Fe1—C12116.6 (3)
C6'—C7'—H7'126.0C14—Fe1—C1268.27 (17)
Fe1—C7'—H7'124.1C5—Fe1—C13158.0 (2)
C9'—C8'—C7'108.0C9—Fe1—C13158.2 (2)
C9'—C8'—Fe171.7 (4)C6—Fe1—C13120.5 (2)
C7'—C8'—Fe169.3 (5)C11—Fe1—C1368.45 (17)
C9'—C8'—H8'126.0C8—Fe1—C13120.9 (2)
C7'—C8'—H8'126.0C7—Fe1—C13104.9 (2)
Fe1—C8'—H8'124.6C14—Fe1—C1340.33 (15)
C8'—C9'—C5'108.0C12—Fe1—C1340.38 (18)
C8'—C9'—Fe168.6 (4)C5—Fe1—C10110.1 (2)
C5'—C9'—Fe170.8 (4)C9—Fe1—C10122.11 (19)
C8'—C9'—H9'126.0C6—Fe1—C10127.7 (2)
C5'—C9'—H9'126.0C11—Fe1—C1041.30 (14)
Fe1—C9'—H9'126.2C8—Fe1—C10155.5 (2)
C14—C10—C11106.3 (3)C7—Fe1—C10163.4 (2)
C14—C10—C15127.1 (3)C14—Fe1—C1041.06 (14)
C11—C10—C15126.5 (3)C12—Fe1—C1069.21 (16)
C14—C10—Fe169.2 (2)C13—Fe1—C1068.75 (16)
C11—C10—Fe168.8 (2)C11—Fe1—C7'145.6 (3)
C15—C10—Fe1127.6 (2)C14—Fe1—C7'135.8 (3)
C12—C11—C10108.2 (3)C12—Fe1—C7'116.5 (3)
C12—C11—Fe169.7 (2)C13—Fe1—C7'112.7 (3)
C10—C11—Fe169.93 (19)C10—Fe1—C7'173.1 (3)
C12—C11—H11125.9C11—Fe1—C8'113.7 (3)
C10—C11—H11125.9C14—Fe1—C8'175.6 (3)
Fe1—C11—H11126.0C12—Fe1—C8'110.9 (3)
C13—C12—C11108.1 (4)C13—Fe1—C8'136.4 (3)
C13—C12—Fe170.2 (2)C10—Fe1—C8'143.1 (3)
C11—C12—Fe169.3 (2)C7'—Fe1—C8'40.34 (19)
C4—S1—C1—C21.1 (5)Fe1—C7'—C8'—C9'61.6 (4)
S1—C1—C2—C30.8 (6)C6'—C7'—C8'—Fe161.6 (4)
S1—C1—C2—C5179.7 (5)C7'—C8'—C9'—C5'0.0
C1—C2—C3—C40.1 (8)Fe1—C8'—C9'—C5'60.0 (5)
C5—C2—C3—C4178.8 (7)C7'—C8'—C9'—Fe160.0 (5)
C1—C2—C3—Br1177.0 (4)C6'—C5'—C9'—C8'0.0
C5—C2—C3—Br11.7 (9)C2'—C5'—C9'—C8'177.7 (12)
C2—C3—C4—S10.7 (8)Fe1—C5'—C9'—C8'58.6 (4)
Br1—C3—C4—S1178.0 (4)C6'—C5'—C9'—Fe158.6 (4)
C1—S1—C4—C31.0 (6)C2'—C5'—C9'—Fe1119.1 (12)
C1—C2—C5—C914.0 (10)C14—C10—C11—C120.2 (4)
C3—C2—C5—C9164.6 (6)C15—C10—C11—C12178.8 (3)
C1—C2—C5—C6161.0 (6)Fe1—C10—C11—C1259.4 (3)
C3—C2—C5—C620.4 (10)C14—C10—C11—Fe159.2 (2)
C1—C2—C5—Fe1104.9 (7)C15—C10—C11—Fe1121.7 (3)
C3—C2—C5—Fe173.8 (8)C10—C11—C12—C130.1 (4)
C9—C5—C6—C70.0Fe1—C11—C12—C1359.7 (3)
C2—C5—C6—C7175.7 (8)C10—C11—C12—Fe159.6 (2)
Fe1—C5—C6—C759.4 (3)C11—C12—C13—C140.4 (5)
C9—C5—C6—Fe159.4 (3)Fe1—C12—C13—C1458.7 (3)
C2—C5—C6—Fe1125.0 (7)C11—C12—C13—Fe159.1 (3)
C5—C6—C7—C80.0C12—C13—C14—C100.6 (4)
Fe1—C6—C7—C858.3 (2)Fe1—C13—C14—C1059.2 (2)
C5—C6—C7—Fe158.3 (2)C12—C13—C14—Fe158.6 (3)
C6—C7—C8—C90.0C11—C10—C14—C130.5 (4)
Fe1—C7—C8—C957.8 (3)C15—C10—C14—C13178.6 (3)
C6—C7—C8—Fe157.8 (3)Fe1—C10—C14—C1359.4 (3)
C7—C8—C9—C50.0C11—C10—C14—Fe159.0 (2)
Fe1—C8—C9—C558.5 (3)C15—C10—C14—Fe1122.0 (3)
C7—C8—C9—Fe158.5 (3)C14—C10—C15—C16165.3 (3)
C6—C5—C9—C80.0C11—C10—C15—C1615.8 (5)
C2—C5—C9—C8175.9 (8)Fe1—C10—C15—C1674.2 (4)
Fe1—C5—C9—C859.5 (3)C14—C10—C15—C2016.3 (5)
C6—C5—C9—Fe159.5 (3)C11—C10—C15—C20162.5 (3)
C2—C5—C9—Fe1124.6 (7)Fe1—C10—C15—C20107.4 (3)
C4'—S1'—C1'—C2'7.1 (12)C20—C15—C16—C170.7 (5)
S1'—C1'—C2'—C3'8.6 (14)C10—C15—C16—C17177.7 (3)
S1'—C1'—C2'—C5'179.8 (9)C15—C16—C17—C181.0 (5)
C1'—C2'—C3'—C4'6.2 (16)C15—C16—C17—C21177.6 (3)
C5'—C2'—C3'—C4'176.2 (12)C16—C17—C18—C190.7 (5)
C1'—C2'—C3'—Br1'172.1 (9)C21—C17—C18—C19177.9 (3)
C5'—C2'—C3'—Br1'2.1 (17)C17—C18—C19—C200.2 (5)
C2'—C3'—C4'—S1'1.2 (15)C17—C18—C19—C22179.2 (3)
Br1'—C3'—C4'—S1'177.2 (6)C18—C19—C20—C150.0 (5)
C1'—S1'—C4'—C3'3.4 (12)C22—C19—C20—C15179.4 (3)
C3'—C2'—C5'—C6'159.0 (11)C16—C15—C20—C190.2 (5)
C1'—C2'—C5'—C6'10.1 (15)C10—C15—C20—C19178.1 (3)
C3'—C2'—C5'—C9'23.6 (18)C18—C17—C21—F311.8 (6)
C1'—C2'—C5'—C9'167.3 (11)C16—C17—C21—F3169.6 (4)
C3'—C2'—C5'—Fe1113.6 (12)C18—C17—C21—F1134.1 (4)
C1'—C2'—C5'—Fe177.3 (13)C16—C17—C21—F147.3 (5)
C9'—C5'—C6'—C7'0.0C18—C17—C21—F2108.9 (5)
C2'—C5'—C6'—C7'177.8 (12)C16—C17—C21—F269.7 (5)
Fe1—C5'—C6'—C7'59.3 (4)C18—C19—C22—F514.8 (5)
C9'—C5'—C6'—Fe159.3 (4)C20—C19—C22—F5164.6 (3)
C2'—C5'—C6'—Fe1118.5 (10)C18—C19—C22—F4106.1 (4)
C5'—C6'—C7'—C8'0.0C20—C19—C22—F474.5 (5)
Fe1—C6'—C7'—C8'61.1 (4)C18—C19—C22—F6134.8 (4)
C5'—C6'—C7'—Fe161.1 (4)C20—C19—C22—F644.6 (5)
C6'—C7'—C8'—C9'0.0
T-shaped ππ interaction geometries (Å, °) for (I). top
D···DD···Dα(i)
C6H3(CF3)2···C4H2BrS(ii)3.695 (4)8.8 (3)
C4H2BrS···C5H4(iii)4.943 (4)88.3 (3)
C4H2BrS(iv)···C5H4(iii)4.688 (6)86.8 (5)
D denotes the centroids of the respective aromatic rings. (i) The angle α is described by the intersection of the involved aromatics. (ii) Intramolecular interaction. (iii) Intermolecular interaction with symmetry code: –x+3/2, y–1/2, –z+3/2. (iv): Disordered ('-labeled) part.

Experimental details

Crystal data
Chemical formula[Fe(C9H6BrS)(C13H7F6)]
Mr559.14
Crystal system, space groupMonoclinic, C2/c
Temperature (K)110
a, b, c (Å)18.056 (5), 10.294 (5), 21.451 (5)
β (°) 93.268 (5)
V3)3981 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.93
Crystal size (mm)0.4 × 0.4 × 0.2
Data collection
DiffractometerOxford Gemini CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.436, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11002, 3687, 2887
Rint0.035
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.00
No. of reflections3687
No. of parameters357
No. of restraints258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.61

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

We are grateful to the Federal Cluster of Excellence EXC 1075 "MERGE Technologies for Multifunctional Lightweight Structures". MK thanks the Fonds der Chemischen Industrie for a Chemiefonds fellowship.

References

First citationBarsch, U., Beck, F., Hambitzer, G., Holze, R., Lippe, J. & Stassen, I. (1994). J. Electroanal. Chem. 369, 97–101.  CrossRef CAS Web of Science Google Scholar
First citationBlanchard, M. D., Hughes, R. P., Concolino, T. E. & Rheingold, A. L. (2000). Chem. Mater. 12, 1604–1610.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraga, D., Polito, M., Bracaccini, M., D'Addario, D., Tagliavini, E., Sturba, L. & Grepioni, F. (2003). Organometallics, 22, 2142–2150.  Web of Science CSD CrossRef CAS Google Scholar
First citationClaus, R. (2011). Dissertation. TU Chemnitz, Germany.  Google Scholar
First citationDeck, P. A., Konaté, M. M., Kelly, B. V. & Slebodnick, C. (2004). Organometallics, 23, 1089–1097.  Web of Science CSD CrossRef CAS Google Scholar
First citationDeck, P. A., Lane, M. J., Montgomery, J. L., Slebodnick, C. & Fronczek, F. R. (2000). Organometallics, 19, 1013–1024.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFoxman, B. M., Gronbeck, D. A., Khruschova, N. & Rosenblum, M. (1993). J. Org. Chem. 58, 4078–4082.  CSD CrossRef CAS Web of Science Google Scholar
First citationFoxman, B. M., Gronbeck, D. A. & Rosenblum, M. (1991). J. Organomet. Chem. 413, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationGallagher, J. F., Alley, S., Brosnan, M. & Lough, A. J. (2010). Acta Cryst. B66, 196–205.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHeeger, A. J. (2001). Angew. Chem. Int. Ed. 40, 2591–2611.  CrossRef CAS Google Scholar
First citationHildebrandt, A. & Lang, H. (2013). Organometallics, 32, 5640–5653.  Web of Science CrossRef CAS Google Scholar
First citationHildebrandt, A., Pfaff, U. & Lang, H. (2011). Rev. Inorg. Chem. 31, 111–141.  Web of Science CrossRef CAS Google Scholar
First citationHursthouse, M. B., Light, M. E. & Butler, I. R. (2003). Private CommunicationGoogle Scholar
First citationMacDiarmid, A. G. (2001). Angew. Chem. Int. Ed. 40, 2581–2590.  CrossRef CAS Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationNegishi, E., King, A. O. & Okukado, N. (1977). J. Org. Chem. 42, 1821–1823.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationPfaff, U., Hildebrandt, A., Schaarschmidt, D., Rüffer, T., Low, P. J. & Lang, H. (2013). Organometallics, 32, 6106–6117.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887–10893.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpeck, J. M., Claus, R., Hildebrandt, A., Rüffer, T., Erasmus, E., van As, L., Swarts, J. C. & Lang, H. (2012). Organometallics, 31, 6373–6380.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpeck, J. M., Korb, M., Rüffer, T., Hildebrandt, A. & Lang, H. (2014). Organometallics, doi: 10.1021/om500062h.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolf, M. O. (2001). Adv. Mater. 13, 545–553.  Web of Science CrossRef CAS Google Scholar
First citationZhu, Y. & Wolf, M. O. (1999). Chem. Mater. 11, 2995–3001.  Web of Science CrossRef CAS Google Scholar
First citationZhu, Y. & Wolf, M. O. (2000). J. Am. Chem. Soc. 122, 10121–10125.  Web of Science CrossRef CAS Google Scholar
First citationZotti, G., Zecchin, S., Schiavon, G., Berlin, A., Pagani, G. & Canavesi, A. (1995). Chem. Mater. 7, 2309–2315.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 238-241
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds