metal-organic compounds
μ-methanolato-bis{[N′-(1-benzoylprop-1-en-2-yl)thiophene-2-carbohydrazidato-κ3O,N′,O′]oxidovanadium(V)}
of di-aInstituto de Química de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brazil, and bDepartamento de Química, Universidade Federal do Triângulo Mineiro, 38025-440, Uberaba, MG, Brazil
*Correspondence e-mail: deflon@iqsc.usp.br
The neutral binuclear molecule of the title complex, [V2(C15H12N2O2S)2(CH3O)2O2], exhibits inversion symmetry and consists of two oxidovanadium(V) (VO)3+ fragments, each coordinated by a dianionic and O,N′,O′-chelating N′-(1-benzoylprop-1-en-2-yl)thiophene-2-carbohydrazidate ligand. The V5+ cations are bridged by two asymmetrically bonding methanolate ligands [V—O = 1.8155 (12) and 2.3950 (13) Å] originating from the deprotonation of the methanol solvent. The coordination sphere of the VV atom is distorted octahedral, with the equatorial plane defined by the three donor atoms of the thiophene-2-carbohydrazidate ligand and the O atom of a methanolate unit. The axial positions are occupied by the oxide group and the remaining methanolate ligand. The axially bound methanolate ligand shows a longer V—O bond length due to the trans influence caused by the tightly bonded oxide group. The packing of the complex molecules is dominated by dispersion forces.
Keywords: crystal structure; thiophene-2-carbohydrazide; vanadium(V) complex; dinuclear complex; alkoxide bridging.
CCDC reference: 1023545
1. Related literature
For related structures of binuclear vanadium(V) complexes with O,N,O-chelating hydrazonate ligands and methanolate bridges, see: Sarkar & Pal (2009); Monfared et al. (2011); Maia et al. (2005, 2007). For synthetic details, see: Mondal et al. (2008).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1023545
10.1107/S1600536814020327/wm5059sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814020327/wm5059Isup2.hkl
The synthesis of the complex was developed by a slight modification of the procedure previously described by Mondal et al. (2008). 0.2 mmol (0.053 g) of [VO(acac)2] and 0.2 mmol of benzoylacetone-2-thinoylhydrazone (0.058 g) were diluted separately in methanol. The solutions were mixed and stirred for 0.5 h. A brown solution was obtained and after slow evaporation of the solvent single crystals were formed.
The H atoms were positioned geometrically and refined using a riding model with C—H bond lengths of 0.96 Å (methyl) and of 0.93 Å (aromatic) and with Uiso(H) = 1.5Ueq(C) (methyl), and with Uiso(H) = 1.2Ueq(C) (aromatic).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).[V2(C15H12N2O2S)2(CH3O)2O2] | F(000) = 784 |
Mr = 764.60 | Dx = 1.518 Mg m−3 |
Monoclinic, P21/n | Melting point: 451 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 10.9900 (2) Å | Cell parameters from 9900 reflections |
b = 15.9297 (3) Å | θ = 2.5–25.4° |
c = 11.0178 (3) Å | µ = 0.74 mm−1 |
β = 119.884 (1)° | T = 296 K |
V = 1672.39 (6) Å3 | Prism, brown |
Z = 2 | 0.21 × 0.21 × 0.10 mm |
Bruker APEXII CCD diffractometer | 3067 independent reflections |
Radiation source: fine-focus sealed tube | 2718 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ϕ and ω scans | θmax = 25.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −13→13 |
Tmin = 0.860, Tmax = 0.930 | k = −19→19 |
20108 measured reflections | l = −10→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0427P)2 + 0.7671P] where P = (Fo2 + 2Fc2)/3 |
3067 reflections | (Δ/σ)max = 0.001 |
219 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
[V2(C15H12N2O2S)2(CH3O)2O2] | V = 1672.39 (6) Å3 |
Mr = 764.60 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.9900 (2) Å | µ = 0.74 mm−1 |
b = 15.9297 (3) Å | T = 296 K |
c = 11.0178 (3) Å | 0.21 × 0.21 × 0.10 mm |
β = 119.884 (1)° |
Bruker APEXII CCD diffractometer | 3067 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2718 reflections with I > 2σ(I) |
Tmin = 0.860, Tmax = 0.930 | Rint = 0.020 |
20108 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.27 e Å−3 |
3067 reflections | Δρmin = −0.24 e Å−3 |
219 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
V | −0.01766 (3) | 0.95609 (2) | 0.63227 (3) | 0.03545 (12) | |
S1 | −0.33170 (6) | 1.19868 (4) | 0.71561 (6) | 0.05580 (17) | |
O2 | 0.17270 (14) | 0.93610 (9) | 0.73088 (13) | 0.0449 (3) | |
O3 | −0.06694 (12) | 0.93265 (8) | 0.45226 (12) | 0.0362 (3) | |
O4 | −0.07281 (16) | 0.87680 (9) | 0.67733 (15) | 0.0525 (4) | |
N2 | 0.02549 (16) | 1.03306 (10) | 0.80379 (16) | 0.0382 (4) | |
N1 | −0.08298 (17) | 1.08675 (10) | 0.78577 (17) | 0.0426 (4) | |
C9 | 0.26550 (19) | 0.93078 (12) | 0.86578 (19) | 0.0387 (4) | |
C8 | 0.2507 (2) | 0.97723 (14) | 0.9611 (2) | 0.0463 (5) | |
H7 | 0.3208 | 0.9727 | 1.0544 | 0.056* | |
C6 | 0.1366 (2) | 1.03221 (13) | 0.9298 (2) | 0.0417 (4) | |
C7 | 0.1447 (2) | 1.08777 (15) | 1.0428 (2) | 0.0539 (5) | |
H2 | 0.2270 | 1.0740 | 1.1299 | 0.081* | |
H3 | 0.0628 | 1.0797 | 1.0515 | 0.081* | |
H1 | 0.1496 | 1.1453 | 1.0198 | 0.081* | |
C5 | −0.1873 (2) | 1.07576 (12) | 0.6604 (2) | 0.0389 (4) | |
O1 | −0.18078 (14) | 1.02693 (9) | 0.56828 (14) | 0.0436 (3) | |
C4 | −0.3193 (2) | 1.11904 (12) | 0.6175 (2) | 0.0404 (4) | |
C1 | −0.5054 (3) | 1.21073 (16) | 0.6013 (3) | 0.0607 (6) | |
H6 | −0.5611 | 1.2508 | 0.6118 | 0.073* | |
C2 | −0.5541 (2) | 1.15642 (17) | 0.4942 (3) | 0.0603 (6) | |
H4 | −0.6476 | 1.1540 | 0.4238 | 0.072* | |
C3 | −0.4478 (2) | 1.10288 (14) | 0.4995 (2) | 0.0473 (5) | |
H5 | −0.4625 | 1.0625 | 0.4326 | 0.057* | |
C10 | 0.38325 (19) | 0.87296 (12) | 0.89970 (19) | 0.0380 (4) | |
C15 | 0.4093 (2) | 0.84603 (14) | 0.7951 (2) | 0.0473 (5) | |
H12 | 0.3543 | 0.8661 | 0.7043 | 0.057* | |
C14 | 0.5155 (2) | 0.79008 (16) | 0.8240 (2) | 0.0586 (6) | |
H11 | 0.5325 | 0.7730 | 0.7532 | 0.070* | |
C13 | 0.5968 (2) | 0.75917 (15) | 0.9579 (2) | 0.0552 (6) | |
H10 | 0.6685 | 0.7212 | 0.9773 | 0.066* | |
C12 | 0.5717 (2) | 0.78462 (14) | 1.0622 (2) | 0.0506 (5) | |
H9 | 0.6258 | 0.7630 | 1.1520 | 0.061* | |
C11 | 0.4678 (2) | 0.84163 (13) | 1.03576 (19) | 0.0453 (5) | |
H8 | 0.4534 | 0.8595 | 1.1079 | 0.054* | |
C16 | −0.1838 (2) | 0.88198 (14) | 0.3600 (2) | 0.0493 (5) | |
H15 | −0.1841 | 0.8314 | 0.4072 | 0.074* | |
H13 | −0.1768 | 0.8680 | 0.2789 | 0.074* | |
H14 | −0.2692 | 0.9124 | 0.3317 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V | 0.03501 (19) | 0.0397 (2) | 0.03146 (18) | 0.00311 (13) | 0.01640 (14) | −0.00117 (12) |
S1 | 0.0529 (3) | 0.0550 (3) | 0.0687 (4) | 0.0045 (3) | 0.0372 (3) | −0.0054 (3) |
O2 | 0.0387 (7) | 0.0601 (9) | 0.0324 (7) | 0.0123 (6) | 0.0151 (6) | 0.0024 (6) |
O3 | 0.0319 (7) | 0.0404 (7) | 0.0327 (6) | −0.0024 (5) | 0.0133 (5) | −0.0056 (5) |
O4 | 0.0642 (10) | 0.0465 (8) | 0.0544 (8) | −0.0015 (7) | 0.0355 (8) | 0.0020 (7) |
N2 | 0.0374 (9) | 0.0420 (9) | 0.0391 (8) | 0.0022 (7) | 0.0220 (7) | −0.0014 (7) |
N1 | 0.0407 (9) | 0.0434 (9) | 0.0484 (9) | 0.0061 (7) | 0.0258 (8) | −0.0007 (7) |
C9 | 0.0328 (10) | 0.0459 (11) | 0.0339 (9) | 0.0006 (8) | 0.0141 (8) | 0.0041 (8) |
C8 | 0.0390 (11) | 0.0566 (12) | 0.0359 (10) | 0.0057 (9) | 0.0131 (8) | −0.0022 (9) |
C6 | 0.0444 (11) | 0.0468 (11) | 0.0368 (10) | −0.0043 (9) | 0.0224 (9) | −0.0040 (8) |
C7 | 0.0558 (13) | 0.0607 (14) | 0.0454 (11) | −0.0017 (11) | 0.0256 (10) | −0.0133 (10) |
C5 | 0.0395 (10) | 0.0371 (10) | 0.0486 (11) | 0.0018 (8) | 0.0285 (9) | 0.0045 (8) |
O1 | 0.0362 (7) | 0.0522 (8) | 0.0435 (7) | 0.0058 (6) | 0.0207 (6) | −0.0018 (6) |
C4 | 0.0411 (11) | 0.0397 (10) | 0.0504 (11) | 0.0018 (8) | 0.0304 (9) | 0.0054 (8) |
C1 | 0.0559 (14) | 0.0571 (14) | 0.0868 (17) | 0.0149 (11) | 0.0489 (14) | 0.0092 (13) |
C2 | 0.0365 (11) | 0.0722 (16) | 0.0692 (15) | 0.0081 (11) | 0.0242 (11) | 0.0161 (13) |
C3 | 0.0426 (11) | 0.0502 (12) | 0.0530 (11) | 0.0017 (9) | 0.0268 (10) | 0.0031 (10) |
C10 | 0.0314 (9) | 0.0420 (10) | 0.0370 (9) | −0.0013 (8) | 0.0144 (8) | 0.0006 (8) |
C15 | 0.0434 (11) | 0.0582 (13) | 0.0381 (10) | 0.0049 (10) | 0.0186 (9) | 0.0035 (9) |
C14 | 0.0568 (14) | 0.0690 (15) | 0.0573 (13) | 0.0109 (12) | 0.0341 (11) | −0.0018 (11) |
C13 | 0.0409 (12) | 0.0560 (13) | 0.0616 (13) | 0.0113 (10) | 0.0202 (10) | 0.0004 (11) |
C12 | 0.0414 (11) | 0.0503 (12) | 0.0429 (11) | 0.0047 (9) | 0.0079 (9) | 0.0019 (9) |
C11 | 0.0433 (11) | 0.0535 (12) | 0.0335 (9) | 0.0052 (9) | 0.0150 (8) | 0.0005 (8) |
C16 | 0.0420 (11) | 0.0522 (12) | 0.0445 (11) | −0.0140 (9) | 0.0145 (9) | −0.0093 (9) |
V—O4 | 1.5839 (15) | C5—O1 | 1.308 (2) |
V—O3 | 1.8155 (12) | C5—C4 | 1.456 (3) |
V—O2 | 1.8421 (13) | C4—C3 | 1.386 (3) |
V—O1 | 1.9300 (13) | C1—C2 | 1.341 (4) |
V—N2 | 2.0992 (16) | C1—H6 | 0.9300 |
V—O3i | 2.3950 (13) | C2—C3 | 1.425 (3) |
S1—C1 | 1.695 (3) | C2—H4 | 0.9300 |
S1—C4 | 1.715 (2) | C3—H5 | 0.9300 |
O2—C9 | 1.321 (2) | C10—C15 | 1.387 (3) |
O3—C16 | 1.426 (2) | C10—C11 | 1.404 (3) |
O3—Vi | 2.3950 (13) | C15—C14 | 1.373 (3) |
N2—C6 | 1.315 (3) | C15—H12 | 0.9300 |
N2—N1 | 1.399 (2) | C14—C13 | 1.380 (3) |
N1—C5 | 1.295 (3) | C14—H11 | 0.9300 |
C9—C8 | 1.359 (3) | C13—C12 | 1.370 (3) |
C9—C10 | 1.477 (3) | C13—H10 | 0.9300 |
C8—C6 | 1.424 (3) | C12—C11 | 1.372 (3) |
C8—H7 | 0.9300 | C12—H9 | 0.9300 |
C6—C7 | 1.494 (3) | C11—H8 | 0.9300 |
C7—H2 | 0.9600 | C16—H15 | 0.9600 |
C7—H3 | 0.9600 | C16—H13 | 0.9600 |
C7—H1 | 0.9600 | C16—H14 | 0.9600 |
O4—V—O3 | 103.06 (7) | N1—C5—C4 | 119.43 (17) |
O4—V—O2 | 100.18 (7) | O1—C5—C4 | 117.45 (17) |
O3—V—O2 | 103.99 (6) | C5—O1—V | 117.66 (12) |
O4—V—O1 | 98.62 (7) | C3—C4—C5 | 126.90 (19) |
O3—V—O1 | 90.23 (6) | C3—C4—S1 | 111.43 (15) |
O2—V—O1 | 153.09 (7) | C5—C4—S1 | 121.67 (15) |
O4—V—N2 | 97.68 (7) | C2—C1—S1 | 112.87 (18) |
O3—V—N2 | 156.10 (6) | C2—C1—H6 | 123.6 |
O2—V—N2 | 83.64 (6) | S1—C1—H6 | 123.6 |
O1—V—N2 | 74.89 (6) | C1—C2—C3 | 113.0 (2) |
O4—V—O3i | 174.44 (6) | C1—C2—H4 | 123.5 |
O3—V—O3i | 71.92 (6) | C3—C2—H4 | 123.5 |
O2—V—O3i | 79.07 (6) | C4—C3—C2 | 111.0 (2) |
O1—V—O3i | 83.98 (5) | C4—C3—H5 | 124.5 |
N2—V—O3i | 87.73 (5) | C2—C3—H5 | 124.5 |
C1—S1—C4 | 91.68 (11) | C15—C10—C11 | 118.46 (18) |
C9—O2—V | 133.45 (13) | C15—C10—C9 | 120.02 (17) |
C16—O3—V | 124.60 (12) | C11—C10—C9 | 121.48 (17) |
C16—O3—Vi | 121.85 (11) | C14—C15—C10 | 120.71 (19) |
V—O3—Vi | 108.08 (6) | C14—C15—H12 | 119.6 |
C6—N2—N1 | 115.69 (16) | C10—C15—H12 | 119.6 |
C6—N2—V | 128.24 (13) | C15—C14—C13 | 120.2 (2) |
N1—N2—V | 115.79 (12) | C15—C14—H11 | 119.9 |
C5—N1—N2 | 107.93 (15) | C13—C14—H11 | 119.9 |
O2—C9—C8 | 120.78 (18) | C12—C13—C14 | 119.8 (2) |
O2—C9—C10 | 114.37 (16) | C12—C13—H10 | 120.1 |
C8—C9—C10 | 124.84 (17) | C14—C13—H10 | 120.1 |
C9—C8—C6 | 125.28 (18) | C13—C12—C11 | 120.78 (19) |
C9—C8—H7 | 117.4 | C13—C12—H9 | 119.6 |
C6—C8—H7 | 117.4 | C11—C12—H9 | 119.6 |
N2—C6—C8 | 120.30 (17) | C12—C11—C10 | 120.02 (19) |
N2—C6—C7 | 120.84 (19) | C12—C11—H8 | 120.0 |
C8—C6—C7 | 118.85 (18) | C10—C11—H8 | 120.0 |
C6—C7—H2 | 109.5 | O3—C16—H15 | 109.5 |
C6—C7—H3 | 109.5 | O3—C16—H13 | 109.5 |
H2—C7—H3 | 109.5 | H15—C16—H13 | 109.5 |
C6—C7—H1 | 109.5 | O3—C16—H14 | 109.5 |
H2—C7—H1 | 109.5 | H15—C16—H14 | 109.5 |
H3—C7—H1 | 109.5 | H13—C16—H14 | 109.5 |
N1—C5—O1 | 123.12 (17) | ||
O4—V—O2—C9 | −63.04 (19) | C9—C8—C6—N2 | 9.1 (3) |
O3—V—O2—C9 | −169.38 (18) | C9—C8—C6—C7 | −171.7 (2) |
O1—V—O2—C9 | 70.6 (2) | N2—N1—C5—O1 | −5.0 (2) |
N2—V—O2—C9 | 33.66 (18) | N2—N1—C5—C4 | 174.88 (16) |
O3i—V—O2—C9 | 122.57 (19) | N1—C5—O1—V | 9.3 (2) |
O4—V—O3—C16 | 28.39 (16) | C4—C5—O1—V | −170.54 (12) |
O2—V—O3—C16 | 132.56 (15) | O4—V—O1—C5 | 88.96 (14) |
O1—V—O3—C16 | −70.51 (15) | O3—V—O1—C5 | −167.79 (13) |
N2—V—O3—C16 | −121.15 (18) | O2—V—O1—C5 | −45.0 (2) |
O3i—V—O3—C16 | −154.11 (17) | N2—V—O1—C5 | −6.73 (13) |
O4—V—O3—Vi | −177.50 (7) | O3i—V—O1—C5 | −96.00 (13) |
O2—V—O3—Vi | −73.33 (7) | N1—C5—C4—C3 | −166.79 (19) |
O1—V—O3—Vi | 83.59 (6) | O1—C5—C4—C3 | 13.1 (3) |
N2—V—O3—Vi | 32.96 (16) | N1—C5—C4—S1 | 12.3 (3) |
O3i—V—O3—Vi | 0.0 | O1—C5—C4—S1 | −167.85 (14) |
O4—V—N2—C6 | 80.91 (18) | C1—S1—C4—C3 | −0.08 (16) |
O3—V—N2—C6 | −128.97 (18) | C1—S1—C4—C5 | −179.28 (17) |
O2—V—N2—C6 | −18.55 (17) | C4—S1—C1—C2 | 1.0 (2) |
O1—V—N2—C6 | 177.82 (18) | S1—C1—C2—C3 | −1.6 (3) |
O3i—V—N2—C6 | −97.81 (17) | C5—C4—C3—C2 | 178.37 (19) |
O4—V—N2—N1 | −92.68 (13) | S1—C4—C3—C2 | −0.8 (2) |
O3—V—N2—N1 | 57.4 (2) | C1—C2—C3—C4 | 1.5 (3) |
O2—V—N2—N1 | 167.86 (13) | O2—C9—C10—C15 | 16.0 (3) |
O1—V—N2—N1 | 4.23 (12) | C8—C9—C10—C15 | −162.7 (2) |
O3i—V—N2—N1 | 88.60 (12) | O2—C9—C10—C11 | −161.71 (19) |
C6—N2—N1—C5 | −175.49 (17) | C8—C9—C10—C11 | 19.6 (3) |
V—N2—N1—C5 | −1.07 (19) | C11—C10—C15—C14 | 0.0 (3) |
V—O2—C9—C8 | −32.1 (3) | C9—C10—C15—C14 | −177.8 (2) |
V—O2—C9—C10 | 149.16 (14) | C10—C15—C14—C13 | 0.7 (4) |
O2—C9—C8—C6 | 2.4 (3) | C15—C14—C13—C12 | −0.2 (4) |
C10—C9—C8—C6 | −179.02 (19) | C14—C13—C12—C11 | −1.0 (4) |
N1—N2—C6—C8 | 177.40 (17) | C13—C12—C11—C10 | 1.7 (3) |
V—N2—C6—C8 | 3.8 (3) | C15—C10—C11—C12 | −1.1 (3) |
N1—N2—C6—C7 | −1.8 (3) | C9—C10—C11—C12 | 176.60 (19) |
V—N2—C6—C7 | −175.38 (15) |
Symmetry code: (i) −x, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [V2(C15H12N2O2S)2(CH3O)2O2] |
Mr | 764.60 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 10.9900 (2), 15.9297 (3), 11.0178 (3) |
β (°) | 119.884 (1) |
V (Å3) | 1672.39 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.74 |
Crystal size (mm) | 0.21 × 0.21 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.860, 0.930 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20108, 3067, 2718 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.083, 1.04 |
No. of reflections | 3067 |
No. of parameters | 219 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.24 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2012).
Acknowledgements
The authors thank FAPESP (grant Nos. 2009/54011-8, 2011/16160-1 and 2011/16380-1), FAPEMIG, CNPq and CAPES for supporting this work.
References
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maia, P. I. S., Deflon, V. M., Sousa, G. F., Lemos, S. S., Batista, A. A., Nascimento, O. R. & Niquet, E. (2007). Z. Anorg. Allg. Chem. 633, 783–789. CAS Google Scholar
Maia, P. I. S., Deflon, V. M., Souza, E. J., Garcia, E., Souza, G. F., Batista, A. A., Figueiredo, A. T. & Niquet, E. (2005). Transition Met. Chem. 30, 404–410. Web of Science CSD CrossRef CAS Google Scholar
Mondal, B., Drew, M. G. B., Banerjee, R. & Ghosh, T. (2008). Polyhedron, 27, 3197–3206. Web of Science CSD CrossRef CAS Google Scholar
Monfared, H. H., Kheirabadi, S., Lalami, N. A. & Mayer, P. (2011). Polyhedron, 30, 1375–1384. Web of Science CSD CrossRef Google Scholar
Sarkar, A. & Pal, S. (2009). Inorg. Chim. Acta, 362, 3807–3812. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.