research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 235-237

Crystal structure of tris­­(ethyl­enedi­ammonium) hexa­sulfatopraseodymium(III) hexa­hydrate

aInstitut für Kristallographie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany
*Correspondence e-mail: peter.held@uni-koeln.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 September 2014; accepted 15 September 2014; online 20 September 2014)

In the title salt, (C2H10N2)3[Pr2(SO4)6]·6H2O, the PrIII cation is surrounded ninefold by five sulfate groups (two monodentate and three chelating) and by one water mol­ecule [range of Pr—O bond lengths 2.383 (3) to 2.582 (3) Å]. The [Pr(SO4)5(H2O)] groups are arranged in sheets parallel to (010). Two crystal water mol­ecules and two ethyl­enedi­ammonium cations (one with point group symmetry -1) connect the sheets via O—H⋯O and N—H⋯O hydrogen bonds from weak up to medium strength into a three-dimensional framework structure.

1. Chemical context

In the course of a systematic search for new `double salts' of simple secondary amines and mono- or divalent cations of various inorganic acids, the structures of (C2H10N2)[Li2(SO4)2] and (C2H8N)[Cu(HSO4)(SO4)(H2O)4] have been described previously (Held, 2003[Held, P. (2003). Z. Kristallogr. New Cryst. Struct. 218, 13-14.], 2014[Held, P. (2014). Acta Cryst. E70, m119.]). In continuation of these studies, lithium was replaced by trivalent praseodymium, yielding crystals of the title compound with composition (C2H10N2)3[Pr2(SO4)6]·6H2O.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains three (SO4)2− anions, one and a half [NH2(CH3)]2+ cations (the other half being generated by inversion symmetry), one Pr3+ cation as well as three water mol­ecules (Fig. 1[link]). The Pr3+ cation is surrounded by nine O atoms from five sulfate groups, two of which are monodentately bonding and three chelating, and of one water mol­ecule. The averaged Pr—O distance in the resulting distorted monocapped square-anti­prism, [Pr(SO4)5(H2O)], is 2.52 (7) Å. Praseodymium reaches an overall bond-valence sum (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) of 3.23 valence units. The S—O distances are nearly equal [average distance 1.479 (13) Å], however, the O—S—O angles vary [average bond angle 109.48 (2.05)°] clearly. One sulfate group (S2) inter­connects two [PrO9] polyhedra via two common edges parallel to [001], while another sulfate group (S3) connects via a common edge and a common vertex parallel to [100], leading to the formation of sheets parallel to (010).

[Figure 1]
Figure 1
The mol­ecular entities in the structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y + [{1\over 2}], z + [{1\over 2}]; (ii) x + 1, y, z; (iii) −x, −y, −z + 1].

3. Supra­molecular features

Hydrogen bonds of medium strength involving water mol­ecules as donor groups and O atoms of the sulfate anions as acceptor groups inter­connect neighbouring [Pr(SO4)5(H2O)] units. Together with relatively weaker N—H⋯O hydrogen bonds of the ammonium groups atoms to sulfate anions, a three-dimensional framework is formed (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯O32 0.72 (8) 2.53 (8) 2.974 (6) 121 (7)
O1—H12⋯O13 0.78 (6) 1.92 (6) 2.674 (5) 162 (6)
O2—H21⋯O3 1.00 (12) 1.89 (12) 2.858 (7) 163 (9)
O2—H22⋯O21i 0.77 (8) 2.29 (8) 2.905 (6) 137 (7)
O3—H31⋯O11ii 0.87 (7) 1.95 (8) 2.795 (5) 165 (7)
O3—H32⋯O12iii 0.80 (8) 2.00 (8) 2.766 (5) 162 (8)
N1—H1A⋯O33 0.87 (8) 2.48 (8) 3.291 (5) 155 (6)
N1—H1B⋯O3 0.88 (7) 1.92 (7) 2.758 (6) 158 (6)
N1—H1C⋯O13iv 0.99 (9) 1.85 (9) 2.841 (6) 176 (7)
N2—H2A⋯O24 0.76 (7) 2.21 (7) 2.976 (5) 177 (7)
N2—H2B⋯O22v 0.83 (8) 2.17 (8) 2.967 (6) 162 (7)
N2—H2C⋯O34vi 0.94 (7) 2.20 (6) 3.020 (5) 146 (5)
N3—H3A⋯O2vii 0.85 (7) 2.12 (7) 2.901 (8) 153 (6)
N3—H3B⋯O11 0.90 (7) 1.95 (8) 2.847 (6) 175 (6)
N3—H3C⋯O33 0.87 (7) 2.20 (7) 3.066 (5) 173 (6)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z+1; (v) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x, y, z-1; (vii) x-1, y, z-1.
[Figure 2]
Figure 2
(100)-projection of the crystal structure of the title compound. Hydrogen bonds are shown as light-grey dashed lines. Colour scheme: (SO4) tetra­hedra (yellow), monocapped anti­prism [PrO9] (red), O (blue), N (green), C (grey), H (white).

4. Synthesis and crystallization

The title compound was obtained by reaction of an aqueous solution of praseodymium(III) sulfate with ethyl­enedi­amine and sulfuric acid (18 mol/l) in a stoichiometric ratio 1:1:2. The title compound crystallized by slow evaporation of the solvent at room temperature in form of light-green crystals with dimensions up to 3 mm within a few weeks.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were clearly discernible from difference Fourier maps. Methyl­ene H atoms were refined with a riding-model constraint, using a C—H distance of 0.97 Å and Uiso(H) = 1.2Ueq(C). Ammonium and water H atoms were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula (C2H10N2)3[Pr2(SO4)6]·6H2O
Mr 1152.70
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 6.6174 (8), 26.668 (4), 10.0264 (13)
β (°) 104.446 (15)
V3) 1713.4 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.29
Crystal size (mm) 0.22 × 0.21 × 0.20
 
Data collection
Diffractometer Stoe IPDS-II
Absorption correction Multi-scan (X-SHAPE and X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.491, 0.620
No. of measured, independent and observed [I > 2σ(I)] reflections 14346, 3922, 3091
Rint 0.044
(sin θ/λ)max−1) 0.662
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 0.97
No. of reflections 3923
No. of parameters 311
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.72, −1.08
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ATOMS (Dowty, 2002[Dowty, E. (2002). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

In the course of a systematic search for new `double salts' of simple secondary amines and mono- or divalent cations of various inorganic acids, the structures of (C2N2H10)[Li2(SO4)2] and (C2H8N)[Cu(HSO4)(SO4)(H2O)4] have been described previously (Held, 2003, 2014). In continuation of these studies, lithium was replaced by trivalent praseodymium, yielding crystals of the title compound with composition (C2H10N2)3[Pr2(SO4)6]·6H2O.

Structural commentary top

The asymmetric unit of the title compound contains three (SO4)2- anions, one and a half [NH2(CH3)]2+ cations (the other half being generated by inversion symmetry), one Pr3+ cation as well as three water molecules (Fig. 1). The Pr3+ cation is surrounded by nine O atoms from five sulfate groups, two of which are monodentately bonding and three chelating, and of one water molecule. The averaged Pr—O distance in the resulting distorted monocapped square-anti­prism, [Pr(SO4)5(H2O)], is 2.52 (7) Å. Praseodymium reaches an overall bond-valence sum (Brown & Altermatt, 1985) of 3.23 valence units. The S—O distances are nearly equal [average distance 1.479 (13) Å], however, the O—S—O angles vary [average bond angle 109.48 (2.05)°] clearly. One sulfate group (S2) inter­connects two [PrO9] polyhedra via two common edges parallel to [001], while another sulfate group (S3) connects via a common edge and a common vertex parallel to [100], leading to the formation of sheets parallel to (010).

Supra­molecular features top

Hydrogen bonds of medium strength involving water molecules as donor groups and O atoms of the sulfate anions as acceptor groups inter­connect neighbouring [Pr(SO4)5(H2O)] units. Together with relatively weaker N—H···O hydrogen bonds of the ammonium groups atoms to sulfate anions, a three-dimensional framework is formed (Table 1, Fig. 2).

Synthesis and crystallization top

The title compound was obtained by reaction of an aqueous solution of praseodymium(III) sulfate with ethyl­enedi­amine and sulfuric acid (18 mol/l) in a stoichiometric ratio 1:1:2. The title compound crystallized by slow evaporation of the solvent at room temperature in form of light-green crystals with dimensions up to 3 mm within a few weeks.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were clearly discernible from difference Fourier maps. Methyl­ene H atoms were refined with a riding-model constraint, using a C—H distance of 0.97 Å and Uiso(H) = 1.2Ueq(C). Ammonium and water H atoms were refined freely.

Related literature top

For related literature, see: Brown & Altermatt (1985); Held (2003, 2014).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2002); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular entities in the structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) x+1, y, z; (iii) -x, -y, -z+1].
[Figure 2] Fig. 2. (100)-projection of the crystal structure of the title compound. Hydrogen bonds are shown as light-grey dashed lines. Colour scheme: (SO4) tetrahedra (yellow), monocapped antiprism [PrO9] (red), O (blue), N (green), C (grey), H (white).
Tris(ethylenediammonium) hexasulfatopraseodymium(III) hexahydrate top
Crystal data top
(C2H10N2)3[Pr2(SO4)6]·6H2OF(000) = 1148
Mr = 1152.70Dx = 2.234 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 6.6174 (8) Åθ = 20.0–24.3°
b = 26.668 (4) ŵ = 3.29 mm1
c = 10.0264 (13) ÅT = 295 K
β = 104.446 (15)°Parallelepiped, light-green
V = 1713.4 (4) Å30.22 × 0.21 × 0.20 mm
Z = 2
Data collection top
Stoe IPDS-II
diffractometer
3922 independent reflections
Radiation source: fine-focus sealed tube3091 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and ϕ scansθmax = 28.1°, θmin = 2.6°
Absorption correction: multi-scan
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
h = 88
Tmin = 0.491, Tmax = 0.620k = 3435
14346 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028All H-atom parameters refined
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
3923 reflectionsΔρmax = 0.72 e Å3
311 parametersΔρmin = 1.08 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0150 (6)
Crystal data top
(C2H10N2)3[Pr2(SO4)6]·6H2OV = 1713.4 (4) Å3
Mr = 1152.70Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.6174 (8) ŵ = 3.29 mm1
b = 26.668 (4) ÅT = 295 K
c = 10.0264 (13) Å0.22 × 0.21 × 0.20 mm
β = 104.446 (15)°
Data collection top
Stoe IPDS-II
diffractometer
3922 independent reflections
Absorption correction: multi-scan
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
3091 reflections with I > 2σ(I)
Tmin = 0.491, Tmax = 0.620Rint = 0.044
14346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.069All H-atom parameters refined
S = 0.97Δρmax = 0.72 e Å3
3923 reflectionsΔρmin = 1.08 e Å3
311 parameters
Special details top

Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary. The scattering intensities were collected on an imaging plate diffractometer (IPDS II, Stoe & Cie) equipped with a fine focus sealed tube X-ray source (Mo Kα, λ = 0.71073 Å) operating at 50 kV and 30 mA. Intensity data for the title compound were collected at room temperature by ω-scans in 180 frames (0 < ω < 180°; ϕ = 0° and 90°, Δω = 2°, exposure time of 10 min) in the 2Θ range 2.29 to 59.53°. Structure solution and refinement were carried out using the programs SIR97 (Altomare et al., 1999) and SHELXL97 (Sheldrick, 2008). The last cycles of refinement included atomic positions and anisotropic parameters for all atoms. The final difference maps were free of any chemically significant features. The refinement was based on F2 for ALL reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr0.54622 (3)0.177147 (7)0.465046 (19)0.01075 (8)
S10.40656 (17)0.06427 (3)0.24648 (10)0.0167 (2)
S20.52984 (15)0.25100 (3)0.21431 (9)0.01307 (18)
S30.03251 (16)0.15704 (4)0.54283 (9)0.0158 (2)
O110.1979 (5)0.05421 (12)0.1565 (3)0.0283 (7)
O120.5682 (6)0.05230 (12)0.1764 (3)0.0294 (7)
O130.4331 (5)0.03414 (11)0.3740 (3)0.0269 (7)
O140.4203 (5)0.11866 (10)0.2836 (3)0.0259 (7)
O210.5603 (5)0.30594 (11)0.2203 (3)0.0205 (6)
O220.7151 (5)0.22494 (11)0.3007 (3)0.0205 (6)
O230.3524 (5)0.23557 (10)0.2694 (3)0.0183 (6)
O240.4972 (5)0.23684 (10)0.0667 (3)0.0177 (6)
O310.1767 (5)0.17700 (11)0.4653 (3)0.0222 (6)
O320.1426 (6)0.12685 (14)0.6597 (4)0.0382 (9)
O330.1327 (5)0.12693 (11)0.4480 (3)0.0235 (6)
O340.0807 (5)0.19921 (12)0.5890 (3)0.0227 (6)
O10.5360 (6)0.09619 (12)0.5899 (4)0.0298 (8)
H110.505 (12)0.097 (3)0.654 (8)0.06 (2)*
H120.501 (9)0.074 (2)0.539 (6)0.030 (15)*
O20.5314 (10)0.1112 (3)0.9028 (7)0.100 (3)
H210.438 (17)0.082 (4)0.883 (10)0.12 (4)*
H220.495 (12)0.138 (3)0.877 (8)0.06 (2)*
O30.2361 (7)0.03214 (16)0.8914 (4)0.0380 (9)
H310.220 (11)0.033 (3)0.975 (8)0.056 (19)*
H320.310 (13)0.009 (3)0.888 (8)0.07 (3)*
N10.0784 (7)0.02857 (16)0.6520 (5)0.0283 (8)
H1A0.090 (11)0.060 (3)0.623 (7)0.06 (2)*
H1B0.005 (11)0.032 (3)0.738 (7)0.053 (19)*
H1C0.204 (14)0.008 (3)0.646 (9)0.08 (3)*
C10.0524 (8)0.0008 (2)0.5757 (5)0.0300 (10)
H1D0.082 (10)0.034 (3)0.615 (6)0.048 (17)*
H1E0.173 (11)0.014 (2)0.595 (6)0.045 (18)*
N20.0775 (8)0.20727 (16)0.1020 (4)0.0257 (8)
H2A0.183 (11)0.216 (2)0.057 (7)0.040 (18)*
H2B0.011 (12)0.230 (3)0.113 (7)0.06 (2)*
H2C0.086 (10)0.199 (2)0.192 (7)0.042 (16)*
C20.0133 (9)0.16060 (18)0.0433 (5)0.0278 (10)
H2D0.115 (10)0.136 (2)0.031 (6)0.044 (17)*
H2E0.095 (13)0.144 (3)0.107 (8)0.08 (3)*
N30.1249 (8)0.12597 (16)0.1435 (5)0.0279 (9)
H3A0.245 (11)0.119 (2)0.094 (6)0.039 (17)*
H3B0.023 (12)0.103 (3)0.153 (7)0.06 (2)*
H3C0.126 (11)0.129 (3)0.230 (8)0.05 (2)*
C30.0508 (8)0.17187 (17)0.0867 (5)0.0257 (9)
H3D0.054 (10)0.184 (2)0.148 (6)0.031 (15)*
H3E0.145 (9)0.197 (2)0.085 (6)0.035 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr0.01069 (13)0.01111 (11)0.01082 (11)0.00001 (7)0.00336 (7)0.00053 (8)
S10.0203 (6)0.0136 (4)0.0153 (4)0.0014 (3)0.0026 (3)0.0027 (3)
S20.0144 (5)0.0144 (4)0.0107 (4)0.0007 (3)0.0038 (3)0.0022 (3)
S30.0113 (5)0.0182 (4)0.0184 (4)0.0002 (3)0.0046 (3)0.0041 (4)
O110.0219 (18)0.0306 (17)0.0283 (16)0.0023 (13)0.0014 (13)0.0069 (13)
O120.032 (2)0.0285 (17)0.0332 (17)0.0017 (13)0.0178 (14)0.0027 (13)
O130.037 (2)0.0216 (15)0.0219 (15)0.0055 (13)0.0063 (13)0.0041 (12)
O140.038 (2)0.0132 (14)0.0225 (15)0.0009 (12)0.0005 (13)0.0048 (11)
O210.0296 (18)0.0156 (13)0.0170 (13)0.0024 (11)0.0070 (12)0.0003 (10)
O220.0148 (16)0.0265 (15)0.0203 (14)0.0032 (11)0.0045 (11)0.0095 (11)
O230.0148 (16)0.0227 (14)0.0192 (13)0.0006 (11)0.0075 (11)0.0064 (11)
O240.0223 (16)0.0190 (14)0.0128 (13)0.0025 (11)0.0064 (11)0.0012 (10)
O310.0144 (16)0.0258 (15)0.0290 (15)0.0014 (11)0.0101 (11)0.0065 (12)
O320.0218 (19)0.049 (2)0.042 (2)0.0036 (15)0.0032 (15)0.0301 (17)
O330.0167 (17)0.0166 (14)0.0376 (17)0.0033 (11)0.0076 (12)0.0072 (12)
O340.0159 (17)0.0282 (16)0.0243 (15)0.0017 (12)0.0057 (12)0.0115 (12)
O10.050 (2)0.0174 (16)0.0246 (17)0.0035 (14)0.0150 (16)0.0012 (14)
O20.067 (4)0.106 (5)0.101 (5)0.043 (4)0.026 (3)0.074 (4)
O30.049 (3)0.039 (2)0.0219 (17)0.0071 (18)0.0004 (15)0.0071 (15)
N10.030 (2)0.023 (2)0.033 (2)0.0027 (16)0.0083 (17)0.0027 (17)
C10.023 (3)0.037 (3)0.028 (2)0.001 (2)0.0030 (19)0.004 (2)
N20.026 (3)0.025 (2)0.026 (2)0.0076 (17)0.0056 (17)0.0038 (16)
C20.036 (3)0.023 (2)0.030 (2)0.0009 (19)0.020 (2)0.0038 (18)
N30.026 (3)0.033 (2)0.028 (2)0.0022 (17)0.0126 (18)0.0050 (17)
C30.028 (3)0.022 (2)0.030 (2)0.0035 (18)0.0127 (19)0.0000 (18)
Geometric parameters (Å, º) top
Pr—O142.383 (3)O34—Priv2.541 (3)
Pr—O312.446 (3)O1—H110.72 (8)
Pr—O12.505 (3)O1—H120.78 (6)
Pr—O34i2.541 (3)O2—H211.00 (12)
Pr—O222.551 (3)O2—H220.77 (8)
Pr—O33i2.553 (3)O3—H310.87 (7)
Pr—O24ii2.564 (3)O3—H320.80 (8)
Pr—O21ii2.577 (3)N1—C11.487 (6)
Pr—O232.582 (3)N1—H1A0.87 (8)
Pr—S3i3.1621 (11)N1—H1B0.88 (7)
Pr—S2ii3.1725 (9)N1—H1C0.99 (9)
Pr—S23.1741 (9)C1—C1v1.504 (9)
S1—O121.454 (3)C1—H1D1.01 (7)
S1—O111.473 (3)C1—H1E0.84 (7)
S1—O131.483 (3)N2—C21.483 (6)
S1—O141.495 (3)N2—H2A0.76 (7)
S2—O231.475 (3)N2—H2B0.83 (8)
S2—O211.478 (3)N2—H2C0.94 (7)
S2—O221.485 (3)C2—C31.499 (7)
S2—O241.490 (3)C2—H2D0.92 (7)
S3—O321.458 (3)C2—H2E0.94 (8)
S3—O311.472 (3)N3—C31.484 (6)
S3—O341.488 (3)N3—H3A0.85 (7)
S3—O331.492 (3)N3—H3B0.90 (7)
O21—Priii2.577 (3)N3—H3C0.87 (7)
O24—Priii2.564 (3)C3—H3D0.87 (6)
O33—Priv2.553 (3)C3—H3E0.92 (6)
O14—Pr—O3180.82 (11)O31—S3—O33109.05 (18)
O14—Pr—O176.67 (11)O34—S3—O33105.04 (17)
O31—Pr—O181.17 (12)S1—O14—Pr144.42 (18)
O14—Pr—O34i129.57 (10)S2—O21—Priii99.34 (13)
O31—Pr—O34i148.16 (10)S2—O22—Pr100.34 (14)
O1—Pr—O34i95.70 (12)S2—O23—Pr99.30 (14)
O14—Pr—O2287.71 (10)S2—O24—Priii99.60 (14)
O31—Pr—O22126.92 (9)S3—O31—Pr141.33 (18)
O1—Pr—O22145.50 (11)S3—O33—Priv99.49 (14)
O34i—Pr—O2270.82 (9)S3—O34—Priv100.13 (14)
O14—Pr—O33i75.16 (10)Pr—O1—H11117 (6)
O31—Pr—O33i148.01 (9)Pr—O1—H12112 (4)
O1—Pr—O33i73.03 (12)H11—O1—H12121 (7)
O34i—Pr—O33i55.31 (9)H21—O2—H22122 (8)
O22—Pr—O33i73.30 (10)H31—O3—H32107 (7)
O14—Pr—O24ii146.56 (10)C1—N1—H1A108 (5)
O31—Pr—O24ii77.02 (10)C1—N1—H1B108 (5)
O1—Pr—O24ii123.41 (11)H1A—N1—H1B102 (6)
O34i—Pr—O24ii78.58 (9)C1—N1—H1C106 (5)
O22—Pr—O24ii85.94 (9)H1A—N1—H1C120 (7)
O33i—Pr—O24ii133.31 (9)H1B—N1—H1C111 (6)
O14—Pr—O21ii142.34 (10)N1—C1—C1v110.7 (5)
O31—Pr—O21ii77.75 (10)N1—C1—H1D110 (4)
O1—Pr—O21ii69.73 (11)C1v—C1—H1D111 (4)
O34i—Pr—O21ii71.56 (10)N1—C1—H1E109 (4)
O22—Pr—O21ii129.86 (10)C1v—C1—H1E114 (4)
O33i—Pr—O21ii109.50 (10)H1D—C1—H1E102 (5)
O24ii—Pr—O21ii54.92 (8)C2—N2—H2A109 (5)
O14—Pr—O2378.58 (10)C2—N2—H2B114 (5)
O31—Pr—O2372.22 (9)H2A—N2—H2B112 (7)
O1—Pr—O23146.05 (12)C2—N2—H2C106 (4)
O34i—Pr—O23118.03 (10)H2A—N2—H2C112 (6)
O22—Pr—O2354.71 (9)H2B—N2—H2C104 (6)
O33i—Pr—O23121.97 (10)N2—C2—C3110.4 (4)
O24ii—Pr—O2370.99 (9)N2—C2—H2D112 (4)
O21ii—Pr—O23122.48 (9)C3—C2—H2D112 (4)
O12—S1—O11110.7 (2)N2—C2—H2E112 (5)
O12—S1—O13110.8 (2)C3—C2—H2E110 (5)
O11—S1—O13108.69 (19)H2D—C2—H2E100 (6)
O12—S1—O14109.09 (19)C3—N3—H3A108 (4)
O11—S1—O14108.60 (19)C3—N3—H3B107 (5)
O13—S1—O14108.92 (17)H3A—N3—H3B118 (6)
O23—S2—O21111.99 (17)C3—N3—H3C113 (5)
O23—S2—O22105.65 (16)H3A—N3—H3C111 (6)
O21—S2—O22110.84 (18)H3B—N3—H3C99 (6)
O23—S2—O24111.67 (17)N3—C3—C2111.2 (4)
O21—S2—O24106.03 (16)N3—C3—H3D109 (4)
O22—S2—O24110.75 (17)C2—C3—H3D110 (4)
O32—S3—O31111.4 (2)N3—C3—H3E109 (4)
O32—S3—O34110.9 (2)C2—C3—H3E118 (4)
O31—S3—O34109.50 (18)H3D—C3—H3E99 (5)
O32—S3—O33110.8 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x1, y, z; (v) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O320.72 (8)2.53 (8)2.974 (6)121 (7)
O1—H12···O130.78 (6)1.92 (6)2.674 (5)162 (6)
O2—H21···O31.00 (12)1.89 (12)2.858 (7)163 (9)
O2—H22···O21ii0.77 (8)2.29 (8)2.905 (6)137 (7)
O3—H31···O11vi0.87 (7)1.95 (8)2.795 (5)165 (7)
O3—H32···O12vii0.80 (8)2.00 (8)2.766 (5)162 (8)
N1—H1A···O330.87 (8)2.48 (8)3.291 (5)155 (6)
N1—H1B···O30.88 (7)1.92 (7)2.758 (6)158 (6)
N1—H1C···O13v0.99 (9)1.85 (9)2.841 (6)176 (7)
N2—H2A···O240.76 (7)2.21 (7)2.976 (5)177 (7)
N2—H2B···O22viii0.83 (8)2.17 (8)2.967 (6)162 (7)
N2—H2C···O34ix0.94 (7)2.20 (6)3.020 (5)146 (5)
N3—H3A···O2x0.85 (7)2.12 (7)2.901 (8)153 (6)
N3—H3B···O110.90 (7)1.95 (8)2.847 (6)175 (6)
N3—H3C···O330.87 (7)2.20 (7)3.066 (5)173 (6)
Symmetry codes: (ii) x, y+1/2, z+1/2; (v) x, y, z+1; (vi) x, y, z+1; (vii) x+1, y, z+1; (viii) x1, y+1/2, z1/2; (ix) x, y, z1; (x) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O320.72 (8)2.53 (8)2.974 (6)121 (7)
O1—H12···O130.78 (6)1.92 (6)2.674 (5)162 (6)
O2—H21···O31.00 (12)1.89 (12)2.858 (7)163 (9)
O2—H22···O21i0.77 (8)2.29 (8)2.905 (6)137 (7)
O3—H31···O11ii0.87 (7)1.95 (8)2.795 (5)165 (7)
O3—H32···O12iii0.80 (8)2.00 (8)2.766 (5)162 (8)
N1—H1A···O330.87 (8)2.48 (8)3.291 (5)155 (6)
N1—H1B···O30.88 (7)1.92 (7)2.758 (6)158 (6)
N1—H1C···O13iv0.99 (9)1.85 (9)2.841 (6)176 (7)
N2—H2A···O240.76 (7)2.21 (7)2.976 (5)177 (7)
N2—H2B···O22v0.83 (8)2.17 (8)2.967 (6)162 (7)
N2—H2C···O34vi0.94 (7)2.20 (6)3.020 (5)146 (5)
N3—H3A···O2vii0.85 (7)2.12 (7)2.901 (8)153 (6)
N3—H3B···O110.90 (7)1.95 (8)2.847 (6)175 (6)
N3—H3C···O330.87 (7)2.20 (7)3.066 (5)173 (6)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x1, y+1/2, z1/2; (vi) x, y, z1; (vii) x1, y, z1.

Experimental details

Crystal data
Chemical formula(C2H10N2)3[Pr2(SO4)6]·6H2O
Mr1152.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)6.6174 (8), 26.668 (4), 10.0264 (13)
β (°) 104.446 (15)
V3)1713.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.29
Crystal size (mm)0.22 × 0.21 × 0.20
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionMulti-scan
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.491, 0.620
No. of measured, independent and
observed [I > 2σ(I)] reflections
14346, 3922, 3091
Rint0.044
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 0.97
No. of reflections3923
No. of parameters311
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.72, 1.08

Computer programs: X-AREA (Stoe & Cie, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2002), publCIF (Westrip, 2010).

 

Acknowledgements

The author would like to thank Professor G. Meyer and Dr I. Pantenburg from the Institute of Inorganic Chemistry of the University of Cologne for the opportunity to collect data at the single-crystal diffractometer.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDowty, E. (2002). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationHeld, P. (2003). Z. Kristallogr. New Cryst. Struct. 218, 13–14.  CAS Google Scholar
First citationHeld, P. (2014). Acta Cryst. E70, m119.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 235-237
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds