metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages m341-m342

Crystal structure of bis­­{μ-4,4′-[1,3-phenyl­enebis(­­oxy)]dibenzoato-κ4O,O′:O′′,O′′′}bis­[(1,10-phenanthroline-κ2N,N′)zinc(II)] dihydrate

aDepartment of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China, bDepartment of Gynaecology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China, cSt Erik's Eye Hospital, Karolinska Institute, Polhemsgatan 50, SE-112 82 Stockholm, Sweden, and dDepartment of Orthopedics, The China–Japan Union Hospital of Jilin University Changchun, Changchun 130033, People's Republic of China
*Correspondence e-mail: drhanly@163.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 5 August 2014; accepted 12 August 2014; online 3 September 2014)

Two 4,4′-[1,3-phenyl­enebis(­oxy)]dibenzoate anions bridge two 1,10-phenanthroline-chelated ZnII cations about a center of inversion to generate the dinuclear title compound, [Zn2(C20H12O6)2(C12H8N2)2]·2H2O. The geometry about the ZnII atom is a distorted octa­hedron. In the crystal, the mol­ecules are connected by classical O—H⋯O hydrogen bonds, weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming a three dimensional network. ππ stacking is also observed between aromatic rings of adjacent mol­ecules, centroid–centroid distances are 3.753 (2), 3.5429 (16) and 3.5695 (17) Å.

1. Related literature

For background and related structures, see: Hökelek & Necefouglu (1996[Hökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128-1131.]); Necefoglu et al. (2002[Necefoglu, H., Clegg, W. & Scott, A. J. (2002). Acta Cryst. E58, m121-m122.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Zn2(C20H12O6)2(C12H8N2)2]·2H2O

  • Mr = 1223.77

  • Triclinic, [P \overline 1]

  • a = 10.550 (2) Å

  • b = 11.308 (2) Å

  • c = 12.874 (3) Å

  • α = 93.210 (4)°

  • β = 104.225 (4)°

  • γ = 113.323 (4)°

  • V = 1346.8 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 293 K

  • 0.28 × 0.23 × 0.21 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.765, Tmax = 0.824

  • 26413 measured reflections

  • 6471 independent reflections

  • 3733 reflections with I > 2σ(I)

  • Rint = 0.073

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.112

  • S = 1.01

  • 6471 reflections

  • 385 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.089 (3)
Zn1—N2 2.097 (3)
Zn1—O1 2.1031 (19)
Zn1—O2 2.2460 (19)
Zn1—O5 2.1061 (19)
Zn1—O6 2.231 (2)

Table 2
Hydrogen-bond geometry (Å, °)

Cg4 and Cg6 are the centroids of the C13–C18 and C25–C30 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2i 0.83 (2) 2.06 (2) 2.877 (3) 171 (5)
O1W—H1B⋯O5 0.84 (2) 2.04 (2) 2.877 (3) 173 (5)
C1—H1⋯O1ii 0.93 2.33 3.169 (4) 150
C3—H3⋯O1Wiii 0.93 2.44 3.332 (4) 161
C5—H5⋯O2iv 0.93 2.46 3.256 (4) 144
C8—H8⋯Cg6v 0.93 2.67 3.543 (4) 156
C10—H10⋯Cg4i 0.93 2.87 3.726 (5) 154
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) x+1, y+1, z; (iv) -x+1, -y+2, -z; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

The rational design and construction of coordination polymers based upon assembly of metal ions and multifunctional organic ligands has drawn widespread attentions because of their potential applications as functional materials and intriguing varieties of architectures and topologies (Hökelek & Necefouglu, 1996). The structures of coordination polymers are usually influenced by a multitude of factors such as geometrical and electronic properties of the metal ions employed, coordination abilities of the ligands, the ligand-to-metal ratio, and the use of different solvents (Necefoglu et al., 2002). In this paper, we selected 4,4'-(1,3-phenyl­enebis(­oxy))di­benzoic acid as a linker and 1,10-phenanthroline as a secondary ligand, resulting in the title complex.

In the title compound,[Zn2(C20H12O6)2(C12H8N2)2].2H2O, the ZnII atom is surrounded by two N atoms from one 1,10-phenanthroline and four O atoms from two 4,4'-(1,3-phenyl­enebis(­oxy))dibenzoate ligands (Fig. 1). The geometry of the ZnII atom is a distorted o­cta­hedron and the neighboring two ZnII atoms are bridged by two 4,4'-(1,3-phenyl­enebis(­oxy))dibenzoate dianions. Adjacent molecules are connected to the lattice water molecule by hydrogen bonds to form a linear ribbon running along the b-axis of the triclinic unit cell (Fig. 2). Adjacent dimers are further linked through inter­molecular O—H···O hydrogen bonds, leading to a three-dimensional supra­molecular structure (Fig. 2).

Preparation top

The synthesis was performed under hydro­thermal conditions. A mixture of Zn(CH3COO)2.2(H2O), (0.2 mmol, 0.044 g), 4,4'-(1,3-phenyl­enebis(­oxy))di­benzoic acid (0.2 mmol, 0.07 g), 1,10-phenanthroline (0.2 mmol, 0.036 g) and H2O (20 mL) in a 30 mL stainless steel reactor with a Teflon liner was heated from 293 to 433 K in 2 h and a constant temperature was maintained at 433 K for 72 h, after which the mixture was cooled to 298 K. Colorless crystals of the title compound were recovered from the reaction.

Refinement top

All C—H H atoms were positioned with idealized geometry and refined isotropic with Uiso(H) = 1.2 Ueq(C) using a riding model. The water H-atoms were located in a different Fourier map and were refined with an O—H distance restrained to 0.85 (2) Å and with [Uiso(H) = 1.5 Ueq(O)].

Related literature top

For background and related structures, see: Hökelek & Necefouglu (1996); Necefoglu et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title compound. Displacement ellipsoids are drawn at the 30% probability level. (i) -x, -y, -z.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a-axis.
Bis{µ-4,4'-[1,3-phenylenebis(oxy)]dibenzoato-κ4O,O':O'',O'''}bis[(1,10-phenanthroline-κ2N,N')zinc(II)] dihydrate top
Crystal data top
[Zn2(C20H12O6)2(C12H8N2)2]·2H2OZ = 1
Mr = 1223.77F(000) = 628
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.550 (2) ÅCell parameters from 6527 reflections
b = 11.308 (2) Åθ = 1.7–22.8°
c = 12.874 (3) ŵ = 0.97 mm1
α = 93.210 (4)°T = 293 K
β = 104.225 (4)°Block, colorless
γ = 113.323 (4)°0.28 × 0.23 × 0.21 mm
V = 1346.8 (5) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
6471 independent reflections
Radiation source: fine-focus sealed tube3733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
phi and ω scansθmax = 28.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1313
Tmin = 0.765, Tmax = 0.824k = 1414
26413 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.2348P]
where P = (Fo2 + 2Fc2)/3
6471 reflections(Δ/σ)max = 0.001
385 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Zn2(C20H12O6)2(C12H8N2)2]·2H2Oγ = 113.323 (4)°
Mr = 1223.77V = 1346.8 (5) Å3
Triclinic, P1Z = 1
a = 10.550 (2) ÅMo Kα radiation
b = 11.308 (2) ŵ = 0.97 mm1
c = 12.874 (3) ÅT = 293 K
α = 93.210 (4)°0.28 × 0.23 × 0.21 mm
β = 104.225 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6471 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3733 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.824Rint = 0.073
26413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.22 e Å3
6471 reflectionsΔρmin = 0.68 e Å3
385 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.37437 (4)0.63248 (3)0.10279 (3)0.05945 (15)
C10.6498 (4)0.7620 (3)0.0310 (3)0.0676 (9)
H10.63780.67780.00790.081*
C20.7669 (4)0.8674 (4)0.0183 (3)0.0757 (10)
H20.83300.85340.01130.091*
C30.7843 (4)0.9914 (3)0.0494 (3)0.0662 (9)
H30.86171.06280.04060.079*
C40.6849 (3)1.0103 (3)0.0947 (2)0.0472 (7)
C50.6945 (3)1.1366 (3)0.1300 (2)0.0567 (8)
H50.76911.21100.12170.068*
C60.5980 (4)1.1491 (3)0.1745 (2)0.0594 (8)
H60.60691.23230.19720.071*
C70.4812 (3)1.0374 (3)0.1882 (2)0.0516 (7)
C80.3761 (4)1.0452 (4)0.2320 (2)0.0702 (9)
H80.38011.12630.25540.084*
C90.2683 (5)0.9347 (4)0.2406 (3)0.0820 (11)
H90.19630.93940.26790.098*
C100.2650 (4)0.8138 (4)0.2087 (3)0.0749 (10)
H100.19160.73860.21720.090*
C110.4700 (3)0.9131 (3)0.15552 (19)0.0445 (7)
C120.5724 (3)0.8995 (2)0.10674 (19)0.0430 (7)
C130.1204 (3)0.4615 (2)0.1993 (2)0.0421 (6)
C140.1351 (3)0.3606 (3)0.2509 (2)0.0547 (8)
H140.20290.33230.21470.066*
C150.0509 (3)0.3000 (3)0.3557 (2)0.0548 (8)
H150.05960.22950.38890.066*
C160.0458 (3)0.3444 (2)0.4107 (2)0.0420 (6)
C170.0585 (3)0.4483 (3)0.3621 (2)0.0549 (8)
H170.12190.48000.40020.066*
C180.0237 (3)0.5060 (3)0.2559 (2)0.0536 (7)
H180.01360.57540.22240.064*
C190.1702 (3)0.1591 (3)0.5514 (2)0.0424 (6)
C200.2827 (3)0.0663 (3)0.52396 (19)0.0423 (6)
H200.32920.09060.47980.051*
C210.3247 (3)0.0634 (3)0.5636 (2)0.0413 (6)
C220.2588 (3)0.1018 (3)0.6293 (2)0.0486 (7)
H220.28910.18980.65580.058*
C230.1464 (3)0.0065 (3)0.6552 (2)0.0538 (8)
H230.09970.03090.69910.065*
C240.1021 (3)0.1237 (3)0.6173 (2)0.0501 (7)
H240.02680.18710.63610.060*
C250.4251 (3)0.2393 (2)0.4715 (2)0.0410 (6)
C260.5499 (3)0.3294 (3)0.4562 (2)0.0510 (7)
H260.63890.33260.49380.061*
C270.5426 (3)0.4148 (3)0.3852 (2)0.0502 (7)
H270.62690.47560.37500.060*
C280.4105 (3)0.4110 (2)0.3288 (2)0.0402 (6)
C290.2878 (3)0.3202 (3)0.3449 (2)0.0458 (7)
H290.19860.31610.30680.055*
C300.2935 (3)0.2342 (3)0.4170 (2)0.0445 (7)
H300.20940.17410.42810.053*
C310.2085 (3)0.5241 (3)0.0847 (2)0.0453 (7)
C320.4034 (3)0.5021 (3)0.2499 (2)0.0476 (7)
N10.5547 (3)0.7767 (2)0.07454 (18)0.0521 (6)
N20.3636 (3)0.8020 (2)0.16621 (18)0.0570 (7)
O10.3175 (2)0.50412 (18)0.04255 (15)0.0572 (5)
O20.1746 (2)0.59693 (19)0.03119 (15)0.0565 (5)
O30.1312 (2)0.29119 (17)0.51698 (14)0.0541 (5)
O40.44450 (19)0.15463 (18)0.54058 (16)0.0558 (5)
O50.2821 (2)0.49319 (19)0.19589 (16)0.0621 (6)
O60.5150 (2)0.5833 (2)0.23655 (18)0.0703 (6)
O1W0.0278 (3)0.2886 (2)0.0473 (3)0.0911 (8)
H1A0.023 (4)0.329 (4)0.044 (4)0.137*
H1B0.106 (3)0.344 (4)0.091 (3)0.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0754 (3)0.03123 (19)0.0509 (2)0.00893 (17)0.00531 (16)0.01068 (14)
C10.088 (3)0.055 (2)0.069 (2)0.044 (2)0.0151 (19)0.0151 (17)
C20.076 (3)0.085 (3)0.084 (2)0.048 (2)0.028 (2)0.022 (2)
C30.057 (2)0.066 (2)0.070 (2)0.0220 (18)0.0132 (17)0.0207 (17)
C40.0488 (17)0.0412 (16)0.0419 (14)0.0152 (14)0.0027 (12)0.0102 (12)
C50.062 (2)0.0364 (16)0.0520 (16)0.0099 (15)0.0012 (15)0.0089 (13)
C60.080 (2)0.0348 (16)0.0505 (16)0.0196 (17)0.0062 (16)0.0003 (13)
C70.070 (2)0.0455 (17)0.0328 (13)0.0234 (16)0.0071 (13)0.0018 (12)
C80.098 (3)0.068 (2)0.0481 (17)0.040 (2)0.0217 (18)0.0038 (16)
C90.097 (3)0.095 (3)0.065 (2)0.044 (3)0.036 (2)0.015 (2)
C100.071 (2)0.076 (3)0.062 (2)0.011 (2)0.0261 (18)0.0199 (18)
C110.0540 (17)0.0386 (15)0.0307 (12)0.0151 (14)0.0025 (12)0.0046 (11)
C120.0528 (17)0.0298 (14)0.0350 (13)0.0143 (13)0.0015 (12)0.0072 (11)
C130.0364 (14)0.0339 (14)0.0513 (15)0.0110 (12)0.0109 (12)0.0085 (12)
C140.0468 (17)0.064 (2)0.0547 (16)0.0335 (16)0.0014 (13)0.0053 (15)
C150.0541 (18)0.0627 (19)0.0516 (16)0.0369 (16)0.0036 (13)0.0004 (14)
C160.0323 (14)0.0384 (15)0.0461 (14)0.0084 (12)0.0063 (11)0.0106 (12)
C170.0449 (16)0.0414 (16)0.0708 (19)0.0208 (14)0.0002 (14)0.0078 (14)
C180.0482 (17)0.0343 (15)0.0695 (19)0.0175 (14)0.0038 (14)0.0013 (13)
C190.0417 (15)0.0384 (15)0.0396 (13)0.0149 (13)0.0020 (12)0.0101 (11)
C200.0444 (15)0.0518 (17)0.0379 (13)0.0265 (14)0.0122 (11)0.0139 (12)
C210.0355 (14)0.0436 (16)0.0435 (14)0.0182 (13)0.0049 (12)0.0159 (12)
C220.0525 (17)0.0468 (17)0.0426 (14)0.0242 (15)0.0024 (13)0.0056 (13)
C230.0600 (19)0.074 (2)0.0417 (15)0.0391 (18)0.0194 (14)0.0151 (15)
C240.0415 (16)0.0589 (19)0.0505 (16)0.0198 (15)0.0142 (13)0.0227 (14)
C250.0382 (15)0.0374 (14)0.0471 (14)0.0171 (12)0.0092 (12)0.0116 (12)
C260.0313 (14)0.0439 (16)0.0689 (18)0.0118 (13)0.0053 (13)0.0145 (14)
C270.0389 (16)0.0398 (16)0.0660 (18)0.0101 (13)0.0144 (13)0.0165 (14)
C280.0434 (15)0.0336 (14)0.0467 (14)0.0174 (13)0.0162 (12)0.0088 (11)
C290.0375 (15)0.0479 (16)0.0553 (16)0.0202 (13)0.0134 (12)0.0173 (13)
C300.0343 (14)0.0447 (16)0.0575 (16)0.0161 (13)0.0170 (12)0.0200 (13)
C310.0445 (16)0.0296 (14)0.0510 (15)0.0060 (13)0.0111 (13)0.0113 (12)
C320.0620 (19)0.0377 (16)0.0519 (16)0.0246 (15)0.0245 (14)0.0134 (13)
N10.0697 (17)0.0357 (13)0.0467 (13)0.0240 (12)0.0069 (12)0.0087 (10)
N20.0629 (17)0.0469 (15)0.0448 (13)0.0097 (13)0.0102 (12)0.0116 (11)
O10.0525 (12)0.0523 (12)0.0574 (11)0.0242 (10)0.0015 (9)0.0002 (9)
O20.0612 (13)0.0456 (12)0.0581 (12)0.0218 (11)0.0123 (10)0.0008 (10)
O30.0580 (12)0.0409 (11)0.0517 (11)0.0193 (10)0.0013 (9)0.0098 (9)
O40.0370 (10)0.0532 (12)0.0769 (13)0.0192 (9)0.0116 (9)0.0317 (10)
O50.0547 (13)0.0552 (13)0.0721 (13)0.0229 (11)0.0083 (10)0.0278 (10)
O60.0598 (14)0.0667 (14)0.0943 (16)0.0249 (12)0.0353 (12)0.0475 (13)
O1W0.0571 (16)0.0517 (15)0.154 (3)0.0151 (12)0.0307 (16)0.0002 (15)
Geometric parameters (Å, º) top
Zn1—N12.089 (3)C15—H150.9300
Zn1—N22.097 (3)C16—C171.369 (4)
Zn1—O12.1031 (19)C16—O31.385 (3)
Zn1—O22.2460 (19)C17—C181.384 (4)
Zn1—O52.1061 (19)C17—H170.9300
Zn1—O62.231 (2)C18—H180.9300
Zn1—C322.498 (3)C19—C241.374 (4)
Zn1—C312.507 (3)C19—C201.377 (4)
C1—N11.321 (4)C19—O3i1.395 (3)
C1—C21.389 (5)C20—C211.378 (4)
C1—H10.9300C20—H200.9300
C2—C31.364 (5)C21—C221.369 (4)
C2—H20.9300C21—O41.392 (3)
C3—C41.396 (4)C22—C231.379 (4)
C3—H30.9300C22—H220.9300
C4—C121.393 (4)C23—C241.373 (4)
C4—C51.430 (4)C23—H230.9300
C5—C61.333 (4)C24—H240.9300
C5—H50.9300C25—C301.370 (3)
C6—C71.430 (4)C25—C261.378 (4)
C6—H60.9300C25—O41.382 (3)
C7—C81.391 (4)C26—C271.377 (3)
C7—C111.395 (4)C26—H260.9300
C8—C91.348 (5)C27—C281.387 (3)
C8—H80.9300C27—H270.9300
C9—C101.390 (5)C28—C291.369 (4)
C9—H90.9300C28—C321.496 (3)
C10—N21.335 (4)C29—C301.390 (3)
C10—H100.9300C29—H290.9300
C11—N21.355 (3)C30—H300.9300
C11—C121.428 (4)C31—O21.254 (3)
C12—N11.352 (3)C31—O11.258 (3)
C13—C141.369 (4)C32—O61.233 (3)
C13—C181.382 (3)C32—O51.259 (3)
C13—C311.493 (4)O3—C19i1.395 (3)
C14—C151.380 (4)O1W—H1A0.829 (19)
C14—H140.9300O1W—H1B0.842 (19)
C15—C161.373 (3)
N1—Zn1—N279.28 (10)C14—C15—H15120.2
N1—Zn1—O195.02 (9)C17—C16—C15120.3 (2)
N2—Zn1—O1142.90 (8)C17—C16—O3116.7 (2)
N1—Zn1—O5150.55 (8)C15—C16—O3123.1 (3)
N2—Zn1—O5104.30 (9)C16—C17—C18119.6 (2)
O1—Zn1—O598.37 (8)C16—C17—H17120.2
N1—Zn1—O691.11 (8)C18—C17—H17120.2
N2—Zn1—O6107.25 (9)C13—C18—C17120.7 (3)
O1—Zn1—O6109.50 (8)C13—C18—H18119.6
O5—Zn1—O659.70 (7)C17—C18—H18119.6
N1—Zn1—O2110.05 (8)C24—C19—C20121.0 (3)
N2—Zn1—O287.32 (8)C24—C19—O3i119.7 (2)
O1—Zn1—O259.99 (7)C20—C19—O3i119.2 (3)
O5—Zn1—O299.35 (7)C19—C20—C21118.3 (3)
O6—Zn1—O2156.48 (8)C19—C20—H20120.9
N1—Zn1—C32120.63 (9)C21—C20—H20120.9
N2—Zn1—C32109.61 (9)C22—C21—C20122.1 (3)
O1—Zn1—C32104.79 (8)C22—C21—O4120.6 (2)
O5—Zn1—C3230.22 (8)C20—C21—O4117.1 (2)
O6—Zn1—C3229.53 (8)C21—C22—C23118.2 (3)
O2—Zn1—C32128.47 (9)C21—C22—H22120.9
N1—Zn1—C31103.59 (8)C23—C22—H22120.9
N2—Zn1—C31115.33 (9)C24—C23—C22121.3 (3)
O1—Zn1—C3130.07 (8)C24—C23—H23119.4
O5—Zn1—C31101.09 (8)C22—C23—H23119.4
O6—Zn1—C31136.73 (9)C23—C24—C19119.1 (3)
O2—Zn1—C3129.95 (7)C23—C24—H24120.4
C32—Zn1—C31121.22 (9)C19—C24—H24120.4
N1—C1—C2122.6 (3)C30—C25—C26120.5 (2)
N1—C1—H1118.7C30—C25—O4124.4 (2)
C2—C1—H1118.7C26—C25—O4115.0 (2)
C3—C2—C1119.4 (3)C27—C26—C25119.9 (2)
C3—C2—H2120.3C27—C26—H26120.1
C1—C2—H2120.3C25—C26—H26120.1
C2—C3—C4119.4 (3)C26—C27—C28120.6 (2)
C2—C3—H3120.3C26—C27—H27119.7
C4—C3—H3120.3C28—C27—H27119.7
C12—C4—C3117.5 (3)C29—C28—C27118.6 (2)
C12—C4—C5119.1 (3)C29—C28—C32121.3 (2)
C3—C4—C5123.4 (3)C27—C28—C32120.1 (2)
C6—C5—C4120.9 (3)C28—C29—C30121.5 (2)
C6—C5—H5119.6C28—C29—H29119.2
C4—C5—H5119.6C30—C29—H29119.2
C5—C6—C7121.5 (3)C25—C30—C29118.9 (2)
C5—C6—H6119.3C25—C30—H30120.6
C7—C6—H6119.3C29—C30—H30120.6
C8—C7—C11117.4 (3)O2—C31—O1120.2 (2)
C8—C7—C6123.7 (3)O2—C31—C13120.2 (2)
C11—C7—C6118.9 (3)O1—C31—C13119.6 (3)
C9—C8—C7119.8 (3)O2—C31—Zn163.42 (14)
C9—C8—H8120.1O1—C31—Zn156.89 (14)
C7—C8—H8120.1C13—C31—Zn1175.3 (2)
C8—C9—C10119.9 (4)O6—C32—O5120.4 (2)
C8—C9—H9120.0O6—C32—C28120.4 (3)
C10—C9—H9120.0O5—C32—C28119.2 (2)
N2—C10—C9122.2 (3)O6—C32—Zn163.15 (14)
N2—C10—H10118.9O5—C32—Zn157.38 (13)
C9—C10—H10118.9C28—C32—Zn1173.7 (2)
N2—C11—C7122.9 (3)C1—N1—C12118.2 (3)
N2—C11—C12117.4 (3)C1—N1—Zn1128.5 (2)
C7—C11—C12119.7 (3)C12—N1—Zn1113.2 (2)
N1—C12—C4122.8 (3)C10—N2—C11117.7 (3)
N1—C12—C11117.3 (2)C10—N2—Zn1129.4 (2)
C4—C12—C11119.9 (2)C11—N2—Zn1112.8 (2)
C14—C13—C18118.6 (2)C31—O1—Zn193.04 (17)
C14—C13—C31121.0 (2)C31—O2—Zn186.64 (15)
C18—C13—C31120.4 (3)C16—O3—C19i117.09 (18)
C13—C14—C15121.2 (2)C25—O4—C21118.78 (18)
C13—C14—H14119.4C32—O5—Zn192.40 (16)
C15—C14—H14119.4C32—O6—Zn187.31 (16)
C16—C15—C14119.6 (3)H1A—O1W—H1B100 (4)
C16—C15—H15120.2
N1—C1—C2—C31.5 (5)N1—Zn1—C32—O5173.72 (16)
C1—C2—C3—C40.7 (5)N2—Zn1—C32—O584.78 (18)
C2—C3—C4—C120.6 (4)O1—Zn1—C32—O581.12 (18)
C2—C3—C4—C5179.8 (3)O6—Zn1—C32—O5175.3 (3)
C12—C4—C5—C60.4 (4)O2—Zn1—C32—O517.9 (2)
C3—C4—C5—C6178.8 (3)C31—Zn1—C32—O553.6 (2)
C4—C5—C6—C70.4 (4)N1—Zn1—C32—C28127.6 (19)
C5—C6—C7—C8178.6 (3)N2—Zn1—C32—C28143.4 (19)
C5—C6—C7—C111.0 (4)O1—Zn1—C32—C2822.5 (19)
C11—C7—C8—C90.5 (4)O5—Zn1—C32—C2858.7 (19)
C6—C7—C8—C9179.1 (3)O6—Zn1—C32—C28126 (2)
C7—C8—C9—C101.9 (5)O2—Zn1—C32—C2841 (2)
C8—C9—C10—N21.9 (5)C31—Zn1—C32—C285 (2)
C8—C7—C11—N20.9 (4)C2—C1—N1—C120.7 (4)
C6—C7—C11—N2179.4 (2)C2—C1—N1—Zn1179.0 (2)
C8—C7—C11—C12178.0 (2)C4—C12—N1—C10.8 (3)
C6—C7—C11—C121.7 (3)C11—C12—N1—C1178.8 (2)
C3—C4—C12—N11.4 (3)C4—C12—N1—Zn1179.44 (17)
C5—C4—C12—N1179.3 (2)C11—C12—N1—Zn10.9 (3)
C3—C4—C12—C11178.2 (2)N2—Zn1—N1—C1178.5 (2)
C5—C4—C12—C111.1 (3)O1—Zn1—N1—C138.6 (2)
N2—C11—C12—N10.3 (3)O5—Zn1—N1—C178.3 (3)
C7—C11—C12—N1178.6 (2)O6—Zn1—N1—C171.1 (2)
N2—C11—C12—C4179.3 (2)O2—Zn1—N1—C198.4 (2)
C7—C11—C12—C41.7 (3)C32—Zn1—N1—C171.9 (3)
C18—C13—C14—C152.8 (4)C31—Zn1—N1—C167.8 (2)
C31—C13—C14—C15178.1 (3)N2—Zn1—N1—C121.25 (16)
C13—C14—C15—C162.3 (5)O1—Zn1—N1—C12141.71 (16)
C14—C15—C16—C170.1 (4)O5—Zn1—N1—C12101.4 (2)
C14—C15—C16—O3178.2 (3)O6—Zn1—N1—C12108.60 (16)
C15—C16—C17—C181.9 (4)O2—Zn1—N1—C1281.87 (17)
O3—C16—C17—C18179.9 (2)C32—Zn1—N1—C12107.81 (17)
C14—C13—C18—C171.0 (4)C31—Zn1—N1—C12112.47 (17)
C31—C13—C18—C17179.9 (2)C9—C10—N2—C110.5 (4)
C16—C17—C18—C131.3 (4)C9—C10—N2—Zn1175.5 (2)
C24—C19—C20—C210.5 (3)C7—C11—N2—C100.9 (4)
O3i—C19—C20—C21176.60 (19)C12—C11—N2—C10178.0 (2)
C19—C20—C21—C220.5 (3)C7—C11—N2—Zn1177.55 (18)
C19—C20—C21—O4175.93 (19)C12—C11—N2—Zn11.4 (3)
C20—C21—C22—C230.5 (3)N1—Zn1—N2—C10177.5 (3)
O4—C21—C22—C23175.9 (2)O1—Zn1—N2—C1093.4 (3)
C21—C22—C23—C240.7 (4)O5—Zn1—N2—C1032.4 (3)
C22—C23—C24—C190.8 (4)O6—Zn1—N2—C1094.7 (3)
C20—C19—C24—C230.7 (3)O2—Zn1—N2—C1066.5 (3)
O3i—C19—C24—C23176.7 (2)C32—Zn1—N2—C1063.6 (3)
C30—C25—C26—C270.3 (4)C31—Zn1—N2—C1077.5 (3)
O4—C25—C26—C27177.1 (3)N1—Zn1—N2—C111.42 (16)
C25—C26—C27—C280.0 (4)O1—Zn1—N2—C1182.7 (2)
C26—C27—C28—C290.2 (4)O5—Zn1—N2—C11151.45 (16)
C26—C27—C28—C32178.6 (3)O6—Zn1—N2—C1189.23 (17)
C27—C28—C29—C300.8 (4)O2—Zn1—N2—C11109.58 (17)
C32—C28—C29—C30179.1 (3)C32—Zn1—N2—C11120.30 (17)
C26—C25—C30—C290.9 (4)C31—Zn1—N2—C1198.66 (18)
O4—C25—C30—C29176.3 (2)O2—C31—O1—Zn13.0 (2)
C28—C29—C30—C251.1 (4)C13—C31—O1—Zn1176.39 (19)
C14—C13—C31—O2165.4 (3)N1—Zn1—O1—C31108.61 (16)
C18—C13—C31—O215.5 (4)N2—Zn1—O1—C3129.8 (2)
C14—C13—C31—O115.1 (4)O5—Zn1—O1—C3197.69 (16)
C18—C13—C31—O1163.9 (3)O6—Zn1—O1—C31158.42 (15)
C14—C13—C31—Zn155 (2)O2—Zn1—O1—C311.68 (14)
C18—C13—C31—Zn1124 (2)C32—Zn1—O1—C31127.87 (16)
N1—Zn1—C31—O2106.68 (16)O1—C31—O2—Zn12.8 (2)
N2—Zn1—C31—O222.26 (18)C13—C31—O2—Zn1176.6 (2)
O1—Zn1—C31—O2177.1 (2)N1—Zn1—O2—C3182.39 (16)
O5—Zn1—C31—O289.53 (15)N2—Zn1—O2—C31159.95 (16)
O6—Zn1—C31—O2146.71 (14)O1—Zn1—O2—C311.68 (14)
C32—Zn1—C31—O2113.90 (16)O5—Zn1—O2—C3195.99 (15)
N1—Zn1—C31—O176.23 (16)O6—Zn1—O2—C3170.5 (3)
N2—Zn1—C31—O1160.65 (15)C32—Zn1—O2—C3186.97 (17)
O5—Zn1—C31—O187.56 (16)C17—C16—O3—C19i152.2 (3)
O6—Zn1—C31—O130.4 (2)C15—C16—O3—C19i29.7 (4)
O2—Zn1—C31—O1177.1 (2)C30—C25—O4—C214.9 (4)
C32—Zn1—C31—O163.19 (18)C26—C25—O4—C21177.8 (2)
N1—Zn1—C31—C1334 (2)C22—C21—O4—C2572.3 (3)
N2—Zn1—C31—C13119 (2)C20—C21—O4—C25112.2 (2)
O1—Zn1—C31—C1342 (2)O6—C32—O5—Zn14.8 (3)
O5—Zn1—C31—C13129 (2)C28—C32—O5—Zn1173.9 (2)
O6—Zn1—C31—C1372 (2)N1—Zn1—O5—C3211.0 (3)
O2—Zn1—C31—C13141 (2)N2—Zn1—O5—C32104.52 (17)
C32—Zn1—C31—C13105 (2)O1—Zn1—O5—C32105.09 (17)
C29—C28—C32—O6179.9 (3)O6—Zn1—O5—C322.66 (16)
C27—C28—C32—O61.8 (4)O2—Zn1—O5—C32165.88 (17)
C29—C28—C32—O51.4 (4)C31—Zn1—O5—C32135.48 (18)
C27—C28—C32—O5176.9 (3)O5—C32—O6—Zn14.6 (3)
C29—C28—C32—Zn157 (2)C28—C32—O6—Zn1174.1 (2)
C27—C28—C32—Zn1121.4 (19)N1—Zn1—O6—C32178.62 (18)
N1—Zn1—C32—O61.6 (2)N2—Zn1—O6—C3299.50 (19)
N2—Zn1—C32—O690.55 (19)O1—Zn1—O6—C3285.67 (18)
O1—Zn1—C32—O6103.55 (18)O5—Zn1—O6—C322.72 (17)
O5—Zn1—C32—O6175.3 (3)O2—Zn1—O6—C3226.7 (3)
O2—Zn1—C32—O6166.76 (16)C31—Zn1—O6—C3270.1 (2)
C31—Zn1—C32—O6131.10 (18)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg6 are the centroids of the C13–C18 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2ii0.83 (2)2.06 (2)2.877 (3)171 (5)
O1W—H1B···O50.84 (2)2.04 (2)2.877 (3)173 (5)
C1—H1···O1iii0.932.333.169 (4)150
C3—H3···O1Wiv0.932.443.332 (4)161
C5—H5···O2v0.932.463.256 (4)144
C8—H8···Cg6vi0.932.673.543 (4)156
C10—H10···Cg4ii0.932.873.726 (5)154
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z; (v) x+1, y+2, z; (vi) x, y+1, z.
Selected bond lengths (Å) top
Zn1—N12.089 (3)Zn1—O22.2460 (19)
Zn1—N22.097 (3)Zn1—O52.1061 (19)
Zn1—O12.1031 (19)Zn1—O62.231 (2)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg6 are the centroids of the C13–C18 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2i0.829 (19)2.06 (2)2.877 (3)171 (5)
O1W—H1B···O50.842 (19)2.04 (2)2.877 (3)173 (5)
C1—H1···O1ii0.932.333.169 (4)150
C3—H3···O1Wiii0.932.443.332 (4)161
C5—H5···O2iv0.932.463.256 (4)144
C8—H8···Cg6v0.932.673.543 (4)156
C10—H10···Cg4i0.932.873.726 (5)154
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+2, z; (v) x, y+1, z.
 

Acknowledgements

The project was supported by the Inter­national Scientific and Technological Cooperation Foundation of Jilin Province, China (20120722).

References

First citationBruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNecefoglu, H., Clegg, W. & Scott, A. J. (2002). Acta Cryst. E58, m121–m122.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages m341-m342
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds