metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages m353-m354

Crystal structure of di-μ-methano­lato-bis­­{[N′-(1-benzoyl­prop-1-en-2-yl)thio­phene-2-carbohydrazidato-κ3O,N′,O′]oxidovanadium(V)}

aInstituto de Química de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brazil, and bDepartamento de Química, Universidade Federal do Triângulo Mineiro, 38025-440, Uberaba, MG, Brazil
*Correspondence e-mail: deflon@iqsc.usp.br

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 September 2014; accepted 9 September 2014; online 27 September 2014)

The neutral binuclear mol­ecule of the title complex, [V2(C15H12N2O2S)2(CH3O)2O2], exhibits inversion symmetry and consists of two oxidovanadium(V) (VO)3+ fragments, each coordinated by a dianionic and O,N′,O′-chelating N′-(1-benzoyl­prop-1-en-2-yl)thio­phene-2-carbohydrazidate ligand. The V5+ cations are bridged by two asymmetrically bonding methano­late ligands [V—O = 1.8155 (12) and 2.3950 (13) Å] originating from the deprotonation of the methanol solvent. The coordination sphere of the VV atom is distorted octa­hedral, with the equatorial plane defined by the three donor atoms of the thio­phene-2-carbohydrazidate ligand and the O atom of a methano­late unit. The axial positions are occupied by the oxide group and the remaining methano­late ligand. The axially bound methano­late ligand shows a longer V—O bond length due to the trans influence caused by the tightly bonded oxide group. The packing of the complex mol­ecules is dominated by dispersion forces.

1. Related literature

For related structures of binuclear vanadium(V) complexes with O,N,O-chelating hydrazonate ligands and methano­late bridges, see: Sarkar & Pal (2009[Sarkar, A. & Pal, S. (2009). Inorg. Chim. Acta, 362, 3807-3812.]); Monfared et al. (2011[Monfared, H. H., Kheirabadi, S., Lalami, N. A. & Mayer, P. (2011). Polyhedron, 30, 1375-1384.]); Maia et al. (2005[Maia, P. I. S., Deflon, V. M., Souza, E. J., Garcia, E., Souza, G. F., Batista, A. A., Figueiredo, A. T. & Niquet, E. (2005). Transition Met. Chem. 30, 404-410.], 2007[Maia, P. I. S., Deflon, V. M., Sousa, G. F., Lemos, S. S., Batista, A. A., Nascimento, O. R. & Niquet, E. (2007). Z. Anorg. Allg. Chem. 633, 783-789.]). For synthetic details, see: Mondal et al. (2008[Mondal, B., Drew, M. G. B., Banerjee, R. & Ghosh, T. (2008). Polyhedron, 27, 3197-3206.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [V2(C15H12N2O2S)2(CH3O)2O2]

  • Mr = 764.60

  • Monoclinic, P 21 /n

  • a = 10.9900 (2) Å

  • b = 15.9297 (3) Å

  • c = 11.0178 (3) Å

  • β = 119.884 (1)°

  • V = 1672.39 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 296 K

  • 0.21 × 0.21 × 0.10 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.860, Tmax = 0.930

  • 20108 measured reflections

  • 3067 independent reflections

  • 2718 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.083

  • S = 1.04

  • 3067 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Related literature top

For related structures of binuclear vanadium(V) complexes with O,N,O-chelating hydrazonate ligands and methanolate bridges, see: Sarkar & Pal (2009); Monfared et al. (2011); Maia et al. (2005, 2007). For synthetic details, see: Mondal et al. (2008).

Experimental top

The synthesis of the complex was developed by a slight modification of the procedure previously described by Mondal et al. (2008). 0.2 mmol (0.053 g) of [VO(acac)2] and 0.2 mmol of benzoylacetone-2-thinoylhydrazone (0.058 g) were diluted separately in methanol. The solutions were mixed and stirred for 0.5 h. A brown solution was obtained and after slow evaporation of the solvent single crystals were formed.

Refinement top

The H atoms were positioned geometrically and refined using a riding model with C—H bond lengths of 0.96 Å (methyl) and of 0.93 Å (aromatic) and with Uiso(H) = 1.5Ueq(C) (methyl), and with Uiso(H) = 1.2Ueq(C) (aromatic).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The binuclear molecular structure of the title compound with atom labels and displacement ellipsoids drawn at the 50% probability level. [Symmettry code: i) -x, -y+2, -z+1.]
[Figure 2] Fig. 2. Packing diagram of the title complex. No hydrogen-bonding interactions are observed.
Di-µ-methanolato-κ4O:O-bis{[N'-(1-benzoylprop-1-en-2-yl)thiophene-2-carbohydrazidato-κ3O,N',O']oxidovanadium(V)} top
Crystal data top
[V2(C15H12N2O2S)2(CH3O)2O2]F(000) = 784
Mr = 764.60Dx = 1.518 Mg m3
Monoclinic, P21/nMelting point: 451 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.9900 (2) ÅCell parameters from 9900 reflections
b = 15.9297 (3) Åθ = 2.5–25.4°
c = 11.0178 (3) ŵ = 0.74 mm1
β = 119.884 (1)°T = 296 K
V = 1672.39 (6) Å3Prism, brown
Z = 20.21 × 0.21 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3067 independent reflections
Radiation source: fine-focus sealed tube2718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.860, Tmax = 0.930k = 1919
20108 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.7671P]
where P = (Fo2 + 2Fc2)/3
3067 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[V2(C15H12N2O2S)2(CH3O)2O2]V = 1672.39 (6) Å3
Mr = 764.60Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.9900 (2) ŵ = 0.74 mm1
b = 15.9297 (3) ÅT = 296 K
c = 11.0178 (3) Å0.21 × 0.21 × 0.10 mm
β = 119.884 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3067 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2718 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.930Rint = 0.020
20108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
3067 reflectionsΔρmin = 0.24 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V0.01766 (3)0.95609 (2)0.63227 (3)0.03545 (12)
S10.33170 (6)1.19868 (4)0.71561 (6)0.05580 (17)
O20.17270 (14)0.93610 (9)0.73088 (13)0.0449 (3)
O30.06694 (12)0.93265 (8)0.45226 (12)0.0362 (3)
O40.07281 (16)0.87680 (9)0.67733 (15)0.0525 (4)
N20.02549 (16)1.03306 (10)0.80379 (16)0.0382 (4)
N10.08298 (17)1.08675 (10)0.78577 (17)0.0426 (4)
C90.26550 (19)0.93078 (12)0.86578 (19)0.0387 (4)
C80.2507 (2)0.97723 (14)0.9611 (2)0.0463 (5)
H70.32080.97271.05440.056*
C60.1366 (2)1.03221 (13)0.9298 (2)0.0417 (4)
C70.1447 (2)1.08777 (15)1.0428 (2)0.0539 (5)
H20.22701.07401.12990.081*
H30.06281.07971.05150.081*
H10.14961.14531.01980.081*
C50.1873 (2)1.07576 (12)0.6604 (2)0.0389 (4)
O10.18078 (14)1.02693 (9)0.56828 (14)0.0436 (3)
C40.3193 (2)1.11904 (12)0.6175 (2)0.0404 (4)
C10.5054 (3)1.21073 (16)0.6013 (3)0.0607 (6)
H60.56111.25080.61180.073*
C20.5541 (2)1.15642 (17)0.4942 (3)0.0603 (6)
H40.64761.15400.42380.072*
C30.4478 (2)1.10288 (14)0.4995 (2)0.0473 (5)
H50.46251.06250.43260.057*
C100.38325 (19)0.87296 (12)0.89970 (19)0.0380 (4)
C150.4093 (2)0.84603 (14)0.7951 (2)0.0473 (5)
H120.35430.86610.70430.057*
C140.5155 (2)0.79008 (16)0.8240 (2)0.0586 (6)
H110.53250.77300.75320.070*
C130.5968 (2)0.75917 (15)0.9579 (2)0.0552 (6)
H100.66850.72120.97730.066*
C120.5717 (2)0.78462 (14)1.0622 (2)0.0506 (5)
H90.62580.76301.15200.061*
C110.4678 (2)0.84163 (13)1.03576 (19)0.0453 (5)
H80.45340.85951.10790.054*
C160.1838 (2)0.88198 (14)0.3600 (2)0.0493 (5)
H150.18410.83140.40720.074*
H130.17680.86800.27890.074*
H140.26920.91240.33170.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V0.03501 (19)0.0397 (2)0.03146 (18)0.00311 (13)0.01640 (14)0.00117 (12)
S10.0529 (3)0.0550 (3)0.0687 (4)0.0045 (3)0.0372 (3)0.0054 (3)
O20.0387 (7)0.0601 (9)0.0324 (7)0.0123 (6)0.0151 (6)0.0024 (6)
O30.0319 (7)0.0404 (7)0.0327 (6)0.0024 (5)0.0133 (5)0.0056 (5)
O40.0642 (10)0.0465 (8)0.0544 (8)0.0015 (7)0.0355 (8)0.0020 (7)
N20.0374 (9)0.0420 (9)0.0391 (8)0.0022 (7)0.0220 (7)0.0014 (7)
N10.0407 (9)0.0434 (9)0.0484 (9)0.0061 (7)0.0258 (8)0.0007 (7)
C90.0328 (10)0.0459 (11)0.0339 (9)0.0006 (8)0.0141 (8)0.0041 (8)
C80.0390 (11)0.0566 (12)0.0359 (10)0.0057 (9)0.0131 (8)0.0022 (9)
C60.0444 (11)0.0468 (11)0.0368 (10)0.0043 (9)0.0224 (9)0.0040 (8)
C70.0558 (13)0.0607 (14)0.0454 (11)0.0017 (11)0.0256 (10)0.0133 (10)
C50.0395 (10)0.0371 (10)0.0486 (11)0.0018 (8)0.0285 (9)0.0045 (8)
O10.0362 (7)0.0522 (8)0.0435 (7)0.0058 (6)0.0207 (6)0.0018 (6)
C40.0411 (11)0.0397 (10)0.0504 (11)0.0018 (8)0.0304 (9)0.0054 (8)
C10.0559 (14)0.0571 (14)0.0868 (17)0.0149 (11)0.0489 (14)0.0092 (13)
C20.0365 (11)0.0722 (16)0.0692 (15)0.0081 (11)0.0242 (11)0.0161 (13)
C30.0426 (11)0.0502 (12)0.0530 (11)0.0017 (9)0.0268 (10)0.0031 (10)
C100.0314 (9)0.0420 (10)0.0370 (9)0.0013 (8)0.0144 (8)0.0006 (8)
C150.0434 (11)0.0582 (13)0.0381 (10)0.0049 (10)0.0186 (9)0.0035 (9)
C140.0568 (14)0.0690 (15)0.0573 (13)0.0109 (12)0.0341 (11)0.0018 (11)
C130.0409 (12)0.0560 (13)0.0616 (13)0.0113 (10)0.0202 (10)0.0004 (11)
C120.0414 (11)0.0503 (12)0.0429 (11)0.0047 (9)0.0079 (9)0.0019 (9)
C110.0433 (11)0.0535 (12)0.0335 (9)0.0052 (9)0.0150 (8)0.0005 (8)
C160.0420 (11)0.0522 (12)0.0445 (11)0.0140 (9)0.0145 (9)0.0093 (9)
Geometric parameters (Å, º) top
V—O41.5839 (15)C5—O11.308 (2)
V—O31.8155 (12)C5—C41.456 (3)
V—O21.8421 (13)C4—C31.386 (3)
V—O11.9300 (13)C1—C21.341 (4)
V—N22.0992 (16)C1—H60.9300
V—O3i2.3950 (13)C2—C31.425 (3)
S1—C11.695 (3)C2—H40.9300
S1—C41.715 (2)C3—H50.9300
O2—C91.321 (2)C10—C151.387 (3)
O3—C161.426 (2)C10—C111.404 (3)
O3—Vi2.3950 (13)C15—C141.373 (3)
N2—C61.315 (3)C15—H120.9300
N2—N11.399 (2)C14—C131.380 (3)
N1—C51.295 (3)C14—H110.9300
C9—C81.359 (3)C13—C121.370 (3)
C9—C101.477 (3)C13—H100.9300
C8—C61.424 (3)C12—C111.372 (3)
C8—H70.9300C12—H90.9300
C6—C71.494 (3)C11—H80.9300
C7—H20.9600C16—H150.9600
C7—H30.9600C16—H130.9600
C7—H10.9600C16—H140.9600
O4—V—O3103.06 (7)N1—C5—C4119.43 (17)
O4—V—O2100.18 (7)O1—C5—C4117.45 (17)
O3—V—O2103.99 (6)C5—O1—V117.66 (12)
O4—V—O198.62 (7)C3—C4—C5126.90 (19)
O3—V—O190.23 (6)C3—C4—S1111.43 (15)
O2—V—O1153.09 (7)C5—C4—S1121.67 (15)
O4—V—N297.68 (7)C2—C1—S1112.87 (18)
O3—V—N2156.10 (6)C2—C1—H6123.6
O2—V—N283.64 (6)S1—C1—H6123.6
O1—V—N274.89 (6)C1—C2—C3113.0 (2)
O4—V—O3i174.44 (6)C1—C2—H4123.5
O3—V—O3i71.92 (6)C3—C2—H4123.5
O2—V—O3i79.07 (6)C4—C3—C2111.0 (2)
O1—V—O3i83.98 (5)C4—C3—H5124.5
N2—V—O3i87.73 (5)C2—C3—H5124.5
C1—S1—C491.68 (11)C15—C10—C11118.46 (18)
C9—O2—V133.45 (13)C15—C10—C9120.02 (17)
C16—O3—V124.60 (12)C11—C10—C9121.48 (17)
C16—O3—Vi121.85 (11)C14—C15—C10120.71 (19)
V—O3—Vi108.08 (6)C14—C15—H12119.6
C6—N2—N1115.69 (16)C10—C15—H12119.6
C6—N2—V128.24 (13)C15—C14—C13120.2 (2)
N1—N2—V115.79 (12)C15—C14—H11119.9
C5—N1—N2107.93 (15)C13—C14—H11119.9
O2—C9—C8120.78 (18)C12—C13—C14119.8 (2)
O2—C9—C10114.37 (16)C12—C13—H10120.1
C8—C9—C10124.84 (17)C14—C13—H10120.1
C9—C8—C6125.28 (18)C13—C12—C11120.78 (19)
C9—C8—H7117.4C13—C12—H9119.6
C6—C8—H7117.4C11—C12—H9119.6
N2—C6—C8120.30 (17)C12—C11—C10120.02 (19)
N2—C6—C7120.84 (19)C12—C11—H8120.0
C8—C6—C7118.85 (18)C10—C11—H8120.0
C6—C7—H2109.5O3—C16—H15109.5
C6—C7—H3109.5O3—C16—H13109.5
H2—C7—H3109.5H15—C16—H13109.5
C6—C7—H1109.5O3—C16—H14109.5
H2—C7—H1109.5H15—C16—H14109.5
H3—C7—H1109.5H13—C16—H14109.5
N1—C5—O1123.12 (17)
O4—V—O2—C963.04 (19)C9—C8—C6—N29.1 (3)
O3—V—O2—C9169.38 (18)C9—C8—C6—C7171.7 (2)
O1—V—O2—C970.6 (2)N2—N1—C5—O15.0 (2)
N2—V—O2—C933.66 (18)N2—N1—C5—C4174.88 (16)
O3i—V—O2—C9122.57 (19)N1—C5—O1—V9.3 (2)
O4—V—O3—C1628.39 (16)C4—C5—O1—V170.54 (12)
O2—V—O3—C16132.56 (15)O4—V—O1—C588.96 (14)
O1—V—O3—C1670.51 (15)O3—V—O1—C5167.79 (13)
N2—V—O3—C16121.15 (18)O2—V—O1—C545.0 (2)
O3i—V—O3—C16154.11 (17)N2—V—O1—C56.73 (13)
O4—V—O3—Vi177.50 (7)O3i—V—O1—C596.00 (13)
O2—V—O3—Vi73.33 (7)N1—C5—C4—C3166.79 (19)
O1—V—O3—Vi83.59 (6)O1—C5—C4—C313.1 (3)
N2—V—O3—Vi32.96 (16)N1—C5—C4—S112.3 (3)
O3i—V—O3—Vi0.0O1—C5—C4—S1167.85 (14)
O4—V—N2—C680.91 (18)C1—S1—C4—C30.08 (16)
O3—V—N2—C6128.97 (18)C1—S1—C4—C5179.28 (17)
O2—V—N2—C618.55 (17)C4—S1—C1—C21.0 (2)
O1—V—N2—C6177.82 (18)S1—C1—C2—C31.6 (3)
O3i—V—N2—C697.81 (17)C5—C4—C3—C2178.37 (19)
O4—V—N2—N192.68 (13)S1—C4—C3—C20.8 (2)
O3—V—N2—N157.4 (2)C1—C2—C3—C41.5 (3)
O2—V—N2—N1167.86 (13)O2—C9—C10—C1516.0 (3)
O1—V—N2—N14.23 (12)C8—C9—C10—C15162.7 (2)
O3i—V—N2—N188.60 (12)O2—C9—C10—C11161.71 (19)
C6—N2—N1—C5175.49 (17)C8—C9—C10—C1119.6 (3)
V—N2—N1—C51.07 (19)C11—C10—C15—C140.0 (3)
V—O2—C9—C832.1 (3)C9—C10—C15—C14177.8 (2)
V—O2—C9—C10149.16 (14)C10—C15—C14—C130.7 (4)
O2—C9—C8—C62.4 (3)C15—C14—C13—C120.2 (4)
C10—C9—C8—C6179.02 (19)C14—C13—C12—C111.0 (4)
N1—N2—C6—C8177.40 (17)C13—C12—C11—C101.7 (3)
V—N2—C6—C83.8 (3)C15—C10—C11—C121.1 (3)
N1—N2—C6—C71.8 (3)C9—C10—C11—C12176.60 (19)
V—N2—C6—C7175.38 (15)
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[V2(C15H12N2O2S)2(CH3O)2O2]
Mr764.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.9900 (2), 15.9297 (3), 11.0178 (3)
β (°) 119.884 (1)
V3)1672.39 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.21 × 0.21 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.860, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
20108, 3067, 2718
Rint0.020
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.083, 1.04
No. of reflections3067
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2012).

 

Acknowledgements

The authors thank FAPESP (grant Nos. 2009/54011-8, 2011/16160-1 and 2011/16380-1), FAPEMIG, CNPq and CAPES for supporting this work.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaia, P. I. S., Deflon, V. M., Sousa, G. F., Lemos, S. S., Batista, A. A., Nascimento, O. R. & Niquet, E. (2007). Z. Anorg. Allg. Chem. 633, 783–789.  CAS Google Scholar
First citationMaia, P. I. S., Deflon, V. M., Souza, E. J., Garcia, E., Souza, G. F., Batista, A. A., Figueiredo, A. T. & Niquet, E. (2005). Transition Met. Chem. 30, 404–410.  Web of Science CSD CrossRef CAS Google Scholar
First citationMondal, B., Drew, M. G. B., Banerjee, R. & Ghosh, T. (2008). Polyhedron, 27, 3197–3206.  Web of Science CSD CrossRef CAS Google Scholar
First citationMonfared, H. H., Kheirabadi, S., Lalami, N. A. & Mayer, P. (2011). Polyhedron, 30, 1375–1384.  Web of Science CSD CrossRef Google Scholar
First citationSarkar, A. & Pal, S. (2009). Inorg. Chim. Acta, 362, 3807–3812.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages m353-m354
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds