research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 188-191

Crystal structure of a samarium(III) nitrate chain cross-linked by a bis-carbamoyl­methyl­phosphine oxide ligand

aDepartment of Chemistry, Grand Valley State University, Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: biross@gvsu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 August 2014; accepted 5 September 2014; online 13 September 2014)

In the title compound poly[aqua­bis­(μ-nitrato-κ4O,O′:O,O′′)tetra­kis­(nitrato-κ2O,O′){μ4-tetra­ethyl [(ethane-1,2-diyl)bis(aza­nedi­yl)bis­(2-oxo­ethane-2,1-di­yl)]di­phospho­nate-κ2O,O′}disamarium(III)], [Sm2(NO3)6(C14H30N2O8P2)(H2O)]n, a 12-coordinate SmIII and a nine-coordinate SmIII cation are alternately linked via shared bis-bidentate nitrate anions into a corrugated chain extending parallel to the a axis. The nine-coordinate SmIII atom of this chain is also chelated by a bidentate, yet flexible, carbamoyl­methyl­phoshine oxide (CMPO) ligand and bears one water mol­ecule. This water mol­ecule is hydrogen bonded to nitrate groups bonded to the 12-coordinate SmIII cation. The CMPO ligand, which lies about an inversion center, links neighboring chains along the c axis, forming sheets parallel to the ac plane. Hydrogen bonds between the amide NH group and metal-bound nitrate anions are also present in these sheets. The sheets are packed along the b axis through only van der Waals inter­actions.

1. Chemical context

The carbamoyl­methyl­phosphine oxide (CMPO) moiety has been well studied as a chelating group for lanthanides and actinides. To this end, this bidentate phosphor­yl/carbonyl moiety is a component of the TRUEX process for the treatment of nuclear waste (Siddall, 1963[Siddall, T. H. III (1963). J. Inorg. Nucl. Chem. 25, 883-892.]; Horwitz et al., 1985[Horwitz, E. P., Kalina, D. C., Diamond, H., Vandegrift, G. F. & Schulz, W. W. (1985). Solvent Extr. Ion Exch. 3, 75-109.]). A handful of ligands bearing CMPO groups linked through tri- and tetra­podal caps have been reported in the literature in an attempt to increase the binding strength and selectivity toward f-elements (Arnaud-Neu et al., 1996[Arnaud-Neu, F., Böhmer, V., Dozol, J.-F., Grattner, C., Jakobi, R. A., Kraft, D., Mauprivez, O., Rouquette, H., Schwing-Weill, M.-J., Simon, N. & Vogt, W. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1175-1182.]; Peters et al., 2002[Peters, M. W., Werner, E. J. & Scott, M. J. (2002). Inorg. Chem. 41, 1707-1716.]; Sharova et al., 2012[Sharova, E. V., Artyushin, O. I., Turanov, A. N., Karandashev, V. K., Meshkova, S. B., Topilova, Z. M. & Odinets, I. L. (2012). Cent. Eur. J. Chem. 10, 146-156.]; Sartain et al., 2014[Sartain, H. T., Lawrence, C., McGraw, S. N., Werner, E. J. & Biros, S. M. (2014). Inorg. Chim. Acta. In preparation.]). The title compound, [Sm2(NO3)6(C14H30N2O8P2)(H2O)], is another representative.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains two SmIII ions, one nine-coordinate and one 12-coordinate, two halves of the di-CMPO ligand tetra­ethyl [(ethane-1,2-diyl)bis(aza­nedi­yl)bis­(2-oxo­ethane-2,1-di­yl)]di­phospho­nate, six nitrate anions and one coordinating water mol­ecule (Fig. 1[link]). The 12-coord­inate SmIII cation (Sm1) is surrounded by six bidentate nitrate ions [range of Sm—O bond lengths = 2.485 (3)–2.705 (3) Å], while the nine-coordinate SmIII cation bears another bidentate nitrate ligand, one water mol­ecule, and two CMPO groups from separate organic ligands [range of Sm—O bond lengths = 2.340 (3)–2.625 (3) Å].

[Figure 1]
Figure 1
The coordination environments of the SmIII cations of the title compound, showing displacement ellipsoids at the 50% probability level and the atom-numbering scheme. H atoms have been omitted for clarity.

The large displacement parameters of the methyl group (C5) are likely due to large thermal motion of this terminal group (see Refinement section for more discussion on the treatment of this disorder).

The SmIII metal cations are bridged through shared bis-bidentate nitrate anions (N3 and N4), forming a corrugated chain (Fig. 2[link], bottom) parallel to the a axis. In this figure, bridging bis-bidentate nitrate ions are shown in pink, while nitrate ions bound only to the 12-coordinate SmIII cation are shown in purple. The nine-coordinate SmIII ions of the metal chain are also linked by the organic ligand. The organic ligand lies on an inversion center, lies along the c axis, and cross-links the metal chains (Fig. 2[link], top). This cross-linking results in sheets that extend parallel to the ac plane (Fig. 3[link]).

[Figure 2]
Figure 2
(Top) The Sm2 cations of each metal chain are linked to a neighboring metal chain via the di-CMPO organic ligands. Color codes: black C, light green Sm1, dark green Sm2, red O, blue N, and orange P. (Bottom) The metal chain showing alternating Sm1 and Sm2 cations, linked through bridging bis-bidentate nitrate groups shown in pink. Non-bridging nitrate groups are shown in purple. Hydrogen bonds between the water mol­ecule on Sm2 and nitrate groups on Sm1 are shown as dashed lines.
[Figure 3]
Figure 3
Sheets formed by the cross-linking of the SmIII chains with the di-CMPO organic ligands (viewed down the b axis). Hydrogen bonds between the amide NH groups and metal bound nitrate anions are shown as dashed lines.

3. Supra­molecular features

The lanthanide–organic polymer is reinforced through two separate hydrogen-bonding motifs (Table 1[link]). In the corrugated chain, each H atom (H27A and H27B) of the water mol­ecule bound to Sm2 forms a hydrogen bond with an O atom of a nitrate group on Sm1 (Fig. 2[link], bottom). In the formation of the cross-linked sheets, the amide NH groups (H1 and H2) form hydrogen bonds with O atoms of two separate nitrate groups bound to Sm1 (Fig. 3[link]). These inter­actions likely act to rigidify both the SmIII chain and the cross-linked organometallic sheets.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O27—H27A⋯O21 0.89 2.12 2.772 (4) 130
O27—H27B⋯O19i 0.89 1.93 2.755 (4) 153
N1—H1⋯O15ii 0.88 2.53 3.176 (4) 131
N1—H1⋯O18ii 0.88 2.34 3.176 (4) 159
N2—H2⋯O22iii 0.88 2.31 3.164 (4) 161
N2—H2⋯O24iii 0.88 2.56 3.186 (4) 129
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z.

These metal–organic sheets are stacked along the b axis using only van der Waals forces (Fig. 4[link]). No inter­molecular hydrogen bonds or shared chelating groups are found between the sheets in this third dimension.

[Figure 4]
Figure 4
Stacking diagram for the title compound. The horizontal sheets pack vertically with only van der Waals forces.

4. Database survey

While numerous polymeric structures of lanthanide–organic compounds can be found in the Cambridge Structural Database (CSD; Version 5.35, last update February 2014; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), one inter­esting feature of this structure is the bidentate bridging of two lanthanides by one shared nitrate group (Fig. 2[link], bottom; pink-coloured nitrate groups). At present, only four other examples (Albrecht et al., 2005[Albrecht, M., Osetska, O. & Fröhlich, R. (2005). Dalton Trans. pp. 3757-3762.]; Hashimoto et al., 2000[Hashimoto, M., Takata, M. & Yagasaki, A. (2000). Inorg. Chem. 39, 3712-3714.]) with this bidentate bridging motif have been deposited with the CSD.

5. Synthesis and crystallization

The CMPO ligand was prepared following a reported procedure (Hamadouchi et al., 1999[Hamadouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50-59.]), using ethyl­enedi­amine in place of methyl­amine. This compound was isolated as a white solid. The title metal–ligand coordination polymer was prepared by dissolving the ligand in a minimum amount of aceto­nitrile. To this solution were added 2 molar equivalents of samarium(III) nitrate hexa­hydrate as a solution in aceto­nitrile. The mixture was stirred at room temperature overnight and concentrated under reduced pressure to give an off-white solid. Crystals suitable for X-ray diffraction were grown from vapor diffusion of toluene into a solution of the 2:1 SmIII–ligand complex in aceto­nitrile.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N) for methyl­ene and amino groups, and 1.5Ueq(C,O) for methyl and water groups. C—H distances were restrained to 0.98 Å for methyl and 0.99 Å for methyl­ene H atoms, N—H distances to 0.88 Å and O—H distances to 0.89 Å. One of the methyl groups on the organic ligand (C5) has relatively large displacement ellipsoids that we attribute to large thermal motion of this terminal group. Attempts to model this disorder by assigning two atom locations for C5 or the entire eth­oxy group were unsuccessful. The O3—C4 and C4—C5 bond lengths were constrained using DFIX instructions in SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) at 1.46 and 1.54 Å, respectively, to model more accurate bond lengths. The displacement parameters of all methyl groups (C5, C7, C12 and C14) were also treated with ISOR instructions to produce more uniform ellipsoids for these terminal atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Sm2(NO3)6(C14H30N2O8P2)(H2O)]
Mr 1107.11
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.9416 (7), 11.0128 (9), 18.4635 (15)
α, β, γ (°) 81.441 (1), 83.428 (1), 86.977 (1)
V3) 1784.9 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.46
Crystal size (mm) 0.21 × 0.20 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.648, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 29697, 6597, 5801
Rint 0.034
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.09
No. of reflections 6597
No. of parameters 483
No. of restraints 26
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.12, −0.83
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

The carbamoyl­methyl­phosphine oxide (CMPO) moiety has been well studied as a chelating group for lanthanoides and actinoides. To this end, this bidentate phospho­ryl/carbonyl moiety is a component of the TRUEX process for the treatment of nuclear waste (Siddall, 1963; Horwitz et al., 1985). A handful of ligands bearing CMPO groups linked through tri- and tetra­podal caps have been reported in the literature in an attempt to increase the binding strength and selectivity toward f-elements (Arnaud-Neu et al., 1996; Peters et al., 2002; Sharova et al., 2012; Sartain et al., 2014). The title compound, [Sm2(NO3)6(C14H30N2O8P2)(H2O)], is another representative.

Structural commentary top

The asymmetric unit of the title compound contains two SmIII ions, one nine-coordinate and one 12-coordinate, two halves of the di-CMPO ligand tetra­ethyl [(ethane-1,2-diyl)bis­(aza­nediyl)bis­(2-oxo­ethane-2,1-diyl)]di­phospho­nate, six nitrate anions and one coordinating water molecule (Fig. 1). The 12-coordinate SmIII cation (Sm1) is surrounded by six bidentate nitrate ions [range of Sm—O bond lengths = 2.485 (3)–2.705 (3) Å], while the nine-coordinate SmIII cation bears another bidentate nitrate ligand, one water molecule, and two CMPO groups from separate organic ligands [range of Sm—O bond lengths = 2.340 (3)–2.625 (3) Å].

The large displacement parameters of the methyl group (C5) are likely due to large thermal motion of this terminal group (see Refinement section for more discussion on the treatment of this disorder).

The SmIII metal cations are bridged through shared bis-bidentate nitrate anions (N3 and N4), forming a corrugated chain (Fig. 2, bottom) parallel to the a axis. In this figure, bridging bis-bidentate nitrate ions are shown in pink, while nitrate ions bound only to the 12-coordinate SmIII cation are shown in purple. The nine-coordinate SmIII ions of the metal chain are also linked by the organic ligand. The organic ligand lies on an inversion center, lies along the c axis, and cross-links the metal chains (Fig. 2, top). This cross-linking results in sheets that extend parallel to the ac plane (Fig. 3).

Supra­molecular features top

The lanthanide–organic polymer is reinforced through two separate hydrogen-bonding motifs (Table 1). In the linear metal chain, each H atom (H27A and H27B) of the water molecule bound to Sm2 forms a hydrogen bond with an O atom of a nitrate group on Sm1 (Fig. 2, bottom). In the formation of the cross-linked sheets, the amide NH groups (H1 and H2) form hydrogen bonds with O atoms of two separate nitrate groups bound to Sm1 (Fig. 3). These inter­actions likely act to rigidify both the SmIII chain and the cross-linked organometallic sheets.

These metal–organic sheets are stacked along the b axis using only van der Waals forces (Fig. 4). No inter­molecular hydrogen bonds or shared chelating groups are found between the sheets in this third dimension.

Database survey top

While numerous polymeric structures of lanthanide–organic compounds can be found in the Cambridge Structural Database (CSD; Version 5.35, last update February 2014; Allen, 2002), one inter­esting feature of this structure is the bidentate bridging of two lanthanides by one shared nitrate group (Fig. 2, bottom; pink-coloured nitrate groups). At present, only four other examples (Albrecht et al., 2005; Hashimoto et al., 2000) with this bidentate bridging motif have been submitted to the CSD.

Synthesis and crystallization top

The CMPO ligand was prepared following a reported procedure (Hamadouchi et al., 1999), using ethyl­enedi­amine in place of methyl­amine. This compound was isolated as a white solid. The title metal–ligand coordination polymer was prepared by dissolving the ligand in a minimum amount of aceto­nitrile. To this solution were added 2 molar equivalents of samarium(III) nitrate hexahydrate as a solution in aceto­nitrile. The mixture was stirred at room temperature overnight and concentrated under reduced pressure to give an off-white solid. Crystals suitable for X-ray diffraction were grown from vapor diffusion of toluene into a solution of the 2:1 SmIII–ligand complex in aceto­nitrile.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N) for methyl­ene and amino groups, and 1.5Ueq(C,O) for methyl and water groups. C—H distances were restrained to 0.98 Å for methyl and 0.99 Å for methyl­ene H atoms, N—H distances to 0.88 Å and O—H distances to 0.89 Å. One of the methyl groups on the organic ligand (C5) has relatively large displacement ellipsoids that we attribute to large thermal motion of this terminal group. Attempts to model this disorder by assigning two atom locations for C5 or the entire eth­oxy group were unsuccessful. The O3—C4 and C4—C5 bond lengths were constrained using DFIX instructions in SHELXL (Sheldrick, 2008) at 1.46 and 1.54 Å, respectively, to model more accurate bond lengths. The displacement parameters of all methyl groups (C5, C7, C12 and C14) were also treated with ISOR instructions to produce more uniform ellipsoids for these terminal atoms.

Related literature top

For related literature, see: Albrecht et al. (2005); Allen (2002); Arnaud-Neu, Böhmer, Dozol, Grattner, Jakobi, Kraft, Mauprivez, Rouquette, Schwing-Weill, Simon & Vogt (1996); Hamadouchi et al. (1999); Hashimoto et al. (2000); Horwitz et al. (1985); Peters et al. (2002); Sartain et al. (2014); Sharova et al. (2012); Sheldrick (2008).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The coordination environments of the SmIII cations of the title compound, showing displacement ellipsoids at the 50% probability level and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. (Top) The Sm2 cations of each metal chain are linked to a neighboring metal chain via the di-CMPO organic ligands. Color codes: black C, light green Sm1, dark green Sm2, red O, blue N, and orange P. (Bottom) The metal chain showing alternating Sm1 and Sm2 cations, linked through bridging bis-bidentate nitrate groups shown in pink. Non-bridging nitrate groups are shown in purple. Hydrogen bonds between the water molecule on Sm2 and nitrate groups on Sm1 are shown as dashed lines.
[Figure 3] Fig. 3. Sheets formed by the cross-linking of the SmIII chains with the di-CMPO organic ligands (viewed down the b axis). Hydrogen bonds between the amide NH groups and metal bound nitrate anions are shown as dashed lines.
[Figure 4] Fig. 4. Stacking diagram for the title compound. The horizontal sheets pack vertically with only van der Waals forces.
Poly[aquabis(µ-nitrato-κ4O,O':O,O'')tetrakis(nitrato-κ2O,O'){µ4-tetraethyl [(ethane-1,2-diyl)bis(azanediyl)bis(2-oxoethane-2,1-diyl)]diphosphonate-κ2O,O'}disamarium(III)] top
Crystal data top
[Sm2(NO3)6(C14H30N2O8P2)(H2O)]Z = 2
Mr = 1107.11F(000) = 1084
Triclinic, P1Dx = 2.060 Mg m3
a = 8.9416 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0128 (9) ÅCell parameters from 9076 reflections
c = 18.4635 (15) Åθ = 2.2–25.5°
α = 81.441 (1)°µ = 3.46 mm1
β = 83.428 (1)°T = 173 K
γ = 86.977 (1)°Plate, colourless
V = 1784.9 (2) Å30.21 × 0.20 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
5801 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1010
Tmin = 0.648, Tmax = 0.745k = 1313
29697 measured reflectionsl = 2222
6597 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.031P)2 + 3.3158P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
6597 reflectionsΔρmax = 1.12 e Å3
483 parametersΔρmin = 0.83 e Å3
26 restraints
Crystal data top
[Sm2(NO3)6(C14H30N2O8P2)(H2O)]γ = 86.977 (1)°
Mr = 1107.11V = 1784.9 (2) Å3
Triclinic, P1Z = 2
a = 8.9416 (7) ÅMo Kα radiation
b = 11.0128 (9) ŵ = 3.46 mm1
c = 18.4635 (15) ÅT = 173 K
α = 81.441 (1)°0.21 × 0.20 × 0.07 mm
β = 83.428 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6597 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
5801 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.745Rint = 0.034
29697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02726 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.09Δρmax = 1.12 e Å3
6597 reflectionsΔρmin = 0.83 e Å3
483 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4236 (5)0.3466 (4)0.4463 (2)0.0310 (11)
H1A0.43640.32410.49920.037*
H1B0.51330.39120.42190.037*
C20.2843 (5)0.4287 (4)0.4379 (2)0.0251 (9)
C30.0696 (5)0.5385 (4)0.4953 (2)0.0344 (11)
H3A0.07360.59350.44760.041*
H3B0.06290.59040.53500.041*
C60.6269 (6)0.0574 (5)0.3611 (3)0.0445 (13)
H6A0.66090.01720.39280.053*
H6B0.54790.03430.33270.053*
C70.7535 (9)0.1088 (6)0.3109 (4)0.078 (2)
H7A0.72140.18740.28370.117*
H7B0.78810.05160.27610.117*
H7C0.83600.12200.33920.117*
C80.0825 (5)0.3555 (4)0.0759 (2)0.0220 (9)
H8A0.06970.33710.02620.026*
H8B0.01020.39950.09450.026*
C90.2156 (5)0.4353 (4)0.0718 (2)0.0195 (8)
C100.4285 (5)0.5407 (4)0.0025 (2)0.0254 (9)
H10A0.42050.59510.03610.030*
H10B0.43400.59320.05110.030*
C110.3455 (6)0.0601 (5)0.1246 (3)0.0476 (14)
H11A0.39930.10390.15630.057*
H11B0.42020.03500.08530.057*
C120.2811 (8)0.0504 (6)0.1690 (4)0.070 (2)
H12A0.23000.09570.13780.104*
H12B0.20850.02660.20880.104*
H12C0.36190.10290.19020.104*
C130.0892 (6)0.0737 (5)0.0967 (3)0.0457 (13)
H13A0.08790.01460.11730.055*
H13B0.02120.08410.05020.055*
C140.2433 (6)0.1154 (6)0.0820 (3)0.0557 (15)
H14A0.27970.06490.04860.084*
H14B0.24320.20160.05900.084*
H14C0.30960.10750.12840.084*
N10.2069 (4)0.4607 (4)0.49749 (18)0.0324 (9)
H10.23920.43420.54050.039*
N20.2952 (4)0.4660 (3)0.00718 (17)0.0238 (8)
H20.26660.44020.03180.029*
N30.5773 (4)0.4028 (3)0.20518 (17)0.0187 (7)
N40.0810 (4)0.4035 (3)0.30951 (18)0.0201 (7)
N50.1376 (4)0.7647 (3)0.34168 (19)0.0282 (8)
N60.5159 (4)0.6838 (3)0.3522 (2)0.0276 (8)
N70.0156 (4)0.6943 (3)0.11928 (19)0.0244 (8)
N80.4015 (4)0.7661 (3)0.11347 (19)0.0246 (8)
O10.3540 (3)0.2348 (3)0.33183 (15)0.0264 (7)
O20.2458 (3)0.4644 (3)0.37532 (14)0.0256 (7)
O40.5669 (5)0.1506 (4)0.4063 (2)0.0675 (14)
O50.1545 (3)0.2391 (3)0.20820 (15)0.0230 (6)
O60.2338 (3)0.1437 (3)0.09119 (16)0.0318 (7)
O70.0363 (3)0.1451 (3)0.14912 (17)0.0341 (8)
O80.2492 (3)0.4708 (3)0.12877 (14)0.0232 (6)
O90.4987 (3)0.3265 (3)0.18599 (15)0.0224 (6)
O100.5160 (3)0.4694 (2)0.25338 (14)0.0202 (6)
O110.7097 (3)0.4201 (3)0.18052 (15)0.0236 (6)
O120.0270 (3)0.4703 (2)0.24983 (13)0.0188 (6)
O130.0052 (3)0.3276 (3)0.34151 (15)0.0239 (6)
O140.2148 (3)0.4198 (3)0.33178 (15)0.0243 (6)
O150.0976 (3)0.6526 (3)0.33775 (15)0.0259 (7)
O160.2292 (3)0.8130 (3)0.29682 (16)0.0290 (7)
O170.0955 (5)0.8200 (4)0.3872 (2)0.0570 (11)
O180.4056 (3)0.6115 (3)0.36950 (15)0.0266 (7)
O190.5180 (3)0.7205 (3)0.28354 (15)0.0244 (6)
O200.6118 (4)0.7143 (4)0.39827 (18)0.0490 (10)
O210.0206 (3)0.7294 (3)0.18220 (15)0.0245 (6)
O220.1142 (3)0.6189 (3)0.11303 (15)0.0236 (6)
O230.0773 (4)0.7313 (3)0.06865 (17)0.0422 (9)
O240.4267 (3)0.6527 (3)0.13518 (15)0.0236 (6)
O250.3199 (3)0.8163 (3)0.15244 (16)0.0283 (7)
O260.4522 (4)0.8224 (3)0.05930 (17)0.0397 (8)
O270.2340 (3)0.6220 (2)0.24155 (15)0.0240 (6)
H27A0.19680.65250.19960.036*
H27B0.32530.65100.24040.036*
P10.40754 (14)0.21020 (11)0.40584 (6)0.0292 (3)
P20.11133 (12)0.21522 (10)0.13643 (6)0.0203 (2)
Sm10.26393 (2)0.62766 (2)0.23940 (2)0.01687 (7)
Sm20.24755 (2)0.40037 (2)0.25726 (2)0.01562 (7)
O30.3060 (5)0.1299 (4)0.4626 (2)0.0724 (14)
C40.1675 (5)0.0766 (4)0.4490 (4)0.103 (3)
H4A0.12240.12610.40710.124*
H4B0.09280.07070.49320.124*
C50.2205 (12)0.0518 (5)0.4307 (6)0.154 (4)
H5A0.20500.05740.37960.231*
H5B0.16250.11450.46400.231*
H5C0.32780.06540.43700.231*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (2)0.050 (3)0.015 (2)0.011 (2)0.0059 (18)0.010 (2)
C20.030 (2)0.030 (2)0.015 (2)0.0021 (19)0.0032 (17)0.0046 (17)
C30.044 (3)0.041 (3)0.016 (2)0.019 (2)0.001 (2)0.008 (2)
C60.046 (3)0.044 (3)0.041 (3)0.024 (3)0.002 (2)0.012 (2)
C70.100 (5)0.046 (4)0.078 (5)0.003 (4)0.026 (4)0.006 (3)
C80.023 (2)0.025 (2)0.019 (2)0.0002 (17)0.0043 (17)0.0055 (17)
C90.025 (2)0.021 (2)0.0132 (19)0.0059 (17)0.0054 (16)0.0040 (16)
C100.034 (2)0.028 (2)0.013 (2)0.0099 (19)0.0018 (17)0.0010 (17)
C110.033 (3)0.039 (3)0.067 (4)0.008 (2)0.005 (3)0.010 (3)
C120.066 (4)0.053 (4)0.076 (4)0.026 (3)0.011 (3)0.011 (3)
C130.046 (3)0.039 (3)0.060 (4)0.012 (2)0.015 (3)0.020 (3)
C140.043 (3)0.071 (4)0.055 (3)0.011 (3)0.008 (3)0.008 (3)
N10.041 (2)0.045 (2)0.0100 (17)0.0155 (19)0.0028 (16)0.0058 (16)
N20.032 (2)0.030 (2)0.0097 (16)0.0050 (16)0.0008 (14)0.0045 (14)
N30.0178 (18)0.0212 (18)0.0169 (17)0.0018 (14)0.0026 (14)0.0020 (14)
N40.0194 (18)0.0243 (18)0.0172 (17)0.0025 (15)0.0016 (14)0.0067 (14)
N50.029 (2)0.035 (2)0.0237 (19)0.0001 (17)0.0069 (16)0.0118 (17)
N60.0212 (19)0.038 (2)0.026 (2)0.0045 (17)0.0037 (16)0.0139 (17)
N70.0236 (19)0.029 (2)0.0202 (19)0.0007 (16)0.0075 (15)0.0003 (15)
N80.0249 (19)0.030 (2)0.0197 (18)0.0061 (16)0.0047 (15)0.0061 (16)
O10.0335 (17)0.0276 (16)0.0181 (15)0.0058 (13)0.0078 (13)0.0013 (12)
O20.0300 (17)0.0353 (17)0.0114 (14)0.0091 (13)0.0024 (12)0.0063 (12)
O40.066 (3)0.096 (3)0.048 (2)0.059 (3)0.030 (2)0.039 (2)
O50.0294 (16)0.0226 (15)0.0176 (14)0.0034 (12)0.0047 (12)0.0020 (12)
O60.0329 (18)0.0307 (17)0.0309 (17)0.0097 (14)0.0035 (14)0.0103 (14)
O70.0303 (18)0.045 (2)0.0297 (17)0.0168 (15)0.0025 (14)0.0122 (15)
O80.0317 (16)0.0278 (16)0.0111 (14)0.0085 (13)0.0030 (12)0.0034 (11)
O90.0246 (15)0.0231 (15)0.0209 (15)0.0056 (12)0.0008 (12)0.0085 (12)
O100.0189 (15)0.0242 (15)0.0184 (14)0.0027 (12)0.0008 (11)0.0081 (12)
O110.0175 (15)0.0278 (16)0.0243 (15)0.0019 (12)0.0047 (12)0.0046 (12)
O120.0188 (14)0.0233 (15)0.0127 (14)0.0006 (11)0.0015 (11)0.0002 (11)
O130.0219 (15)0.0302 (16)0.0172 (14)0.0083 (13)0.0031 (12)0.0021 (12)
O140.0167 (15)0.0295 (16)0.0247 (15)0.0017 (12)0.0029 (12)0.0025 (12)
O150.0267 (16)0.0304 (17)0.0229 (15)0.0063 (13)0.0092 (13)0.0095 (13)
O160.0352 (18)0.0252 (16)0.0301 (17)0.0054 (13)0.0136 (14)0.0095 (13)
O170.073 (3)0.053 (2)0.059 (3)0.011 (2)0.039 (2)0.037 (2)
O180.0227 (16)0.0375 (18)0.0201 (15)0.0086 (13)0.0052 (12)0.0070 (13)
O190.0227 (15)0.0311 (17)0.0211 (15)0.0054 (13)0.0069 (12)0.0083 (13)
O200.038 (2)0.079 (3)0.0309 (19)0.0201 (19)0.0046 (16)0.0229 (19)
O210.0263 (16)0.0304 (16)0.0186 (15)0.0029 (13)0.0064 (12)0.0060 (12)
O220.0221 (15)0.0279 (16)0.0224 (15)0.0047 (13)0.0058 (12)0.0049 (12)
O230.042 (2)0.061 (2)0.0218 (17)0.0213 (18)0.0046 (15)0.0022 (16)
O240.0274 (16)0.0247 (16)0.0206 (15)0.0006 (13)0.0091 (12)0.0041 (12)
O250.0353 (18)0.0246 (16)0.0274 (16)0.0007 (13)0.0121 (14)0.0049 (13)
O260.053 (2)0.039 (2)0.0269 (18)0.0116 (17)0.0174 (16)0.0009 (15)
O270.0232 (16)0.0266 (16)0.0242 (16)0.0004 (13)0.0107 (13)0.0038 (12)
P10.0352 (7)0.0342 (7)0.0157 (5)0.0136 (5)0.0028 (5)0.0003 (5)
P20.0215 (6)0.0216 (5)0.0182 (5)0.0023 (4)0.0007 (4)0.0058 (4)
Sm10.01713 (11)0.02063 (12)0.01388 (11)0.00136 (8)0.00375 (8)0.00494 (8)
Sm20.01417 (11)0.02308 (12)0.00966 (10)0.00120 (8)0.00118 (7)0.00321 (8)
O30.111 (4)0.068 (3)0.033 (2)0.040 (3)0.005 (2)0.012 (2)
C40.101 (7)0.116 (7)0.080 (6)0.024 (6)0.022 (5)0.011 (5)
C50.131 (7)0.134 (7)0.206 (9)0.005 (6)0.006 (7)0.064 (7)
Geometric parameters (Å, º) top
C1—H1A0.9900N5—O171.212 (5)
C1—H1B0.9900N5—Sm12.939 (3)
C1—C21.508 (6)N6—O181.274 (4)
C1—P11.794 (5)N6—O191.274 (4)
C2—N11.315 (5)N6—O201.207 (4)
C2—O21.245 (5)N6—Sm12.993 (3)
C3—C3i1.522 (10)N7—O211.273 (4)
C3—H3A0.9900N7—O221.268 (4)
C3—H3B0.9900N7—O231.214 (4)
C3—N11.460 (6)N7—Sm12.991 (4)
C6—H6A0.9900N8—O241.277 (4)
C6—H6B0.9900N8—O251.279 (4)
C6—C71.461 (8)N8—O261.216 (4)
C6—O41.461 (6)N8—Sm12.940 (3)
C7—H7A0.9800O1—P11.482 (3)
C7—H7B0.9800O1—Sm22.344 (3)
C7—H7C0.9800O2—Sm22.387 (3)
C8—H8A0.9900O4—P11.537 (4)
C8—H8B0.9900O5—P21.485 (3)
C8—C91.504 (6)O5—Sm22.340 (3)
C8—P21.792 (4)O6—P21.553 (3)
C9—N21.325 (5)O7—P21.542 (3)
C9—O81.249 (4)O8—Sm22.382 (3)
C10—C10ii1.526 (9)O9—Sm22.625 (3)
C10—H10A0.9900O10—Sm1iii2.663 (3)
C10—H10B0.9900O10—Sm22.546 (3)
C10—N21.463 (5)O11—Sm1iii2.705 (3)
C11—H11A0.9900O12—Sm12.671 (3)
C11—H11B0.9900O12—Sm22.547 (3)
C11—C121.467 (8)O13—Sm22.607 (3)
C11—O61.449 (6)O14—Sm12.692 (3)
C12—H12A0.9800O15—Sm12.528 (3)
C12—H12B0.9800O16—Sm12.485 (3)
C12—H12C0.9800O18—Sm12.570 (3)
C13—H13A0.9900O19—Sm12.540 (3)
C13—H13B0.9900O21—Sm12.546 (3)
C13—C141.472 (7)O22—Sm12.566 (3)
C13—O71.466 (5)O24—Sm12.518 (3)
C14—H14A0.9800O25—Sm12.495 (3)
C14—H14B0.9800O27—H27A0.8910
C14—H14C0.9800O27—H27B0.8889
N1—H10.8800O27—Sm22.413 (3)
N2—H20.8800P1—O31.515 (4)
N3—O91.238 (4)Sm1—O10iv2.663 (3)
N3—O101.292 (4)Sm1—O11iv2.705 (3)
N3—O111.233 (4)O3—C41.4609 (2)
N3—Sm22.995 (3)C4—H4A0.9900
N4—O121.290 (4)C4—H4B0.9900
N4—O131.238 (4)C4—C51.5409 (2)
N4—O141.232 (4)C5—H5A0.9800
N4—Sm22.986 (3)C5—H5B0.9800
N5—O151.277 (4)C5—H5C0.9800
N5—O161.272 (4)
H1A—C1—H1B108.2O3—P1—O4106.8 (3)
C2—C1—H1A109.6O5—P2—C8111.44 (18)
C2—C1—H1B109.6O5—P2—O6114.34 (17)
C2—C1—P1110.1 (3)O5—P2—O7109.63 (17)
P1—C1—H1A109.6O6—P2—C8103.35 (18)
P1—C1—H1B109.6O7—P2—C8108.30 (19)
N1—C2—C1118.6 (4)O7—P2—O6109.49 (18)
O2—C2—C1119.6 (4)O10iv—Sm1—O11iv47.58 (8)
O2—C2—N1121.8 (4)O10iv—Sm1—O1299.82 (8)
C3i—C3—H3A109.4O10iv—Sm1—O1466.48 (8)
C3i—C3—H3B109.4O12—Sm1—O11iv65.78 (8)
H3A—C3—H3B108.0O12—Sm1—O1447.61 (8)
N1—C3—C3i111.2 (5)O14—Sm1—O11iv66.19 (9)
N1—C3—H3A109.4O15—Sm1—O10iv125.69 (9)
N1—C3—H3B109.4O15—Sm1—O11iv126.11 (9)
H6A—C6—H6B108.4O15—Sm1—O1264.28 (8)
C7—C6—H6A110.1O15—Sm1—O1465.88 (9)
C7—C6—H6B110.1O15—Sm1—O1866.49 (9)
C7—C6—O4108.0 (5)O15—Sm1—O19104.37 (9)
O4—C6—H6A110.1O15—Sm1—O2169.29 (9)
O4—C6—H6B110.1O15—Sm1—O22112.67 (9)
C6—C7—H7A109.5O16—Sm1—O10iv133.60 (9)
C6—C7—H7B109.5O16—Sm1—O11iv177.10 (9)
C6—C7—H7C109.5O16—Sm1—O12111.44 (9)
H7A—C7—H7B109.5O16—Sm1—O14111.46 (9)
H7A—C7—H7C109.5O16—Sm1—O1551.01 (9)
H7B—C7—H7C109.5O16—Sm1—O1869.05 (10)
H8A—C8—H8B108.2O16—Sm1—O1969.79 (10)
C9—C8—H8A109.7O16—Sm1—O2169.86 (10)
C9—C8—H8B109.7O16—Sm1—O22115.60 (10)
C9—C8—P2109.7 (3)O16—Sm1—O24117.28 (9)
P2—C8—H8A109.7O16—Sm1—O2570.34 (9)
P2—C8—H8B109.7O18—Sm1—O10iv69.92 (9)
N2—C9—C8118.9 (3)O18—Sm1—O11iv110.60 (9)
O8—C9—C8119.8 (4)O18—Sm1—O12105.95 (8)
O8—C9—N2121.3 (4)O18—Sm1—O1463.31 (9)
C10ii—C10—H10A109.5O19—Sm1—O10iv67.58 (9)
C10ii—C10—H10B109.5O19—Sm1—O11iv112.32 (9)
H10A—C10—H10B108.1O19—Sm1—O12154.83 (8)
N2—C10—C10ii110.7 (4)O19—Sm1—O14107.65 (9)
N2—C10—H10A109.5O19—Sm1—O1849.87 (9)
N2—C10—H10B109.5O19—Sm1—O21130.76 (9)
H11A—C11—H11B107.7O19—Sm1—O22134.81 (9)
C12—C11—H11A108.9O21—Sm1—O10iv156.23 (8)
C12—C11—H11B108.9O21—Sm1—O11iv109.21 (8)
O6—C11—H11A108.9O21—Sm1—O1268.54 (9)
O6—C11—H11B108.9O21—Sm1—O14112.57 (9)
O6—C11—C12113.4 (5)O21—Sm1—O18132.34 (9)
C11—C12—H12A109.5O21—Sm1—O2249.75 (9)
C11—C12—H12B109.5O22—Sm1—O10iv107.16 (8)
C11—C12—H12C109.5O22—Sm1—O11iv64.52 (8)
H12A—C12—H12B109.5O22—Sm1—O1268.75 (8)
H12A—C12—H12C109.5O22—Sm1—O14110.52 (9)
H12B—C12—H12C109.5O22—Sm1—O18173.74 (9)
H13A—C13—H13B108.2O24—Sm1—O10iv64.44 (9)
C14—C13—H13A109.7O24—Sm1—O11iv65.55 (9)
C14—C13—H13B109.7O24—Sm1—O12124.03 (8)
O7—C13—H13A109.7O24—Sm1—O14126.46 (9)
O7—C13—H13B109.7O24—Sm1—O15167.55 (9)
O7—C13—C14109.9 (4)O24—Sm1—O18115.68 (9)
C13—C14—H14A109.5O24—Sm1—O1971.63 (9)
C13—C14—H14B109.5O24—Sm1—O21103.97 (9)
C13—C14—H14C109.5O24—Sm1—O2266.59 (9)
H14A—C14—H14B109.5O25—Sm1—O10iv110.95 (9)
H14A—C14—H14C109.5O25—Sm1—O11iv112.06 (9)
H14B—C14—H14C109.5O25—Sm1—O12133.87 (9)
C2—N1—C3122.8 (4)O25—Sm1—O14177.43 (9)
C2—N1—H1118.6O25—Sm1—O15116.50 (9)
C3—N1—H1118.6O25—Sm1—O18116.35 (10)
C9—N2—C10123.2 (3)O25—Sm1—O1971.06 (10)
C9—N2—H2118.4O25—Sm1—O2169.65 (10)
C10—N2—H2118.4O25—Sm1—O2269.77 (9)
O9—N3—O10117.9 (3)O25—Sm1—O2451.13 (9)
O9—N3—Sm260.84 (18)N4—Sm2—N3178.81 (9)
O10—N3—Sm257.50 (17)O1—Sm2—N375.33 (10)
O11—N3—O9124.0 (3)O1—Sm2—N4105.41 (10)
O11—N3—O10118.1 (3)O1—Sm2—O274.17 (10)
O11—N3—Sm2171.5 (3)O1—Sm2—O8136.97 (10)
O12—N4—Sm257.91 (17)O1—Sm2—O971.48 (9)
O13—N4—O12117.9 (3)O1—Sm2—O1078.85 (10)
O13—N4—Sm260.43 (19)O1—Sm2—O12130.32 (9)
O14—N4—O12118.2 (3)O1—Sm2—O1381.06 (9)
O14—N4—O13123.9 (3)O1—Sm2—O27139.51 (9)
O14—N4—Sm2172.1 (3)O2—Sm2—N3101.03 (9)
O15—N5—Sm158.92 (18)O2—Sm2—N478.34 (9)
O16—N5—O15115.8 (3)O2—Sm2—O9121.05 (9)
O16—N5—Sm156.92 (18)O2—Sm2—O1077.94 (9)
O17—N5—O15122.0 (4)O2—Sm2—O1291.77 (9)
O17—N5—O16122.1 (4)O2—Sm2—O1369.90 (10)
O17—N5—Sm1175.1 (3)O2—Sm2—O2771.63 (9)
O18—N6—O19115.4 (3)O5—Sm2—N3105.48 (10)
O18—N6—Sm158.56 (19)O5—Sm2—N475.60 (9)
O19—N6—Sm157.19 (18)O5—Sm2—O181.18 (10)
O20—N6—O18121.7 (4)O5—Sm2—O2137.54 (10)
O20—N6—O19122.9 (4)O5—Sm2—O874.70 (9)
O20—N6—Sm1175.0 (3)O5—Sm2—O981.16 (9)
O21—N7—Sm157.56 (19)O5—Sm2—O10130.47 (9)
O22—N7—O21115.6 (3)O5—Sm2—O1278.43 (9)
O22—N7—Sm158.44 (19)O5—Sm2—O1372.55 (9)
O23—N7—O21121.9 (4)O5—Sm2—O27139.29 (9)
O23—N7—O22122.4 (3)O8—Sm2—N377.51 (9)
O23—N7—Sm1173.9 (3)O8—Sm2—N4102.40 (9)
O24—N8—O25115.6 (3)O8—Sm2—O2144.24 (10)
O24—N8—Sm158.38 (18)O8—Sm2—O970.00 (9)
O25—N8—Sm157.38 (19)O8—Sm2—O1090.33 (9)
O26—N8—O24121.9 (4)O8—Sm2—O1278.92 (9)
O26—N8—O25122.4 (4)O8—Sm2—O13122.96 (9)
O26—N8—Sm1176.9 (3)O8—Sm2—O2772.66 (9)
P1—O1—Sm2137.71 (18)O9—Sm2—N324.32 (8)
C2—O2—Sm2141.6 (3)O9—Sm2—N4156.74 (9)
C6—O4—P1124.7 (4)O10—Sm2—N325.35 (8)
P2—O5—Sm2138.15 (17)O10—Sm2—N4153.65 (8)
C11—O6—P2123.2 (3)O10—Sm2—O949.56 (8)
C13—O7—P2125.0 (3)O10—Sm2—O12145.44 (9)
C9—O8—Sm2139.8 (3)O10—Sm2—O13145.66 (8)
N3—O9—Sm294.8 (2)O12—Sm2—N3154.01 (8)
N3—O10—Sm1iii96.9 (2)O12—Sm2—N425.41 (8)
N3—O10—Sm297.1 (2)O12—Sm2—O9146.35 (8)
Sm2—O10—Sm1iii156.84 (11)O12—Sm2—O1349.69 (8)
N3—O11—Sm1iii96.5 (2)O13—Sm2—N3156.28 (8)
N4—O12—Sm196.29 (19)O13—Sm2—N424.38 (8)
N4—O12—Sm296.7 (2)O13—Sm2—O9144.47 (9)
Sm2—O12—Sm1157.45 (12)O27—Sm2—N390.54 (9)
N4—O13—Sm295.2 (2)O27—Sm2—N488.30 (9)
N4—O14—Sm196.8 (2)O27—Sm2—O9109.18 (9)
N5—O15—Sm195.4 (2)O27—Sm2—O1073.42 (9)
N5—O16—Sm197.7 (2)O27—Sm2—O1272.02 (9)
N6—O18—Sm196.4 (2)O27—Sm2—O13106.34 (9)
N6—O19—Sm197.9 (2)C4—O3—P1125.4 (4)
N7—O21—Sm197.5 (2)O3—C4—H4A111.1
N7—O22—Sm196.7 (2)O3—C4—H4B111.1
N8—O24—Sm196.0 (2)O3—C4—C5103.4 (5)
N8—O25—Sm197.0 (2)H4A—C4—H4B109.0
H27A—O27—H27B108.3C5—C4—H4A111.1
Sm2—O27—H27A110.9C5—C4—H4B111.1
Sm2—O27—H27B110.2C4—C5—H5A109.5
O1—P1—C1113.43 (19)C4—C5—H5B109.5
O1—P1—O4113.95 (19)C4—C5—H5C109.5
O1—P1—O3114.3 (2)H5A—C5—H5B109.5
O4—P1—C1102.9 (2)H5A—C5—H5C109.5
O3—P1—C1104.4 (2)H5B—C5—H5C109.5
C1—C2—N1—C3179.2 (4)O11—N3—O10—Sm2171.6 (3)
C1—C2—O2—Sm233.1 (7)O12—N4—O13—Sm27.0 (3)
C1—P1—O3—C4125.6 (4)O12—N4—O14—Sm110.4 (3)
C2—C1—P1—O146.3 (4)O13—N4—O12—Sm1168.7 (3)
C2—C1—P1—O4169.9 (3)O13—N4—O12—Sm27.1 (3)
C2—C1—P1—O378.7 (4)O13—N4—O14—Sm1168.7 (3)
C3i—C3—N1—C292.6 (6)O14—N4—O12—Sm110.5 (3)
C6—O4—P1—C1161.4 (5)O14—N4—O12—Sm2172.0 (3)
C6—O4—P1—O138.2 (6)O14—N4—O13—Sm2172.2 (3)
C6—O4—P1—O388.9 (5)O15—N5—O16—Sm12.9 (4)
C7—C6—O4—P1116.4 (6)O16—N5—O15—Sm12.8 (4)
C8—C9—N2—C10178.6 (4)O17—N5—O15—Sm1174.4 (4)
C8—C9—O8—Sm234.7 (6)O17—N5—O16—Sm1174.3 (4)
C9—C8—P2—O550.5 (3)O18—N6—O19—Sm16.4 (4)
C9—C8—P2—O672.7 (3)O19—N6—O18—Sm16.3 (4)
C9—C8—P2—O7171.2 (3)O20—N6—O18—Sm1174.2 (4)
C10ii—C10—N2—C993.4 (5)O20—N6—O19—Sm1174.1 (4)
C11—O6—P2—C8148.3 (4)O21—N7—O22—Sm16.8 (3)
C11—O6—P2—O527.0 (4)O22—N7—O21—Sm16.9 (3)
C11—O6—P2—O796.5 (4)O23—N7—O21—Sm1172.8 (3)
C12—C11—O6—P266.9 (6)O23—N7—O22—Sm1172.9 (4)
C13—O7—P2—C877.8 (4)O24—N8—O25—Sm13.8 (3)
C13—O7—P2—O5160.4 (4)O25—N8—O24—Sm13.7 (3)
C13—O7—P2—O634.2 (4)O26—N8—O24—Sm1176.4 (3)
C14—C13—O7—P2126.2 (4)O26—N8—O25—Sm1176.4 (3)
N1—C2—O2—Sm2147.0 (4)P1—C1—C2—N1122.9 (4)
N2—C9—O8—Sm2145.0 (3)P1—C1—C2—O257.2 (5)
O1—P1—O3—C41.1 (5)P1—O3—C4—C593.5 (7)
O2—C2—N1—C30.9 (7)P2—C8—C9—N2119.1 (4)
O4—P1—O3—C4125.8 (4)P2—C8—C9—O860.7 (4)
O8—C9—N2—C101.2 (6)Sm2—N3—O10—Sm1iii161.56 (15)
O9—N3—O10—Sm1iii169.1 (3)Sm2—N4—O12—Sm1161.52 (15)
O9—N3—O10—Sm27.6 (3)Sm2—O1—P1—C111.9 (3)
O9—N3—O11—Sm1iii169.2 (3)Sm2—O1—P1—O4129.3 (3)
O10—N3—O9—Sm27.3 (3)Sm2—O1—P1—O3107.6 (3)
O10—N3—O11—Sm1iii9.9 (3)Sm2—O5—P2—C817.6 (3)
O11—N3—O9—Sm2171.8 (3)Sm2—O5—P2—O699.2 (3)
O11—N3—O10—Sm1iii10.1 (3)Sm2—O5—P2—O7137.4 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O27—H27A···O210.892.122.772 (4)130
O27—H27B···O19iii0.891.932.755 (4)153
N1—H1···O15i0.882.533.176 (4)131
N1—H1···O18i0.882.343.176 (4)159
N2—H2···O22v0.882.313.164 (4)161
N2—H2···O24v0.882.563.186 (4)129
Symmetry codes: (i) x, y+1, z+1; (iii) x+1, y, z; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O27—H27A···O210.892.122.772 (4)129.5
O27—H27B···O19i0.891.932.755 (4)153.3
N1—H1···O15ii0.882.533.176 (4)130.9
N1—H1···O18ii0.882.343.176 (4)159.1
N2—H2···O22iii0.882.313.164 (4)161.0
N2—H2···O24iii0.882.563.186 (4)129.0
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Sm2(NO3)6(C14H30N2O8P2)(H2O)]
Mr1107.11
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.9416 (7), 11.0128 (9), 18.4635 (15)
α, β, γ (°)81.441 (1), 83.428 (1), 86.977 (1)
V3)1784.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.46
Crystal size (mm)0.21 × 0.20 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.648, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
29697, 6597, 5801
Rint0.034
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.09
No. of reflections6597
No. of parameters483
No. of restraints26
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.83

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank GVSU for financial support (Weldon Fund, CSCE, OURS) and the NSF for student support (JAS, REU-1062944). The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds. We are also grateful to Professor LaDuca (MSU) for fruitful conversations and helpful advice.

References

First citationAlbrecht, M., Osetska, O. & Fröhlich, R. (2005). Dalton Trans. pp. 3757–3762.  Web of Science CSD CrossRef Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArnaud-Neu, F., Böhmer, V., Dozol, J.-F., Grattner, C., Jakobi, R. A., Kraft, D., Mauprivez, O., Rouquette, H., Schwing-Weill, M.-J., Simon, N. & Vogt, W. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1175–1182.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHamadouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50–59.  Web of Science PubMed Google Scholar
First citationHashimoto, M., Takata, M. & Yagasaki, A. (2000). Inorg. Chem. 39, 3712–3714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHorwitz, E. P., Kalina, D. C., Diamond, H., Vandegrift, G. F. & Schulz, W. W. (1985). Solvent Extr. Ion Exch. 3, 75–109.  CAS Google Scholar
First citationPeters, M. W., Werner, E. J. & Scott, M. J. (2002). Inorg. Chem. 41, 1707–1716.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSartain, H. T., Lawrence, C., McGraw, S. N., Werner, E. J. & Biros, S. M. (2014). Inorg. Chim. Acta. In preparation.  Google Scholar
First citationSharova, E. V., Artyushin, O. I., Turanov, A. N., Karandashev, V. K., Meshkova, S. B., Topilova, Z. M. & Odinets, I. L. (2012). Cent. Eur. J. Chem. 10, 146–156.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddall, T. H. III (1963). J. Inorg. Nucl. Chem. 25, 883–892.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 188-191
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds