metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages m349-m350

Crystal structure of tetra­kis­(μ-n-butyrato-κ2O:O′)bis­­[chlorido­rhenium(III)](ReRe)

aDepartment of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, Nova Scotia, B2G 2W5, Canada, and bDepartment of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
*Correspondence e-mail: maquino@stfx.ca

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 August 2014; accepted 9 September 2014; online 13 September 2014)

With an inversion center at the mid-point of the two ReIII atoms, the title compound, [Re2Cl2{O2C(CH2)2CH3}4], exhibits a paddle-wheel or lantern-type structure with four n-butyrate groups bridging two ReIII atoms in a syn–syn fashion. The axial chloride ligands together with the Re—Re quadruple bond [2.2330 (3) Å] complete an essentially octa­hedral geometry around each ReIII atom. There is little distortion, with an Re—Re—Cl bond angle of 176.18 (3)° and typical cis-O—Re—O bond angles ranging from 89.39 (11) to 90.68 (11)°. There are two mol­ecules in the unit cell, and no significant inter­molecular inter­actions were noticed between mol­ecules in the crystal.

1. Related literature

For the synthesis and structure of five related structures, see: Taha & Wilkinson (1963[Taha, F. & Wilkinson, G. (1963). J. Chem. Soc. pp. 5406-5412.]); Calvo et al. (1969[Calvo, C., Jayadevan, N. C. & Lock, C. J. L. (1969). Can. J. Chem. 47, 4213-4220.]); Collins et al. (1979[Collins, D. M., Cotton, F. A. & Gage, L. D. (1979). Inorg. Chem. 18, 1712-1715.]); Lydon et al. (2003[Lydon, D. P., Spalding, T. R. & Gallagher, J. F. (2003). Polyhedron, 22, 1281-1287.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Re2(C4H7O2)4Cl2]

  • Mr = 791.68

  • Monoclinic, P 21 /n

  • a = 6.7292 (4) Å

  • b = 12.0367 (8) Å

  • c = 14.6737 (9) Å

  • β = 99.262 (1)°

  • V = 1173.0 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.57 mm−1

  • T = 180 K

  • 0.30 × 0.06 × 0.06 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.144, Tmax = 0.570

  • 4625 measured reflections

  • 2277 independent reflections

  • 2077 reflections with I > 2σ(I)

  • Rint = 0.016

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.049

  • S = 1.06

  • 2277 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −1.32 e Å−3

Table 1
Selected bond lengths (Å)

Re1—O2i 2.008 (3)
Re1—O3 2.019 (2)
Re1—O4i 2.025 (2)
Re1—O1 2.026 (3)
Re1—Cl1 2.5135 (9)
Symmetry code: (i) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Synthesis and crystallization top

This compund was prepared following a method analogous to the procedure used by Taha & Wilkinson (1963). Rhenium trichloride (1.25 g, 4.27 mmol) was reacted with 13 ml of butyric acid and 0.5 ml of butyric anhydride at 423 K, with stirring, under a steady stream of nitro­gen for five days. The dark solution was removed from heat and allowed to cool overnight. The brown product was collected via suction filtration and washed with a 50 ml portion of petroleum ether. The product was dried in vacuo for 24 hours and then re-crystallized from di­chloro­methane. Yield = 0.481g, (56.9 %).

Refinement top

All H atoms were placed in geometrically calculated positions, with C—H = 0.99 Å (CH2), and 0.98 Å (CH3), and refined as riding atoms, with Uiso(H) = 1.5Ueq(C) (CH3) or 1.2Ueq(C) (CH2).

Related literature top

For the synthesis and structure of five related structures, see: Taha & Wilkinson (1963); Calvo et al. (1969); Collins et al. (1979); Lydon et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are drawn as small spheres of arbitrary radius. [Symmetry code i) -x + 2, -y + 1, -z + 2.]
[Figure 2] Fig. 2. The packing diagram for the title compound viewed along [100].
Tetrakis(µ-n-butyrato-κ2O:O')bis[chloridorhenium(III)](ReRe) top
Crystal data top
[Re2(C4H7O2)4Cl2]F(000) = 744
Mr = 791.68Dx = 2.241 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3188 reflections
a = 6.7292 (4) Åθ = 3.7–27.1°
b = 12.0367 (8) ŵ = 10.57 mm1
c = 14.6737 (9) ÅT = 180 K
β = 99.262 (1)°Needle, orange
V = 1173.0 (1) Å30.30 × 0.06 × 0.06 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2277 independent reflections
Radiation source: fine-focus sealed tube2077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26.0°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 87
Tmin = 0.144, Tmax = 0.570k = 1214
4625 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.2053P]
where P = (Fo2 + 2Fc2)/3
2277 reflections(Δ/σ)max = 0.005
129 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 1.32 e Å3
Crystal data top
[Re2(C4H7O2)4Cl2]V = 1173.0 (1) Å3
Mr = 791.68Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.7292 (4) ŵ = 10.57 mm1
b = 12.0367 (8) ÅT = 180 K
c = 14.6737 (9) Å0.30 × 0.06 × 0.06 mm
β = 99.262 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2277 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
2077 reflections with I > 2σ(I)
Tmin = 0.144, Tmax = 0.570Rint = 0.016
4625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.06Δρmax = 0.90 e Å3
2277 reflectionsΔρmin = 1.32 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.91824 (2)0.559012 (11)1.039538 (10)0.02050 (7)
Cl10.71261 (17)0.68750 (8)1.12219 (8)0.0397 (3)
O10.7020 (4)0.57529 (19)0.92707 (18)0.0254 (6)
O20.8665 (4)0.45750 (19)0.84940 (19)0.0256 (6)
O30.7697 (4)0.42938 (19)1.08438 (19)0.0243 (6)
O40.9312 (4)0.31123 (19)1.00486 (18)0.0241 (6)
C10.7167 (6)0.5223 (3)0.8532 (3)0.0253 (8)
C20.5652 (6)0.5386 (3)0.7691 (3)0.0308 (9)
H2A0.45650.58770.78380.037*
H2B0.50450.46610.74860.037*
C30.6593 (7)0.5899 (4)0.6916 (3)0.0451 (12)
H3A0.75610.53660.67190.054*
H3B0.55260.60400.63800.054*
C40.7670 (9)0.6974 (5)0.7202 (5)0.083 (2)
H4A0.80920.73250.66620.125*
H4B0.88570.68210.76660.125*
H4C0.67610.74740.74640.125*
C50.8023 (6)0.3306 (3)1.0595 (3)0.0247 (8)
C60.6899 (6)0.2376 (3)1.0943 (3)0.0338 (10)
H6A0.54530.24641.06880.041*
H6B0.70370.24451.16230.041*
C70.7539 (7)0.1221 (3)1.0718 (3)0.0333 (9)
H7A0.89780.11111.09750.040*
H7B0.73730.11261.00400.040*
C80.6260 (8)0.0359 (3)1.1127 (3)0.0426 (11)
H8A0.66740.03891.09740.064*
H8B0.48360.04701.08710.064*
H8C0.64490.04451.18000.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02322 (11)0.02022 (10)0.02042 (10)0.00156 (6)0.01068 (7)0.00100 (5)
Cl10.0449 (6)0.0377 (5)0.0419 (6)0.0105 (5)0.0232 (5)0.0039 (5)
O10.0283 (15)0.0278 (13)0.0217 (14)0.0015 (11)0.0092 (12)0.0030 (10)
O20.0294 (16)0.0275 (13)0.0222 (14)0.0013 (11)0.0108 (12)0.0003 (10)
O30.0256 (15)0.0252 (13)0.0243 (14)0.0007 (10)0.0105 (12)0.0029 (10)
O40.0267 (14)0.0235 (13)0.0238 (13)0.0025 (11)0.0086 (11)0.0006 (11)
C10.027 (2)0.0276 (18)0.024 (2)0.0031 (16)0.0112 (17)0.0024 (15)
C20.029 (2)0.041 (2)0.024 (2)0.0023 (18)0.0081 (17)0.0013 (17)
C30.034 (3)0.071 (3)0.033 (2)0.015 (2)0.012 (2)0.021 (2)
C40.063 (4)0.095 (5)0.084 (5)0.027 (4)0.010 (3)0.060 (4)
C50.0217 (19)0.0284 (19)0.0246 (19)0.0020 (16)0.0058 (15)0.0014 (15)
C60.035 (2)0.031 (2)0.039 (2)0.0015 (18)0.0177 (19)0.0082 (17)
C70.038 (2)0.025 (2)0.038 (2)0.0064 (17)0.011 (2)0.0019 (17)
C80.048 (3)0.031 (2)0.049 (3)0.012 (2)0.012 (2)0.0063 (19)
Geometric parameters (Å, º) top
Re1—O2i2.008 (3)C3—C41.509 (7)
Re1—O32.019 (2)C3—H3A0.9900
Re1—O4i2.025 (2)C3—H3B0.9900
Re1—O12.026 (3)C4—H4A0.9800
Re1—Re1i2.2330 (3)C4—H4B0.9800
Re1—Cl12.5135 (9)C4—H4C0.9800
O1—C11.275 (5)C5—C61.487 (5)
O2—C11.283 (4)C6—C71.508 (5)
O2—Re1i2.008 (3)C6—H6A0.9900
O3—C51.273 (4)C6—H6B0.9900
O4—C51.294 (4)C7—C81.531 (5)
O4—Re1i2.025 (2)C7—H7A0.9900
C1—C21.482 (6)C7—H7B0.9900
C2—C31.520 (6)C8—H8A0.9800
C2—H2A0.9900C8—H8B0.9800
C2—H2B0.9900C8—H8C0.9800
O2i—Re1—O389.39 (11)C4—C3—H3B109.2
O2i—Re1—O4i90.26 (10)C2—C3—H3B109.2
O3—Re1—O4i179.64 (11)H3A—C3—H3B107.9
O2i—Re1—O1179.70 (10)C3—C4—H4A109.5
O3—Re1—O190.68 (11)C3—C4—H4B109.5
O4i—Re1—O189.67 (10)H4A—C4—H4B109.5
O2i—Re1—Re1i90.42 (7)C3—C4—H4C109.5
O3—Re1—Re1i89.36 (7)H4A—C4—H4C109.5
O4i—Re1—Re1i90.55 (7)H4B—C4—H4C109.5
O1—Re1—Re1i89.29 (7)O3—C5—O4120.7 (3)
O2i—Re1—Cl192.90 (8)O3—C5—C6118.9 (3)
O3—Re1—Cl188.76 (8)O4—C5—C6120.4 (3)
O4i—Re1—Cl191.34 (7)C5—C6—C7116.1 (3)
O1—Re1—Cl187.40 (8)C5—C6—H6A108.3
Re1i—Re1—Cl1176.18 (3)C7—C6—H6A108.3
C1—O1—Re1120.0 (2)C5—C6—H6B108.3
C1—O2—Re1i119.6 (2)C7—C6—H6B108.3
C5—O3—Re1120.7 (2)H6A—C6—H6B107.4
C5—O4—Re1i118.7 (2)C6—C7—C8109.9 (4)
O1—C1—O2120.7 (4)C6—C7—H7A109.7
O1—C1—C2120.3 (3)C8—C7—H7A109.7
O2—C1—C2119.0 (3)C6—C7—H7B109.7
C1—C2—C3111.3 (4)C8—C7—H7B109.7
C1—C2—H2A109.4H7A—C7—H7B108.2
C3—C2—H2A109.4C7—C8—H8A109.5
C1—C2—H2B109.4C7—C8—H8B109.5
C3—C2—H2B109.4H8A—C8—H8B109.5
H2A—C2—H2B108.0C7—C8—H8C109.5
C4—C3—C2112.3 (4)H8A—C8—H8C109.5
C4—C3—H3A109.2H8B—C8—H8C109.5
C2—C3—H3A109.2
O2i—Re1—O1—C113 (19)Re1i—O2—C1—O10.9 (5)
O3—Re1—O1—C189.7 (3)Re1i—O2—C1—C2176.6 (2)
O4i—Re1—O1—C190.2 (3)O1—C1—C2—C3115.7 (4)
Re1i—Re1—O1—C10.3 (3)O2—C1—C2—C361.7 (5)
Cl1—Re1—O1—C1178.4 (3)C1—C2—C3—C455.2 (5)
O2i—Re1—O3—C590.7 (3)Re1—O3—C5—O40.1 (5)
O4i—Re1—O3—C577 (17)Re1—O3—C5—C6179.9 (3)
O1—Re1—O3—C589.0 (3)Re1i—O4—C5—O30.5 (5)
Re1i—Re1—O3—C50.3 (3)Re1i—O4—C5—C6179.5 (3)
Cl1—Re1—O3—C5176.4 (3)O3—C5—C6—C7172.7 (4)
Re1—O1—C1—O20.8 (5)O4—C5—C6—C77.2 (6)
Re1—O1—C1—C2176.6 (2)C5—C6—C7—C8179.5 (4)
Symmetry code: (i) x+2, y+1, z+2.
Selected bond lengths (Å) top
Re1—O2i2.008 (3)Re1—O12.026 (3)
Re1—O32.019 (2)Re1—Cl12.5135 (9)
Re1—O4i2.025 (2)
Symmetry code: (i) x+2, y+1, z+2.
 

Acknowledgements

The authors thank NSERC (Canada) for financial support.

References

First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalvo, C., Jayadevan, N. C. & Lock, C. J. L. (1969). Can. J. Chem. 47, 4213–4220.  CrossRef CAS Web of Science Google Scholar
First citationCollins, D. M., Cotton, F. A. & Gage, L. D. (1979). Inorg. Chem. 18, 1712–1715.  CSD CrossRef CAS Web of Science Google Scholar
First citationLydon, D. P., Spalding, T. R. & Gallagher, J. F. (2003). Polyhedron, 22, 1281–1287.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, F. & Wilkinson, G. (1963). J. Chem. Soc. pp. 5406–5412.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages m349-m350
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds