research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 216-220

Crystal structures of trans-acetyl­dicarbon­yl(η5-cyclo­penta­dien­yl)(di­methyl­phenyl­phosphane)molybdenum(II) and trans-acetyl­dicarbon­yl(η5-cyclo­penta­dien­yl)(ethyl­di­phenyl­phosphane)molybdenum(II)

aDepartment of Chemistry, Carleton College, 1 N College St, Northfield, MN 55057, USA, and bDepartment of Chemistry and Biochemistry, St. Catherine University, 2004 Randolph Ave., St. Paul, MN 55105, USA
*Correspondence e-mail: mwhited@carleton.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 September 2014; accepted 12 September 2014; online 20 September 2014)

The title compounds, [Mo(C5H5)(COCH3)P(CH3)2(C6H5)(CO)2], (1), and [Mo(C5H5)(COCH3)P(C2H5)(C6H5)2)(CO)2], (2), have been prepared by phosphine-induced migratory insertion from [Mo(C5H5)(CO)3(CH3)]. Both complex mol­ecules exhibit a four-legged piano-stool geometry with trans-disposed carbonyl ligands along with Mo—P bond lengths and C—Mo—P angles that reflect the relative steric pressure of the respective phosphine ligand. The structure of compound (1) exhibits a layered arrangement parallel to (100). Within the layers mol­ecules are linked into chains along [001] by non-classical C—H⋯O inter­actions between the acetyl ligand of one mol­ecule and the phenyl and methyl phosphine substituents of another. In the structure of complex (2), a chain motif of centrosymmetrical dimers is found along [010] through C—H⋯O inter­actions.

1. Chemical context

Cyclo­penta­dienylmolybdenum polycarbonyl complexes [Mo(C5H5)(CO)n] with `piano-stool' geometries have been studied extensively for their fundamental organometallic reactivity. In particular, alkyl complexes of the form [Mo(C5H5)(CO)3(R)] have been studied for their migratory insertion reactivity (Barnett & Treichel, 1967[Barnett, K. W. & Treichel, P. M. (1967). Inorg. Chem. 6, 294-299.]; Butler et al., 1967[Butler, I. S., Basolo, F. & Pearson, R. G. (1967). Inorg. Chem. 6, 2074-2079.]), affording [Mo(C5H5)(PR3)(CO)2(COR)] acetyl complexes on exposure to phosphine ligands. Although the insertion reaction shows little dependence on the nature of the phosphine, the corresponding deinsertion shows a strong dependence on steric bulk of the phosphine, with bulkier groups giving enhanced deinsertion rates (Barnett, 1969[Barnett, K. W. (1969). Inorg. Chem. 8, 2009-2011.]; Barnett & Pollmann, 1974[Barnett, K. W. & Pollmann, T. G. (1974). J. Organomet. Chem. 69, 413-421.]).

[Scheme 1]

We have developed an inter­est in the solid-state structural properties of a series of piano-stool molybdenum acetyl complexes derived from migratory insertion with various phosphines, with the goal of understanding how modification of the phosphine substituents affects ground-state structure as well as solid-state packing. Recently, we reported an unusual example where orientation of the acetyl group in the solid state can be changed by introduction of furyl substituents on the phosphine ligand (Whited et al., 2013[Whited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. & Janzen, D. E. (2013). Acta Cryst. E69, m475-m476.]). In this study, the structures obtained for di­methyl­phenyl­phosphine, [Mo(C5H5)(P(CH3)2(C6H5))(CO)2(COCH3)] (1), and ethyl­diphenyl­phosphine, [Mo(C5H5)(P(C2H5)(C6H5)2))(CO)2(COCH3)] (2), derivatives are compared.

2. Structural commentary

The mol­ecular structures of (1) and (2) are illustrated in Figs. 1[link] and 2[link]. In spite of the somewhat different steric environments provided by the phosphine ligands, the mol­ecular structures are quite similar. Both complexes exhibit a trans disposition of carbonyl ligands common for compounds of this class. Complexes (1) and (2) both have structures where the oxygen atom of the acetyl group points toward the cyclo­penta­dienyl (Cp) ring. This orientation is also consistent with the majority of crystal structures of related complexes, with the exception of the recently reported tri(2-fur­yl)phosphine derivative, in which the acetyl group points away from the Cp ring, enabling inter­molecular O⋯H—C inter­actions with the furyl group of a neighboring mol­ecule (Whited et al., 2013[Whited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. & Janzen, D. E. (2013). Acta Cryst. E69, m475-m476.]).

[Figure 1]
Figure 1
Mol­ecular structure of (1) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular structure of (2) with displacement ellipsoids drawn at the 50% probability level.

Selected geometric parameters for (1) and (2) are presented in Tables 1[link] and 2[link]. The Mo1—P1 bond lengths [2.4535 (9) Å for di­methyl­phenyl­phosphine derivative (1) and 2.4813 (6) Å for ethyl­diphenyl­phosphine derivative (2)] track with the steric bulk of the ligands and are consistent with the previously reported methyl­diphenyl­phosphine complex (Whited et al., 2012[Whited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158-m1159.]), which exhibits an Mo—P bond length [2.4620 (14) Å] that is inter­mediate between those of (1) and (2). Along with a slightly longer Mo—P distance, the sterically bulkier derivative (2) exhibits a larger C3—Mo1—P1 angle [135.76 (6)°] relative to (1) [131.79 (9)°], again with the methyl­diphenyl­phosphine derivative inter­mediate [132.27 (2)°]. The steric effects of the phosphine ligands observed in the solid state are consistent with findings regarding deca­rbonylation rates for this class of complexes (Barnett & Pollmann, 1974[Barnett, K. W. & Pollmann, T. G. (1974). J. Organomet. Chem. 69, 413-421.]), where the steric influence of bulkier phosphines enhances the rate of the deca­rbonylation reaction.

Table 1
Selected geometric parameters (Å, °) for (1)[link]

Mo1—P1 2.4535 (9) Mo1—C2 1.973 (4)
Mo1—C1 1.949 (3) Mo1—C3 2.251 (4)
       
C1—Mo1—P1 76.95 (9) C2—Mo1—P1 78.13 (11)
C1—Mo1—C2 106.40 (14) C2—Mo1—C3 76.05 (15)
C1—Mo1—C3 72.37 (13) C3—Mo1—P1 131.79 (9)

Table 2
Selected geometric parameters (Å, °) for (2)[link]

Mo1—P1 2.4813 (6) Mo1—C2 1.960 (2)
Mo1—C1 1.979 (2) Mo1—C3 2.273 (2)
       
C1—Mo1—P1 79.07 (6) C2—Mo1—C1 106.04 (9)
C1—Mo1—C3 75.46 (8) C2—Mo1—C3 73.53 (9)
C2—Mo1—P1 79.67 (6) C3—Mo1—P1 135.76 (6)

3. Supra­molecular features

The extended structures of (1) and (2) are quite different, but the acetyl oxygen atom (O3) plays an important role in the packing of both structures. For di­methyl­phenyl­phosphine complex (1), there are C—H⋯O hydrogen-bonding inter­actions between O3 of the acetyl carbonyl on one Mo complex and H11C from a phosphine methyl substituent (2.45 Å) and H13 from a phenyl group (2.36 Å) on the same phosphine on a neighboring mol­ecule (Table 3[link]). These short contacts organize the mol­ecules into chains parallel to [001] (Fig. 3[link]). Additional short contacts (2.40 Å) between O1 of a carbonyl ligand and H15 of a phosphine phenyl substituent within the chains are present. The chains are arranged in layers parallel to (100). In contrast to the closely related methyl­diphenyl­phosphine derivative (Whited et al., 2012[Whited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158-m1159.]), (1) does not exhibit any ππ inter­actions between the Cp ring and a phosphine phenyl substituent. In contrast, the closest phenyl group is oriented perpendicular to the Cp ring with a distance of 3.00 Å between H17 of the phenyl group and the Cp centroid.

Table 3
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11C⋯O3i 0.98 2.45 3.344 (5) 152
C13—H13⋯O3i 0.95 2.36 3.275 (5) 162
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal packing of (1) viewed along [010] showing the layered arrangement parallel to (100). Dashed lines indicate inter­molecular C—H⋯O hydrogen-bonding inter­actions.

The supra­molecular organization of ethyl­diphenyl­phosphine derivative (2) is quite different, though it is still partly governed by hydrogen-bonding inter­actions involving O3 of the acetyl group. In this case, short contacts (2.66 Å) between O3 of the acetyl group and H22 of a phosphine phenyl substituent (Table 4[link]) link the mol­ecules into chains parallel to [010]. An additional set of short contacts between O2 of a carbonyl ligand and H8 from a Cp ring (2.63 Å) and H13 from a phenyl ring (2.71 Å) on an adjacent mol­ecule organize the mol­ecules into centrosymmetrical dimers, joining the unit cells along [010] (Fig. 4[link]). Finally, another set of centrosymmetrical dimers is formed through short contacts between C8/H8 units on Cp rings of adjacent mol­ecules (Fig. 5[link]).

Table 4
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.63 3.414 (3) 142
C13—H13⋯O2i 0.93 2.71 3.282 (3) 121
C22—H22⋯O3ii 0.93 2.66 3.316 (3) 128
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y+1, z.
[Figure 4]
Figure 4
Crystal packing of (2) viewed along [100] showing chains of centrosymmetrical dimers.
[Figure 5]
Figure 5
Centrosymmetrical dimers of (2) connected through C8/H8 inter­actions of Cp rings on adjacent mol­ecules.

4. Database survey

The current version of the Cambridge Structural Database (Version 5.35, updated November 2013; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) has nine entries corresponding to molybdenum acyl complexes of the general form [Mo(C5H5)(CO)2(PR3)(COR)], as well as five tungsten complexes with the same ligand types. No chromium complexes with the same ligand set are in the database. The trans-dicarbonyl structure, as observed for (1) and (2), is preferred except in cases where the phosphine and acyl ligands are covalently linked, forcing them to be cis (Adams et al., 1991[Adams, H., Bailey, N. A., Day, A. N., Morris, M. J. & Harrison, M. M. (1991). J. Organomet. Chem. 407, 247-258.]; Mercier et al., 1993[Mercier, F., Ricard, L. & Mathey, F. (1993). Organometallics, 12, 98-103.]; Yan et al., 2009[Yan, X., Yu, B., Wang, L., Tang, N. & Xi, C. (2009). Organometallics, 28, 6827-6830.]). The preference for a trans geometry is likely at least partly steric in nature, since the only example with a cis-dicarbonyl geometry without linked phosphine and acyl ligands is for a molybdenum formyl with a small tri­methyl­phosphine ligand and a bulky penta­methyl­cyclo­penta­dienyl ligand (Asdar et al., 1989[Asdar, A., Lapinte, C. & Toupet, L. (1989). Organometallics, 8, 2708-2717.]).

5. Synthesis and crystallization

CpMo(CO)3(CH3). This compound was prepared by a modification of the method used of Gladysz et al. (1979[Gladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553-558.]), as previously reported by Whited & Hofmeister (2014[Whited, M. T. & Hofmeister, G. E. (2014). J. Chem. Educ. 91, 1050-1053.]).

CpMo(CO)2(PMe2Ph)(COCH3) (1). In an inert-atmos­phere glove box, CpMo(CO)3(CH3) (113 mg, 0.435 mmol) was dissolved in 2 ml aceto­nitrile. In a separate vial, di­methyl­phenyl­phosphine (97.0 mg, 0.702 mmol) was dissolved in 2 ml aceto­nitrile. The vials were combined and the resulting solution was stirred for 1 week. Solvent was removed in vacuo, leaving a yellow–orange solid that was triturated with pentane (5 ml) and isolated by filtration to afford the desired product in pure form as a yellow powder (112 mg, 65%). Crystalline material was obtained as yellow–orange prisms by chilling a concentrated diethyl ether solution at 233 K. 1H NMR (400 MHz, CDCl3): δ 7.67–7.58 (m, 2H, Ar–H), 7.50–7.41 (m, 3H, Ar–H), 4.97 (d, J = 1.1 Hz, 5H, Cp H), 2.58 (s, 3H, C(O)CH3), 1.91 (d, 2JPH = 8.9 Hz, 6H, P(CH3)2). 13C{1H} NMR (101 MHz, CDCl3): δ 267.3 (d, 2JPC = 13 Hz, –COCH3), 237.8 (d, 2JPC = 24 Hz, –CO), 139.2 (d, 1JPC = 40 Hz, Cipso from Ph–P), 130.3 (d, 4JPC = 2 Hz, Cpara from Ph–P), 129.6 (d, 2JPC = 10 Hz, Cortho from Ph–P), 128.9 (d, 2JPC = 10 Hz, Cmeta from Ph–P), 96.0 (s, Cp ring), 51.7 (s, –COCH3), 20.0 (d, 1JPC = 33 Hz, P(CH3)2). 31P{1H} NMR (162 MHz, CDCl3): δ 33.1 (s). IR (CH2Cl2, NaCl, cm−1) ν(CO): 1931, 1846, 1601 (acet­yl).

CpMo(CO)2(PEtPh2)(COCH3) (2). In an inert-atmosphere glove box, CpMo(CO)3(CH3) (105 mg, 0.404 mmol) was dissolved in 2 ml aceto­nitrile. Ethyl­diphenyl­phosphine (129 mg, 0.602 mmol) was added and the resulting solution was stirred for one week. Solvent was removed in vacuo, leaving a yellow solid that was triturated with pentane (5 ml) and isolated by filtration to afford the desired product in pure form as a yellow powder (106 mg, 55%). Crystalline material was obtained as yellow blocks by slow evaporation of diethyl ether from a concentrated solution at ambient temperature. 1H NMR (400 MHz, CDCl3): δ 7.50–7.42 (m, 10H, Ar–H), 4.92 (d, J = 1.2 Hz, 5H, Cp H), 2.68 (apparent quint, 2JPH = 3JHH = 7.8 Hz, 2H, PCH2CH3), 2.63 (s, 3H, C(O)CH3), 1.17 (dt, 3JPH = 18.0 Hz, 2JPH = 7.5 Hz, 3H, PCH2CH3). 13C{1H} NMR (101 MHz, CDCl3): δ 266.4 (d, 2JPC = 11 Hz, –COCH3), 238.5 (d, 2JPC = 23 Hz, –CO), 135.9 (d, 1JPC = 40 Hz, Cipso from Ph–P), 132.1 (d, 2JPC = 10 Hz, Cortho from Ph–P), 130.4 (d, 4JPC = 2 Hz, Cpara from Ph–P), 128.7 (d, 2JPC = 9 Hz, Cmeta from Ph–P), 96.5 (s, Cp ring), 51.0 (s, –COCH3), 26.3 (d, 1JPC = 32 Hz, PCH2CH3), 9.0 (d, 2JPC = 2 Hz, PCH2CH3). 31P{1H} NMR (162 MHz, CDCl3): δ 59.3 (s). IR (CH2Cl2, NaCl, cm−1) ν(CO): 1937, 1859, 1610 (acet­yl).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. H-atoms were treated in calculated positions and refined in the riding-model approximation with distances of C—H = 0.95, 1.00 and 0.98 Å for the phenyl, cyclo­penta­dienyl and alkyl groups, respectively, and with Uiso(H) = k×Ueq(C), k = 1.2 for phenyl and cyclo­penta­dienyl groups and 1.5 for alkyl groups. Methyl group H atoms were allowed to rotate in order to find the best rotameric conformation.

Table 5
Experimental details

  (1) (2)
Crystal data
Chemical formula [Mo(C5H5)(C2H3O)(C8H11P)(CO)2] [Mo(C5H5)(C2H3O)(C14H15P)(CO)2]
Mr 398.23 474.32
Crystal system, space group Orthorhombic, Pna21 Triclinic, P[\overline{1}]
Temperature (K) 173 173
a, b, c (Å) 16.374 (2), 6.8898 (10), 15.208 (2) 8.2451 (8), 11.6132 (11), 12.5265 (12)
α, β, γ (°) 90, 90, 90 63.617 (4), 77.167 (5), 84.671 (6)
V3) 1715.6 (4) 1047.65 (18)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.87 0.72
Crystal size (mm) 0.4 × 0.4 × 0.19 0.32 × 0.26 × 0.21
 
Data collection
Diffractometer Rigaku XtaLAB mini Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.707, 0.848 0.712, 0.859
No. of measured, independent and observed [I > 2σ(I)] reflections 17021, 3923, 3639 11081, 4797, 4365
Rint 0.035 0.029
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.045, 1.05 0.028, 0.068, 1.09
No. of reflections 3923 4797
No. of parameters 202 255
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.27 0.30, −0.82
Absolute structure Flack x determined using 1649 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.007 (18)
Computer programs: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SHELXS and SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

A small number of low-angle reflections [three for (1); six for (2)] were rejected from these high-quality data sets due to the arrangement of the instrument with a conservatively sized beam stop and a fixed-position detector. The large number of reflections in the data sets (and the Fourier-transform relationship of intensities to atoms) ensures that no particular bias was thereby introduced.

Supporting information


Chemical context top

Cyclo­penta­dienylmolybdenum polycarbonyl complexes [Mo(C5H5)(CO)n] with `piano-stool' geometries have been studied extensively for their fundamental organometallic reactivity. In particular, alkyl complexes of the form [Mo(C5H5)(CO)3(R)] have been studied for their migratory insertion reactivity (Barnett & Treichel, 1967; Butler et al., 1967), affording [Mo(C5H5)(PR3)(CO)2(COR)] acetyl complexes on exposure to phosphine ligands. Although the insertion reaction shows little dependence on the nature of the phosphine, the corresponding deinsertion shows a strong dependence on steric bulk of the phosphine, with bulkier groups giving enhanced deinsertion rates (Barnett, 1969; Barnett & Pollmann, 1974).

We have developed an inter­est in the solid-state structural properties of a series of piano-stool molybdenum acetyl complexes derived from migratory insertion with various phosphines, with the goal of understanding how modification of the phosphine substituents affects ground-state structure as well as solid-state packing. Recently, we reported an unusual example where orientation of the acetyl group in the solid state can be changed by introduction of furyl substituents on the phosphine ligand (Whited et al., 2013). In this study, the structures obtained for di­methyl­phenyl­phosphine, [Mo(C5H5)(P(CH3)2(C6H5))(CO)2(COCH3)] (1), and ethyl­diphenyl­phosphine, [Mo(C5H5)(P(C2H5)(C6H5)2))(CO)2(COCH3)] (2), derivatives are compared.

Structural commentary top

The molecular structures of (1) and (2) are illustrated in Figs. 1 and 2. In spite of the somewhat different steric environments provided by the phosphine ligands, the molecular structures are quite similar. Both complexes exhibit a trans disposition of carbonyl ligands common for compounds of this class. Complexes (1) and (2) both have structures where the oxygen atom of the acetyl group points toward the cyclo­penta­dienyl (Cp) ring. This orientation is also consistent with the majority of crystal structures of related complexes, with the exception of the recently reported tri(2-furyl)phosphine derivative, in which the acetyl group points away from the Cp ring, enabling inter­molecular O···H—C inter­actions with the furyl group of a neighboring molecule (Whited et al., 2013).

Selected geometric parameters for (1) and (2) are presented in Tables 1 and 2. The Mo1—P1 bond lengths [2.4535 (9) Å for di­methyl­phenyl­phosphine derivative (1) and 2.4813 (6) Å for ethyl­diphenyl­phosphine derivative (2)] track with the steric bulk of the ligands and are consistent with the previously reported methyl­diphenyl­phosphine complex (Whited et al., 2012), which exhibits an Mo—P bond length [2.4620 (14) Å] that is inter­mediate between those of (1) and (2). Along with a slightly longer Mo—P distance, the sterically bulkier derivative (2) exhibits a larger C3—Mo1—P1 angle [135.76 (6)°] relative to (1) [131.79 (9)°], again with the methyl­diphenyl­phosphine derivative inter­mediate [132.27 (2)°]. The steric effects of the phosphine ligands observed in the solid state are consistent with findings regarding de­carbonyl­ation rates for this class of complexes (Barnett & Pollmann, 1974), where the steric influence of bulkier phosphines enhances the rate of the de­carbonyl­ation reaction.

Supra­molecular features top

The extended structures of (1) and (2) are quite different, but the acetyl oxygen atom (O3) plays an important role in the packing of both structures. For di­methyl­phenyl­phosphine complex (1), there are C—H···O hydrogen-bonding inter­actions between O3 of the acetyl carbonyl on one Mo complex and H11C from a phosphine methyl substituent (2.45 Å) and H13 from a phenyl group (2.36 Å) on the same phosphine on a neighboring molecule (Table 3). These short contacts organize the molecules into chains parallel to [001] (Fig. 3). Additional short contacts (2.40 Å) between O1 of a carbonyl ligand and H15 of a phosphine phenyl substituent within the chains are present. The chains are arranged in layers parallel to (100). In contrast to the closely related methyl­diphenyl­phosphine derivative (Whited et al., 2012), (1) does not exhibit any ππ inter­actions between the Cp ring and a phosphine phenyl substituent. In contrast, the closest phenyl group is oriented perpendicular to the Cp ring with a distance of 3.00 Å between H17 of the phenyl group and the Cp centroid.

The supra­molecular organization of ethyl­diphenyl­phosphine derivative (2) is quite different, though it is still partly governed by hydrogen-bonding inter­actions involving O3 of the acetyl group. In this case, short contacts (2.66 Å) between O3 of the acetyl group and H22 of a phosphine phenyl substituent (Table 4) link the molecules into chains parallel to [010]. An additional set of short contacts between O2 of a carbonyl ligand and H8 from a Cp ring (2.63 Å) and H13 from a phenyl ring (2.71 Å) on an adjacent molecule organize the molecules into centrosymmetrical dimers, joining the unit cells along [010] (Fig. 4). Finally, another set of centrosymmetrical dimers is formed through short contacts between C8/H8 units on Cp rings of adjacent molecules (Fig. 5).

Database survey top

The current version of the Cambridge Structural Database (Version 5.35, updated November 2013; Allen, 2002) has nine entries corresponding to molybdenum acyl complexes of the general form [Mo(C5H5)(CO)2(PR3)(COR)], as well as five tungsten complexes with the same ligand types. No chromium complexes with the same ligand set are in the database. The trans-di­carbonyl structure, as observed for (1) and (2), is preferred except in cases where the phosphine and acyl ligands are covalently linked, forcing them to be cis (Adams et al., 1991; Mercier et al., 1993; Yan et al., 2009). The preference for a trans geometry is likely at least partly steric in nature, since the only example with a cis-di­carbonyl geometry without linked phosphine and acyl ligands is for a molybdenum formyl with a small tri­methyl­phosphine ligand and a bulky penta­methyl­cyclo­penta­dienyl ligand (Asdar et al., 1989).

Synthesis and crystallization top

CpMo(CO)3(CH3). This compound was prepared by a modification of the method used of Gladysz et al. (1979), as previously reported by Whited & Hofmeister (2014).

CpMo(CO)2(PMe2Ph)(COCH3) (1). In an inert-atmosphere glove box, CpMo(CO)3(CH3) (113 mg, 0.435 mmol) was dissolved in 2 ml aceto­nitrile. In a separate vial, di­methyl­phenyl­phosphine (97.0 mg, 0.702 mmol) was dissolved in 2 ml aceto­nitrile. The vials were combined and the resulting solution was stirred for 1 week. Solvent was removed in vacuo, leaving a yellow–orange solid that was triturated with pentane (5 ml) and isolated by filtration to afford the desired product in pure form as a yellow powder (112 mg, 65%). Crystalline material was obtained as yellow–orange prisms by chilling a concentrated di­ethyl ether solution at 233 K. 1H NMR (400 MHz, CDCl3): δ 7.67–7.58 (m, 2H, Ar–H), 7.50–7.41 (m, 3H, Ar–H), 4.97 (d, J = 1.1 Hz, 5H, Cp H), 2.58 (s, 3H, C(O)CH3), 1.91 (d, 2JPH = 8.9 Hz, 6H, P(CH3)2). 13C{1H} NMR (101 MHz, CDCl3): δ 267.3 (d, 2JPC = 13 Hz, –COCH3), 237.8 (d, 2JPC = 24 Hz, –CO), 139.2 (d, 1JPC = 40 Hz, Cipso from Ph–P), 130.3 (d, 4JPC = 2 Hz, Cpara from Ph–P), 129.6 (d, 2JPC = 10 Hz, Cortho from Ph–P), 128.9 (d, 2JPC = 10 Hz, Cmeta from Ph–P), 96.0 (s, Cp ring), 51.7 (s, –COCH3), 20.0 (d, 1JPC = 33 Hz, P(CH3)2). 31P{1H} NMR (162 MHz, CDCl3): δ 33.1 (s). IR (CH2Cl2, NaCl, cm–1) ν(CO): 1931, 1846, 1601 (acetyl).

CpMo(CO)2(PEtPh2)(COCH3) (2). In an inert-atmosphere glove box, CpMo(CO)3(CH3) (105 mg, 0.404 mmol) was dissolved in 2 ml aceto­nitrile. Ethyl­diphenyl­phosphine (129 mg, 0.602 mmol) was added and the resulting solution was stirred for one week. Solvent was removed in vacuo, leaving a yellow solid that was triturated with pentane (5 ml) and isolated by filtration to afford the desired product in pure form as a yellow powder (106 mg, 55%). Crystalline material was obtained as yellow blocks by slow evaporation of di­ethyl ether from a concentrated solution at ambient temperature. 1H NMR (400 MHz, CDCl3): δ 7.50–7.42 (m, 10H, Ar–H), 4.92 (d, J = 1.2 Hz, 5H, Cp H), 2.68 (apparent quint, 2JPH = 3JHH = 7.8 Hz, 2H, PCH2CH3), 2.63 (s, 3H, C(O)CH3), 1.17 (dt, 3JPH = 18.0 Hz, 2JPH = 7.5 Hz, 3H, PCH2CH3). 13C{1H} NMR (101 MHz, CDCl3): δ 266.4 (d, 2JPC = 11 Hz, –COCH3), 238.5 (d, 2JPC = 23 Hz, –CO), 135.9 (d, 1JPC = 40 Hz, Cipso from Ph–P), 132.1 (d, 2JPC = 10 Hz, Cortho from Ph–P), 130.4 (d, 4JPC = 2 Hz, Cpara from Ph–P), 128.7 (d, 2JPC = 9 Hz, Cmeta from Ph–P), 96.5 (s, Cp ring), 51.0 (s, –COCH3), 26.3 (d, 1JPC = 32 Hz, PCH2CH3), 9.0 (d, 2JPC = 2 Hz, PCH2CH3). 31P{1H} NMR (162 MHz, CDCl3): δ 59.3 (s). IR (CH2Cl2, NaCl, cm–1) ν(CO): 1937, 1859, 1610 (acetyl).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 5. H-atoms were treated in calculated positions and refined in the riding-model approximation with distances of C—H = 0.95, 1.00 and 0.98 Å for the phenyl, cyclo­penta­dienyl and alkyl groups, respectively, and with Uiso(H) = k×Ueq(C), k = 1.2 for phenyl and cyclo­penta­dienyl groups and 1.5 for alkyl groups. Methyl group H atoms were allowed to rotate in order to find the best rotameric conformation.

A small number of low-angle reflections [three for (1); six for (2)] were rejected from these high-quality data sets due to the arrangement of the instrument with a conservatively sized beam stop and a fixed-position detector. The large number of reflections in the data sets (and the Fourier-transform relationship of intensities to atoms) ensures that no particular bias was thereby introduced.

Related literature top

For related literature, see: Adams et al. (1991); Allen (2002); Asdar et al. (1989); Barnett (1969); Barnett & Pollmann (1974); Barnett & Treichel (1967); Butler et al. (1967); Gladysz et al. (1979); Mercier et al. (1993); Whited & Hofmeister (2014); Whited et al. (2012, 2013); Yan et al. (2009).

Computing details top

For both compounds, data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011). Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for (1); SIR2008 (Burla et al., 2007) for (2). For both compounds, program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (1) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of (2) with displacement ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. Crystal packing of (1) viewed along [010] showing the layered arrangement parallel to (100). Dashed lines indicate intermolecular C—H···O hydrogen-bonding interactions.
[Figure 4] Fig. 4. Crystal packing of (2) viewed along [100] showing chains of centrosymmetrical dimers.
[Figure 5] Fig. 5. Centrosymmetrical dimers of (2) connected through C8/H8 interactions of Cp rings on adjacent molecules.
(1) trans-Acetyldicarbonyl-(η5-cyclopentadienyl)-˘dimethylphenylphosphine)-molybdenum(II) top
Crystal data top
[Mo(C5H5)(C2H3O)(C8H11P)(CO)2]F(000) = 808
Mr = 398.23Dx = 1.542 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2c -2nCell parameters from 16109 reflections
a = 16.374 (2) Åθ = 3.2–27.6°
b = 6.8898 (10) ŵ = 0.87 mm1
c = 15.208 (2) ÅT = 173 K
V = 1715.6 (4) Å3Prism, yellow
Z = 40.4 × 0.4 × 0.19 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
3639 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.035
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 2121
Tmin = 0.707, Tmax = 0.848k = 88
17021 measured reflectionsl = 1919
3923 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0142P)2 + 0.493P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.002
S = 1.05Δρmax = 0.21 e Å3
3923 reflectionsΔρmin = 0.27 e Å3
202 parametersAbsolute structure: Flack x determined using 1649 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraintAbsolute structure parameter: 0.007 (18)
Primary atom site location: heavy-atom method
Crystal data top
[Mo(C5H5)(C2H3O)(C8H11P)(CO)2]V = 1715.6 (4) Å3
Mr = 398.23Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 16.374 (2) ŵ = 0.87 mm1
b = 6.8898 (10) ÅT = 173 K
c = 15.208 (2) Å0.4 × 0.4 × 0.19 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
3923 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
3639 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 0.848Rint = 0.035
17021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.045Δρmax = 0.21 e Å3
S = 1.05Δρmin = 0.27 e Å3
3923 reflectionsAbsolute structure: Flack x determined using 1649 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
202 parametersAbsolute structure parameter: 0.007 (18)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.79993 (2)0.60128 (3)0.24997 (2)0.02038 (7)
P10.89764 (5)0.44416 (12)0.15052 (5)0.02144 (17)
O10.95421 (15)0.8609 (4)0.26796 (19)0.0403 (8)
O20.82922 (19)0.2063 (4)0.34585 (19)0.0449 (7)
O30.7578 (2)0.7896 (5)0.4257 (2)0.0533 (8)
C10.89797 (19)0.7587 (4)0.2637 (2)0.0238 (7)
C20.8215 (2)0.3542 (5)0.3113 (2)0.0278 (8)
C30.8089 (2)0.6869 (5)0.3925 (2)0.0300 (8)
C40.8795 (3)0.6224 (6)0.4511 (3)0.0439 (11)
H4A0.86570.49840.47910.066*
H4B0.88910.72060.49660.066*
H4C0.92890.60670.41550.066*
C50.7040 (2)0.8435 (6)0.2268 (3)0.0432 (13)
H50.71250.96740.25250.052*
C60.6620 (2)0.6856 (7)0.2659 (3)0.0465 (11)
H60.63750.68500.32250.056*
C70.6631 (2)0.5310 (7)0.2065 (3)0.0425 (10)
H70.63930.40690.21560.051*
C80.7056 (2)0.5909 (6)0.1309 (3)0.0368 (9)
H80.71560.51370.08020.044*
C90.7308 (2)0.7839 (6)0.1427 (3)0.0376 (9)
H90.76040.86040.10170.045*
C100.9940 (2)0.3716 (6)0.2006 (2)0.0331 (8)
H10A1.01930.48410.22920.050*
H10B1.03080.32150.15510.050*
H10C0.98390.27020.24440.050*
C110.8649 (3)0.2188 (5)0.0985 (3)0.0373 (9)
H11A0.85420.12100.14390.056*
H11B0.90800.17200.05910.056*
H11C0.81500.24210.06460.056*
C120.9282 (2)0.5990 (5)0.0594 (2)0.0237 (7)
C130.8797 (2)0.6100 (6)0.0161 (2)0.0337 (9)
H130.83340.52800.02200.040*
C140.8991 (3)0.7407 (6)0.0823 (3)0.0452 (10)
H140.86530.74870.13290.054*
C150.9663 (3)0.8582 (6)0.0759 (2)0.0386 (10)
H150.97910.94670.12180.046*
C161.0155 (2)0.8471 (5)0.0018 (3)0.0347 (9)
H161.06280.92660.00270.042*
C170.9959 (2)0.7194 (5)0.0662 (2)0.0274 (7)
H171.02900.71480.11750.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01676 (11)0.02175 (12)0.02264 (12)0.00044 (9)0.00022 (16)0.00141 (16)
P10.0228 (4)0.0208 (4)0.0207 (4)0.0008 (3)0.0010 (4)0.0001 (3)
O10.0323 (13)0.0419 (15)0.047 (2)0.0136 (11)0.0007 (12)0.0156 (13)
O20.0580 (18)0.0296 (15)0.0471 (18)0.0000 (13)0.0037 (14)0.0108 (14)
O30.056 (2)0.065 (2)0.0386 (16)0.0241 (17)0.0116 (14)0.0095 (16)
C10.0267 (15)0.0265 (15)0.0183 (19)0.0055 (12)0.0014 (14)0.0051 (13)
C20.0254 (18)0.029 (2)0.0285 (18)0.0025 (14)0.0001 (14)0.0009 (15)
C30.035 (2)0.0295 (19)0.0259 (18)0.0013 (16)0.0048 (15)0.0024 (15)
C40.058 (3)0.046 (3)0.027 (2)0.008 (2)0.006 (2)0.0063 (18)
C50.0278 (19)0.039 (2)0.063 (4)0.0139 (16)0.0087 (18)0.0031 (18)
C60.0172 (16)0.077 (3)0.046 (3)0.0088 (18)0.0001 (18)0.002 (2)
C70.020 (2)0.053 (3)0.054 (3)0.0112 (18)0.0108 (17)0.013 (2)
C80.026 (2)0.048 (2)0.036 (2)0.0003 (16)0.0141 (16)0.0018 (17)
C90.0264 (19)0.039 (2)0.048 (2)0.0015 (16)0.0110 (18)0.0168 (19)
C100.028 (2)0.040 (2)0.031 (2)0.0105 (16)0.0008 (16)0.0041 (15)
C110.052 (3)0.0237 (19)0.036 (2)0.0019 (17)0.0030 (18)0.0057 (17)
C120.0227 (17)0.0273 (18)0.0210 (16)0.0045 (14)0.0005 (14)0.0029 (14)
C130.032 (2)0.043 (2)0.026 (2)0.0112 (16)0.0042 (15)0.0037 (16)
C140.050 (3)0.062 (3)0.025 (2)0.009 (2)0.0047 (18)0.0115 (18)
C150.046 (2)0.039 (2)0.030 (2)0.0019 (18)0.0108 (17)0.0091 (17)
C160.032 (2)0.031 (2)0.042 (2)0.0065 (16)0.0104 (17)0.0019 (17)
C170.0254 (18)0.0292 (19)0.0277 (18)0.0006 (15)0.0010 (14)0.0034 (15)
Geometric parameters (Å, º) top
Mo1—P12.4535 (9)C6—C71.397 (6)
Mo1—C11.949 (3)C7—H70.9500
Mo1—C21.973 (4)C7—C81.406 (6)
Mo1—C32.251 (4)C8—H80.9500
Mo1—C52.319 (4)C8—C91.403 (5)
Mo1—C62.344 (3)C9—H90.9500
Mo1—C72.385 (4)C10—H10A0.9800
Mo1—C82.382 (4)C10—H10B0.9800
Mo1—C92.351 (3)C10—H10C0.9800
P1—C101.822 (4)C11—H11A0.9800
P1—C111.823 (4)C11—H11B0.9800
P1—C121.819 (4)C11—H11C0.9800
O1—C11.161 (4)C12—C131.397 (5)
O2—C21.153 (4)C12—C171.388 (5)
O3—C31.208 (4)C13—H130.9500
C3—C41.525 (5)C13—C141.388 (5)
C4—H4A0.9800C14—H140.9500
C4—H4B0.9800C14—C151.370 (6)
C4—H4C0.9800C15—H150.9500
C5—H50.9500C15—C161.387 (6)
C5—C61.417 (6)C16—H160.9500
C5—C91.413 (6)C16—C171.395 (5)
C6—H60.9500C17—H170.9500
C1—Mo1—P176.95 (9)C9—C5—H5126.0
C1—Mo1—C2106.40 (14)C9—C5—C6107.9 (4)
C1—Mo1—C372.37 (13)Mo1—C6—H6120.0
C1—Mo1—C5100.01 (14)C5—C6—Mo171.4 (2)
C1—Mo1—C6130.12 (14)C5—C6—H6126.0
C1—Mo1—C7156.39 (14)C7—C6—Mo174.5 (2)
C1—Mo1—C8129.21 (14)C7—C6—C5107.9 (4)
C1—Mo1—C999.96 (13)C7—C6—H6126.0
C2—Mo1—P178.13 (11)Mo1—C7—H7121.9
C2—Mo1—C376.05 (15)C6—C7—Mo171.2 (2)
C2—Mo1—C5144.49 (15)C6—C7—H7125.9
C2—Mo1—C6109.72 (15)C6—C7—C8108.1 (4)
C2—Mo1—C797.13 (15)C8—C7—Mo172.7 (2)
C2—Mo1—C8116.74 (14)C8—C7—H7125.9
C2—Mo1—C9151.18 (14)Mo1—C8—H8121.4
C3—Mo1—P1131.79 (9)C7—C8—Mo173.0 (2)
C3—Mo1—C590.13 (14)C7—C8—H8125.7
C3—Mo1—C684.19 (15)C9—C8—Mo171.5 (2)
C3—Mo1—C7112.45 (14)C9—C8—C7108.6 (4)
C3—Mo1—C8141.51 (14)C9—C8—H8125.7
C3—Mo1—C9124.02 (14)Mo1—C9—H9120.4
C5—Mo1—P1131.72 (11)C5—C9—Mo171.2 (2)
C5—Mo1—C635.38 (15)C5—C9—H9126.3
C5—Mo1—C757.84 (15)C8—C9—Mo174.0 (2)
C5—Mo1—C857.75 (14)C8—C9—C5107.5 (4)
C5—Mo1—C935.21 (14)C8—C9—H9126.3
C6—Mo1—P1143.25 (12)P1—C10—H10A109.5
C6—Mo1—C734.36 (15)P1—C10—H10B109.5
C6—Mo1—C857.40 (15)P1—C10—H10C109.5
C6—Mo1—C958.34 (15)H10A—C10—H10B109.5
C7—Mo1—P1110.60 (12)H10A—C10—H10C109.5
C8—Mo1—P186.61 (11)H10B—C10—H10C109.5
C8—Mo1—C734.30 (14)P1—C11—H11A109.5
C9—Mo1—P197.03 (11)P1—C11—H11B109.5
C9—Mo1—C757.58 (14)P1—C11—H11C109.5
C9—Mo1—C834.49 (13)H11A—C11—H11B109.5
C10—P1—Mo1115.36 (13)H11A—C11—H11C109.5
C10—P1—C11101.66 (18)H11B—C11—H11C109.5
C11—P1—Mo1116.85 (14)C13—C12—P1120.1 (3)
C12—P1—Mo1112.96 (11)C17—C12—P1120.8 (3)
C12—P1—C10103.97 (17)C17—C12—C13118.9 (3)
C12—P1—C11104.47 (17)C12—C13—H13120.0
O1—C1—Mo1175.6 (3)C14—C13—C12120.1 (3)
O2—C2—Mo1175.7 (3)C14—C13—H13120.0
O3—C3—Mo1120.7 (3)C13—C14—H14119.5
O3—C3—C4116.8 (3)C15—C14—C13121.0 (4)
C4—C3—Mo1122.4 (3)C15—C14—H14119.5
C3—C4—H4A109.5C14—C15—H15120.3
C3—C4—H4B109.5C14—C15—C16119.5 (4)
C3—C4—H4C109.5C16—C15—H15120.3
H4A—C4—H4B109.5C15—C16—H16119.9
H4A—C4—H4C109.5C15—C16—C17120.2 (3)
H4B—C4—H4C109.5C17—C16—H16119.9
Mo1—C5—H5119.0C12—C17—C16120.3 (3)
C6—C5—Mo173.3 (2)C12—C17—H17119.8
C6—C5—H5126.0C16—C17—H17119.8
C9—C5—Mo173.6 (2)
Mo1—P1—C12—C1384.0 (3)C7—C8—C9—Mo164.1 (3)
Mo1—P1—C12—C1790.8 (3)C7—C8—C9—C50.3 (4)
Mo1—C5—C6—C766.0 (3)C9—C5—C6—Mo166.0 (2)
Mo1—C5—C9—C865.6 (2)C9—C5—C6—C70.0 (4)
Mo1—C6—C7—C863.8 (3)C10—P1—C12—C13150.3 (3)
Mo1—C7—C8—C963.1 (2)C10—P1—C12—C1735.0 (3)
Mo1—C8—C9—C563.7 (2)C11—P1—C12—C1344.0 (3)
P1—C12—C13—C14174.4 (3)C11—P1—C12—C17141.2 (3)
P1—C12—C17—C16175.7 (3)C12—C13—C14—C151.1 (6)
C5—C6—C7—Mo164.0 (2)C13—C12—C17—C160.8 (5)
C5—C6—C7—C80.2 (4)C13—C14—C15—C160.3 (6)
C6—C5—C9—Mo165.8 (3)C14—C15—C16—C171.1 (6)
C6—C5—C9—C80.2 (4)C15—C16—C17—C121.6 (5)
C6—C7—C8—Mo162.8 (3)C17—C12—C13—C140.5 (6)
C6—C7—C8—C90.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···O3i0.982.453.344 (5)152
C13—H13···O3i0.952.363.275 (5)162
Symmetry code: (i) x+3/2, y1/2, z1/2.
(2) trans-Acetyldicarbonyl(η5-cyclopentadienyl)(ethyldiphenylphosphane)molybdenum(II) top
Crystal data top
[Mo(C5H5)(C2H3O)(C14H15P)(CO)2]Z = 2
Mr = 474.32F(000) = 484
Triclinic, P1Dx = 1.504 Mg m3
a = 8.2451 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6132 (11) ÅCell parameters from 10268 reflections
c = 12.5265 (12) Åθ = 3.2–27.6°
α = 63.617 (4)°µ = 0.72 mm1
β = 77.167 (5)°T = 173 K
γ = 84.671 (6)°Prism, yellow
V = 1047.65 (18) Å30.32 × 0.26 × 0.21 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
4365 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.029
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1010
Tmin = 0.712, Tmax = 0.859k = 1515
11081 measured reflectionsl = 1616
4797 independent reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.029P)2 + 0.4738P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4797 reflectionsΔρmax = 0.30 e Å3
255 parametersΔρmin = 0.82 e Å3
0 restraints
Crystal data top
[Mo(C5H5)(C2H3O)(C14H15P)(CO)2]γ = 84.671 (6)°
Mr = 474.32V = 1047.65 (18) Å3
Triclinic, P1Z = 2
a = 8.2451 (8) ÅMo Kα radiation
b = 11.6132 (11) ŵ = 0.72 mm1
c = 12.5265 (12) ÅT = 173 K
α = 63.617 (4)°0.32 × 0.26 × 0.21 mm
β = 77.167 (5)°
Data collection top
Rigaku XtaLAB mini
diffractometer
4797 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
4365 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.859Rint = 0.029
11081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.09Δρmax = 0.30 e Å3
4797 reflectionsΔρmin = 0.82 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.25391 (2)0.22164 (2)0.24017 (2)0.01783 (6)
P10.15696 (6)0.36677 (5)0.33857 (5)0.01874 (11)
O10.2231 (2)0.48000 (14)0.01116 (14)0.0328 (4)
O20.1013 (2)0.10837 (16)0.37595 (17)0.0379 (4)
O30.2283 (2)0.07548 (18)0.09140 (19)0.0459 (5)
C10.2279 (3)0.3845 (2)0.0971 (2)0.0225 (4)
C20.0285 (3)0.1541 (2)0.3233 (2)0.0248 (4)
C30.1579 (3)0.1604 (2)0.1164 (2)0.0256 (5)
C40.0061 (3)0.2187 (2)0.0626 (2)0.0361 (6)
H4A0.09140.19550.12650.054*
H4B0.00430.18690.00550.054*
H4C0.01770.31060.02170.054*
C50.5510 (3)0.2184 (2)0.2032 (2)0.0313 (5)
H50.61640.28730.14260.038*
C60.4935 (3)0.1161 (2)0.1898 (2)0.0319 (5)
H60.51300.10630.11830.038*
C70.4005 (3)0.0304 (2)0.3044 (2)0.0331 (5)
H70.34930.04560.32130.040*
C80.4000 (3)0.0813 (2)0.3878 (2)0.0321 (5)
H80.34850.04500.46960.039*
C90.4922 (3)0.1978 (2)0.3243 (2)0.0309 (5)
H90.51070.25170.35750.037*
C100.0688 (3)0.3899 (2)0.3745 (2)0.0247 (4)
H10A0.12100.30750.43080.030*
H10B0.08990.44560.41510.030*
C110.1500 (3)0.4481 (2)0.2632 (2)0.0347 (5)
H11A0.10270.53160.20840.052*
H11B0.26750.45600.28870.052*
H11C0.13070.39340.22260.052*
C120.2069 (3)0.30616 (19)0.49000 (19)0.0219 (4)
C130.1367 (3)0.1892 (2)0.5807 (2)0.0273 (5)
H130.06440.14580.56360.033*
C140.1734 (3)0.1371 (2)0.6958 (2)0.0317 (5)
H140.12540.05930.75540.038*
C150.2814 (3)0.2006 (2)0.7222 (2)0.0338 (5)
H150.30550.16600.79960.041*
C160.3534 (3)0.3154 (2)0.6333 (2)0.0347 (5)
H160.42680.35770.65080.042*
C170.3166 (3)0.3686 (2)0.5174 (2)0.0284 (5)
H170.36560.44610.45800.034*
C180.2429 (3)0.53126 (19)0.26053 (19)0.0216 (4)
C190.4009 (3)0.5528 (2)0.18706 (19)0.0245 (4)
H190.45970.48510.17650.029*
C200.4719 (3)0.6756 (2)0.1291 (2)0.0272 (5)
H200.57860.68890.08130.033*
C210.3841 (3)0.7775 (2)0.1424 (2)0.0294 (5)
H210.43090.85950.10280.035*
C220.2268 (3)0.7569 (2)0.2148 (2)0.0334 (5)
H220.16740.82530.22350.040*
C230.1566 (3)0.6340 (2)0.2749 (2)0.0306 (5)
H230.05140.62050.32480.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01765 (10)0.01435 (9)0.01900 (10)0.00154 (6)0.00451 (7)0.00496 (7)
P10.0185 (2)0.0163 (2)0.0196 (3)0.00010 (19)0.0039 (2)0.0062 (2)
O10.0459 (10)0.0201 (8)0.0262 (8)0.0016 (7)0.0129 (8)0.0023 (7)
O20.0284 (9)0.0325 (9)0.0484 (11)0.0103 (7)0.0027 (8)0.0168 (8)
O30.0520 (12)0.0396 (10)0.0655 (13)0.0108 (9)0.0235 (10)0.0368 (10)
C10.0230 (10)0.0208 (10)0.0270 (11)0.0015 (8)0.0070 (9)0.0126 (9)
C20.0264 (11)0.0180 (10)0.0297 (11)0.0006 (8)0.0084 (9)0.0089 (9)
C30.0294 (11)0.0214 (11)0.0252 (11)0.0043 (9)0.0052 (9)0.0087 (9)
C40.0410 (14)0.0355 (13)0.0378 (14)0.0009 (11)0.0194 (12)0.0161 (11)
C50.0166 (10)0.0304 (12)0.0373 (13)0.0045 (9)0.0036 (9)0.0077 (10)
C60.0258 (12)0.0348 (13)0.0348 (13)0.0148 (10)0.0068 (10)0.0173 (11)
C70.0329 (13)0.0183 (11)0.0421 (14)0.0091 (9)0.0128 (11)0.0074 (10)
C80.0244 (11)0.0354 (13)0.0247 (11)0.0100 (10)0.0098 (9)0.0022 (10)
C90.0190 (11)0.0379 (13)0.0396 (13)0.0083 (9)0.0118 (10)0.0191 (11)
C100.0203 (10)0.0230 (11)0.0284 (11)0.0009 (8)0.0025 (9)0.0105 (9)
C110.0265 (12)0.0369 (13)0.0442 (15)0.0082 (10)0.0157 (11)0.0184 (12)
C120.0228 (10)0.0208 (10)0.0213 (10)0.0024 (8)0.0051 (8)0.0086 (8)
C130.0321 (12)0.0214 (11)0.0272 (11)0.0026 (9)0.0069 (10)0.0086 (9)
C140.0400 (13)0.0220 (11)0.0260 (12)0.0008 (10)0.0070 (10)0.0041 (9)
C150.0439 (14)0.0332 (13)0.0254 (12)0.0074 (11)0.0163 (11)0.0110 (10)
C160.0403 (14)0.0349 (13)0.0348 (13)0.0014 (11)0.0171 (11)0.0157 (11)
C170.0320 (12)0.0259 (11)0.0267 (11)0.0045 (9)0.0063 (10)0.0100 (9)
C180.0246 (10)0.0175 (10)0.0215 (10)0.0004 (8)0.0073 (8)0.0062 (8)
C190.0267 (11)0.0219 (11)0.0255 (11)0.0002 (8)0.0046 (9)0.0111 (9)
C200.0281 (11)0.0283 (12)0.0234 (11)0.0072 (9)0.0003 (9)0.0105 (9)
C210.0398 (13)0.0193 (11)0.0269 (12)0.0065 (9)0.0080 (10)0.0063 (9)
C220.0392 (14)0.0199 (11)0.0418 (14)0.0019 (10)0.0078 (11)0.0146 (10)
C230.0297 (12)0.0240 (11)0.0347 (13)0.0004 (9)0.0020 (10)0.0118 (10)
Geometric parameters (Å, º) top
Mo1—P12.4813 (6)C10—H10A0.9700
Mo1—C11.979 (2)C10—H10B0.9700
Mo1—C21.960 (2)C10—C111.530 (3)
Mo1—C32.273 (2)C11—H11A0.9600
Mo1—C52.390 (2)C11—H11B0.9600
Mo1—C62.342 (2)C11—H11C0.9600
Mo1—C72.321 (2)C12—C131.398 (3)
Mo1—C82.340 (2)C12—C171.393 (3)
Mo1—C92.368 (2)C13—H130.9300
P1—C101.839 (2)C13—C141.386 (3)
P1—C121.836 (2)C14—H140.9300
P1—C181.841 (2)C14—C151.385 (3)
O1—C11.158 (3)C15—H150.9300
O2—C21.158 (3)C15—C161.380 (3)
O3—C31.223 (3)C16—H160.9300
C3—C41.514 (3)C16—C171.395 (3)
C4—H4A0.9600C17—H170.9300
C4—H4B0.9600C18—C191.389 (3)
C4—H4C0.9600C18—C231.392 (3)
C5—H50.9300C19—H190.9300
C5—C61.408 (3)C19—C201.396 (3)
C5—C91.403 (3)C20—H200.9300
C6—H60.9300C20—C211.384 (3)
C6—C71.422 (3)C21—H210.9300
C7—H70.9300C21—C221.379 (3)
C7—C81.410 (4)C22—H220.9300
C8—H80.9300C22—C231.395 (3)
C8—C91.417 (3)C23—H230.9300
C9—H90.9300
C1—Mo1—P179.07 (6)C6—C7—Mo173.06 (12)
C1—Mo1—C375.46 (8)C6—C7—H7126.2
C1—Mo1—C597.88 (8)C8—C7—Mo173.12 (13)
C1—Mo1—C6109.55 (9)C8—C7—C6107.7 (2)
C1—Mo1—C7144.10 (9)C8—C7—H7126.2
C1—Mo1—C8153.01 (9)Mo1—C8—H8120.3
C1—Mo1—C9118.12 (9)C7—C8—Mo171.68 (12)
C2—Mo1—P179.67 (6)C7—C8—H8126.2
C2—Mo1—C1106.04 (9)C7—C8—C9107.6 (2)
C2—Mo1—C373.53 (9)C9—C8—Mo173.60 (12)
C2—Mo1—C5155.94 (9)C9—C8—H8126.2
C2—Mo1—C6129.67 (9)Mo1—C9—H9121.0
C2—Mo1—C799.26 (9)C5—C9—Mo173.70 (13)
C2—Mo1—C899.09 (9)C5—C9—C8108.7 (2)
C2—Mo1—C9128.81 (9)C5—C9—H9125.7
C3—Mo1—P1135.76 (6)C8—C9—Mo171.38 (12)
C3—Mo1—C5110.95 (8)C8—C9—H9125.7
C3—Mo1—C682.22 (8)P1—C10—H10A108.7
C3—Mo1—C788.08 (8)P1—C10—H10B108.7
C3—Mo1—C8122.06 (9)H10A—C10—H10B107.6
C3—Mo1—C9139.73 (8)C11—C10—P1114.02 (16)
C5—Mo1—P1107.89 (6)C11—C10—H10A108.7
C6—Mo1—P1140.94 (6)C11—C10—H10B108.7
C6—Mo1—C534.59 (8)C10—C11—H11A109.5
C6—Mo1—C957.61 (8)C10—C11—H11B109.5
C7—Mo1—P1131.14 (7)C10—C11—H11C109.5
C7—Mo1—C558.24 (8)H11A—C11—H11B109.5
C7—Mo1—C635.51 (8)H11A—C11—H11C109.5
C7—Mo1—C835.20 (9)H11B—C11—H11C109.5
C7—Mo1—C958.20 (9)C13—C12—P1118.36 (16)
C8—Mo1—P196.21 (7)C17—C12—P1123.11 (16)
C8—Mo1—C557.94 (8)C17—C12—C13118.5 (2)
C8—Mo1—C658.45 (9)C12—C13—H13119.5
C8—Mo1—C935.03 (8)C14—C13—C12120.9 (2)
C9—Mo1—P184.34 (6)C14—C13—H13119.5
C9—Mo1—C534.29 (8)C13—C14—H14120.0
C10—P1—Mo1117.10 (7)C15—C14—C13120.0 (2)
C10—P1—C18103.97 (10)C15—C14—H14120.0
C12—P1—Mo1112.60 (7)C14—C15—H15120.1
C12—P1—C10100.72 (10)C16—C15—C14119.8 (2)
C12—P1—C18102.90 (9)C16—C15—H15120.1
C18—P1—Mo1117.35 (7)C15—C16—H16119.8
O1—C1—Mo1175.79 (19)C15—C16—C17120.4 (2)
O2—C2—Mo1176.56 (19)C17—C16—H16119.8
O3—C3—Mo1120.13 (17)C12—C17—C16120.3 (2)
O3—C3—C4116.7 (2)C12—C17—H17119.8
C4—C3—Mo1123.19 (16)C16—C17—H17119.8
C3—C4—H4A109.5C19—C18—P1118.76 (16)
C3—C4—H4B109.5C19—C18—C23118.97 (19)
C3—C4—H4C109.5C23—C18—P1122.26 (17)
H4A—C4—H4B109.5C18—C19—H19119.8
H4A—C4—H4C109.5C18—C19—C20120.4 (2)
H4B—C4—H4C109.5C20—C19—H19119.8
Mo1—C5—H5122.7C19—C20—H20119.9
C6—C5—Mo170.86 (12)C21—C20—C19120.2 (2)
C6—C5—H5126.1C21—C20—H20119.9
C9—C5—Mo172.01 (13)C20—C21—H21120.2
C9—C5—H5126.1C22—C21—C20119.7 (2)
C9—C5—C6107.7 (2)C22—C21—H21120.2
Mo1—C6—H6119.9C21—C22—H22119.8
C5—C6—Mo174.56 (13)C21—C22—C23120.3 (2)
C5—C6—H6125.9C23—C22—H22119.8
C5—C6—C7108.3 (2)C18—C23—C22120.4 (2)
C7—C6—Mo171.43 (12)C18—C23—H23119.8
C7—C6—H6125.9C22—C23—H23119.8
Mo1—C7—H7119.5
Mo1—P1—C10—C1160.67 (18)C9—C5—C6—C71.0 (2)
Mo1—P1—C12—C1362.49 (18)C10—P1—C12—C1363.03 (19)
Mo1—P1—C12—C17114.86 (18)C10—P1—C12—C17119.61 (19)
Mo1—P1—C18—C1928.34 (19)C10—P1—C18—C19159.42 (17)
Mo1—P1—C18—C23153.15 (17)C10—P1—C18—C2322.1 (2)
Mo1—C5—C6—C763.95 (15)C12—P1—C10—C11176.90 (17)
Mo1—C5—C9—C863.24 (15)C12—P1—C18—C1995.88 (18)
Mo1—C6—C7—C865.44 (15)C12—P1—C18—C2382.6 (2)
Mo1—C7—C8—C965.34 (15)C12—C13—C14—C150.3 (4)
Mo1—C8—C9—C564.74 (16)C13—C12—C17—C160.6 (3)
P1—C12—C13—C14178.29 (18)C13—C14—C15—C160.5 (4)
P1—C12—C17—C16177.99 (18)C14—C15—C16—C170.6 (4)
P1—C18—C19—C20178.29 (17)C15—C16—C17—C120.1 (4)
P1—C18—C23—C22179.50 (18)C17—C12—C13—C140.8 (3)
C5—C6—C7—Mo166.00 (15)C18—P1—C10—C1170.56 (18)
C5—C6—C7—C80.6 (2)C18—P1—C12—C13170.22 (17)
C6—C5—C9—Mo162.23 (15)C18—P1—C12—C1712.4 (2)
C6—C5—C9—C81.0 (2)C18—C19—C20—C211.2 (3)
C6—C7—C8—Mo165.40 (15)C19—C18—C23—C221.0 (3)
C6—C7—C8—C90.1 (2)C19—C20—C21—C220.9 (3)
C7—C8—C9—Mo164.07 (15)C20—C21—C22—C230.3 (4)
C7—C8—C9—C50.7 (2)C21—C22—C23—C181.3 (4)
C9—C5—C6—Mo162.98 (15)C23—C18—C19—C200.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.633.414 (3)142
C13—H13···O2i0.932.713.282 (3)121
C22—H22···O3ii0.932.663.316 (3)128
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z.
Selected geometric parameters (Å, º) for (1) top
Mo1—P12.4535 (9)Mo1—C21.973 (4)
Mo1—C11.949 (3)Mo1—C32.251 (4)
C1—Mo1—P176.95 (9)C2—Mo1—P178.13 (11)
C1—Mo1—C2106.40 (14)C2—Mo1—C376.05 (15)
C1—Mo1—C372.37 (13)C3—Mo1—P1131.79 (9)
Selected geometric parameters (Å, º) for (2) top
Mo1—P12.4813 (6)Mo1—C21.960 (2)
Mo1—C11.979 (2)Mo1—C32.273 (2)
C1—Mo1—P179.07 (6)C2—Mo1—C1106.04 (9)
C1—Mo1—C375.46 (8)C2—Mo1—C373.53 (9)
C2—Mo1—P179.67 (6)C3—Mo1—P1135.76 (6)
Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···O3i0.982.453.344 (5)151.9
C13—H13···O3i0.952.363.275 (5)162.2
Symmetry code: (i) x+3/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.633.414 (3)142.0
C13—H13···O2i0.932.713.282 (3)120.8
C22—H22···O3ii0.932.663.316 (3)128.4
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z.

Experimental details

(1)(2)
Crystal data
Chemical formula[Mo(C5H5)(C2H3O)(C8H11P)(CO)2][Mo(C5H5)(C2H3O)(C14H15P)(CO)2]
Mr398.23474.32
Crystal system, space groupOrthorhombic, Pna21Triclinic, P1
Temperature (K)173173
a, b, c (Å)16.374 (2), 6.8898 (10), 15.208 (2)8.2451 (8), 11.6132 (11), 12.5265 (12)
α, β, γ (°)90, 90, 9063.617 (4), 77.167 (5), 84.671 (6)
V3)1715.6 (4)1047.65 (18)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.870.72
Crystal size (mm)0.4 × 0.4 × 0.190.32 × 0.26 × 0.21
Data collection
DiffractometerRigaku XtaLAB mini
diffractometer
Rigaku XtaLAB mini
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Multi-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.707, 0.8480.712, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
17021, 3923, 3639 11081, 4797, 4365
Rint0.0350.029
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.045, 1.05 0.028, 0.068, 1.09
No. of reflections39234797
No. of parameters202255
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.270.30, 0.82
Absolute structureFlack x determined using 1649 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).?
Absolute structure parameter0.007 (18)?

Computer programs: CrystalClear (Rigaku, 2011), SHELXS (Sheldrick, 2008), SIR2008 (Burla et al., 2007), SHELXL (Sheldrick, 2008), Olex2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors acknowledge St. Catherine University and NSF–MRI award #1125975 "MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility". Additional funding was provided by a grant to Carleton College from the Howard Hughes Medical Institute.

References

First citationAdams, H., Bailey, N. A., Day, A. N., Morris, M. J. & Harrison, M. M. (1991). J. Organomet. Chem. 407, 247–258.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAsdar, A., Lapinte, C. & Toupet, L. (1989). Organometallics, 8, 2708–2717.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarnett, K. W. (1969). Inorg. Chem. 8, 2009–2011.  CrossRef CAS Web of Science Google Scholar
First citationBarnett, K. W. & Pollmann, T. G. (1974). J. Organomet. Chem. 69, 413–421.  CrossRef CAS Web of Science Google Scholar
First citationBarnett, K. W. & Treichel, P. M. (1967). Inorg. Chem. 6, 294–299.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationButler, I. S., Basolo, F. & Pearson, R. G. (1967). Inorg. Chem. 6, 2074–2079.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553–558.  CrossRef CAS Web of Science Google Scholar
First citationMercier, F., Ricard, L. & Mathey, F. (1993). Organometallics, 12, 98–103.  CSD CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. & Janzen, D. E. (2013). Acta Cryst. E69, m475–m476.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWhited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158–m1159.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWhited, M. T. & Hofmeister, G. E. (2014). J. Chem. Educ. 91, 1050–1053.  Web of Science CrossRef CAS Google Scholar
First citationYan, X., Yu, B., Wang, L., Tang, N. & Xi, C. (2009). Organometallics, 28, 6827–6830.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 216-220
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds