metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages m347-m348

Crystal structure of [2-({4-[2,6-bis­(pyri­din-2-yl)pyri­din-4-yl]phenyl}(methyl)amino)­ethanol-κ3N,N′,N′′]bis­­(thio­cyan­ato-κN)zinc N,N-di­methyl­formamide monosolvate

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, Key Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: lsl1968@ahu.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 25 August 2014; accepted 28 August 2014; online 6 September 2014)

In the title compound, [Zn(NCS)2(C24H22N4O)]·C3H7NO, the ZnII cation is N,N′,N′′-chelated by one 2-({4-[2,6-bis­(pyridin-2-yl)pyridin-4-yl]phen­yl}(meth­yl)amino)­ethanol ligand and coordinated by two thio­cyanate anions in a distorted N5 trigonal–bipyramidal geometry. In the mol­ecule, the three pyridine rings are approximately coplanar [maximum deviation = 0.026 (5) Å], and the mean plane of the three pyridine rings is twisted to the benzene ring with a small dihedral angle of 5.9 (2)°. In the crystal, complex mol­ecules are linked by weak C—H⋯O hydrogen bonds into supra­molecular chains propagated along [110]; ππ stacking is observed between adjacent chains [centroid–centroid distance = 3.678 (4) Å]. The di­methyl­formamide solvent mol­ecules are linked with the complex chains via weak C—H⋯O hydrogen bonds.

1. Related literature

For the crystal structures of related ZnII thio­cyanate complexes, see: Nie et al. (2014[Nie, C., Zhang, Q. & Ding, H. (2014). Dalton Trans. 43, 599-608.]); Kharat et al. (2012[Kharat, A. N., Bakhoda, A. & Bruno, G. (2012). Polyhedron, 45, 9-14.]); Eryazici et al. (2008[Eryazici, I., Moorefield, C. N. & Newkome, G. R. (2008). Chem. Rev. 108, 1834-1895.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Zn(NCS)2(C24H22N4O)]·C3H7NO

  • Mr = 637.08

  • Triclinic, [P \overline 1]

  • a = 9.565 (5) Å

  • b = 12.969 (5) Å

  • c = 13.652 (5) Å

  • α = 115.656 (5)°

  • β = 94.646 (5)°

  • γ = 91.621 (5)°

  • V = 1517.7 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.757, Tmax = 0.827

  • 10881 measured reflections

  • 5293 independent reflections

  • 3729 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.174

  • S = 0.99

  • 5293 reflections

  • 373 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N2 2.051 (4)
Zn1—N3 2.163 (4)
Zn1—N4 2.224 (4)
Zn1—N5 1.953 (5)
Zn1—N6 1.969 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.54 3.457 (8) 170
C14—H14⋯O2i 0.93 2.54 3.470 (7) 177
C16—H16⋯O2i 0.93 2.43 3.356 (9) 178
C24—H24⋯O1ii 0.93 2.58 3.488 (13) 164
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x+1, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Zinc complexes with terpyridine derivatives are currently attracting attention for their interesting molecular topologies and crystal packing motifs, as well as the fact that they may be designed with specific applications in bioinorganic chemistry and material (Nie et al., 2014; Kharat et al., 2012). In turn, countless Zn terpyridine complexes have been surveyed and their crystals were demonstrated. However, the crystal of Zn(SCN)2 terpyridine complexes are rarely mentioned (Eryazici et al., 2008). In this paper, we report the crystal structure of the terpyridine- Zinc complex. The molecular structure with the numbering scheme is shown in Fig. 1, the ZnII is coordinated by three N atoms from terpyridine ligand and two thiocyanate anions in a highly distorted square-pyramidal trigonal bipyramidal geometry. Bond distances and angles around the ZnII center are in the range 1.954 (5)–2.224 (4) Å and 74.93 (14)–124.48 (17)°, respectively. The dihedral angle between pyridine ring and phenyl ring is 6.24°, which can ascribe to the existence of the dimethylformamide molecule that restricts the rotation of single bonds and increase molecule planarity by C— H···O interactions. The one-dimensional chains are assembled by C24—H24···O1 (2.583 Å) hydrogen bond between adjacent complex molecules (Fig.2). In addition, two-dimensional networks formed by multiply C—H···S hydrogen bonds. The distances of C6—H6··· S2, C21—H21···S2 and C17—H17···S2 are nearly the same, which are 2.970 Å, 2.952 Å and 2.964 Å, respectively (Fig.3).

Related literature top

For the crystal structures of related ZnII thiocyanate complexes, see: Nie et al. (2014); Kharat et al. (2012); Eryazici et al. (2008).

Experimental top

To a solution of Zn(SCN)2 (0.18 g, 1 mmol) in freshly distilled ethanol (50 ml), was added N-methyl-N-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)amino)ethanol (0.38 g, 1 mmol). The mixture was refluxed for 4 h. Then resulted orange suspension was filtered, washed with ethanol and dried in vacuo. Subsequent diffusion of diethyl ether into the concentrated dimethylformamide solution gave complex as air-stable orange crystals.

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with O—H = 0.96 and C—H = 0.93–0.97 Å, Uiso(H) = 1.5Ueq(O,C) for hydroxyl and methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.
[Figure 2] Fig. 2. The one-dimensional chain structure of the title compound, Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. The two-dimensional networks of the title compound, Hydrogen atoms are omitted for clarity.
[2-({4-[2,6-Bis(pyridin-2-yl)pyridin-4-yl]phenyl}(methyl)amino)ethanol-κ3N,N',N'']bis(thiocyanato-κN)zinc N,N-dimethylformamide monosolvate top
Crystal data top
[Zn(NCS)2(C24H22N4O)]·C3H7NOZ = 2
Mr = 637.08F(000) = 660
Triclinic, P1Dx = 1.394 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.565 (5) ÅCell parameters from 2689 reflections
b = 12.969 (5) Åθ = 2.6–21.8°
c = 13.652 (5) ŵ = 0.99 mm1
α = 115.656 (5)°T = 298 K
β = 94.646 (5)°Block, orange
γ = 91.621 (5)°0.30 × 0.20 × 0.20 mm
V = 1517.7 (11) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5293 independent reflections
Radiation source: fine-focus sealed tube3729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1111
Tmin = 0.757, Tmax = 0.827k = 1515
10881 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0928P)2 + 1.3834P]
where P = (Fo2 + 2Fc2)/3
5293 reflections(Δ/σ)max = 0.006
373 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Zn(NCS)2(C24H22N4O)]·C3H7NOγ = 91.621 (5)°
Mr = 637.08V = 1517.7 (11) Å3
Triclinic, P1Z = 2
a = 9.565 (5) ÅMo Kα radiation
b = 12.969 (5) ŵ = 0.99 mm1
c = 13.652 (5) ÅT = 298 K
α = 115.656 (5)°0.30 × 0.20 × 0.20 mm
β = 94.646 (5)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5293 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3729 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.827Rint = 0.029
10881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 0.99Δρmax = 0.87 e Å3
5293 reflectionsΔρmin = 0.72 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.69718 (6)1.21976 (4)0.76963 (4)0.0543 (2)
S20.5329 (2)1.42626 (13)0.57934 (12)0.0919 (6)
S11.18423 (19)1.2588 (2)0.87203 (16)0.1314 (9)
C110.4729 (5)0.8990 (4)0.6857 (3)0.0493 (10)
H110.46280.82850.62440.059*
C70.3121 (5)0.8217 (4)0.7783 (4)0.0508 (11)
N40.7085 (4)1.0716 (3)0.6082 (3)0.0570 (10)
C100.4020 (4)0.9141 (4)0.7772 (3)0.0473 (10)
N20.5729 (4)1.0896 (3)0.7721 (3)0.0462 (8)
C210.6321 (5)0.8772 (4)0.4976 (4)0.0616 (13)
H210.57950.81170.48860.074*
C200.6351 (5)0.9760 (4)0.5926 (3)0.0474 (10)
C150.5317 (5)1.2277 (4)0.9491 (4)0.0509 (11)
C140.4221 (5)1.0233 (4)0.8652 (4)0.0514 (11)
H140.37811.03870.92800.062*
C250.5934 (6)1.3671 (4)0.6558 (4)0.0601 (12)
N30.6160 (4)1.2966 (3)0.9271 (3)0.0552 (9)
C130.5056 (4)1.1074 (4)0.8597 (3)0.0464 (10)
C120.5556 (4)0.9861 (4)0.6862 (3)0.0458 (10)
C50.2196 (6)0.6233 (4)0.6932 (4)0.0746 (16)
H50.21680.55110.63460.089*
C40.1361 (5)0.6400 (4)0.7783 (4)0.0641 (13)
C80.2290 (5)0.8372 (4)0.8625 (4)0.0595 (12)
H80.23080.90980.92050.071*
N10.0541 (6)0.5523 (4)0.7781 (4)0.0904 (16)
C90.1450 (5)0.7506 (4)0.8635 (4)0.0636 (13)
H90.09280.76570.92220.076*
C160.4713 (5)1.2637 (4)1.0458 (4)0.0632 (13)
H160.41261.21391.05920.076*
C220.7081 (6)0.8762 (5)0.4153 (4)0.0701 (14)
H220.70720.81010.35000.084*
C60.3040 (6)0.7096 (4)0.6943 (4)0.0671 (14)
H60.35890.69380.63700.081*
C170.5010 (6)1.3769 (5)1.1227 (4)0.0736 (15)
H170.46271.40411.18910.088*
C261.0166 (7)1.2465 (5)0.8394 (4)0.0734 (15)
C230.7846 (6)0.9739 (5)0.4315 (5)0.0787 (16)
H230.83700.97510.37750.094*
C180.5873 (6)1.4481 (5)1.0997 (5)0.0775 (16)
H180.60691.52441.14990.093*
C240.7831 (6)1.0690 (5)0.5274 (5)0.0733 (15)
H240.83561.13510.53790.088*
N60.6325 (5)1.3253 (4)0.7093 (4)0.0690 (11)
C190.6443 (6)1.4058 (4)1.0021 (4)0.0687 (14)
H190.70421.45380.98740.082*
O20.7459 (6)0.9090 (5)0.9008 (4)0.1267 (19)
O10.0642 (12)0.3133 (8)0.5213 (8)0.253 (5)
H1C0.16040.29420.49000.379*
C30.0373 (8)0.5720 (6)0.8653 (6)0.111 (3)
H3A0.01880.60230.93460.166*
H3B0.08600.50090.85250.166*
H3C0.10450.62580.86570.166*
N70.8572 (6)0.8651 (5)0.7513 (5)0.0909 (16)
N50.8987 (5)1.2422 (4)0.8163 (4)0.0756 (13)
C290.8300 (9)0.9318 (8)0.8483 (7)0.114 (2)
H290.87831.00370.88190.137*
C20.0517 (11)0.4346 (7)0.6910 (7)0.129 (3)
H2A0.14410.41840.66570.155*
H2B0.02400.37970.71770.155*
C280.7953 (10)0.7508 (8)0.6975 (8)0.141 (3)
H28A0.86760.69850.67170.212*
H28B0.73070.74310.63680.212*
H28C0.74590.73370.74780.212*
C10.0503 (12)0.4279 (10)0.6026 (10)0.182 (5)
H1A0.14030.45100.63000.219*
H1B0.01840.47860.57240.219*
C270.9575 (8)0.8978 (9)0.6971 (8)0.144 (4)
H27A0.98990.97670.74050.216*
H27B0.91480.88820.62730.216*
H27C1.03560.85060.68680.216*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0543 (4)0.0515 (3)0.0586 (4)0.0060 (2)0.0007 (2)0.0270 (3)
S20.1544 (17)0.0717 (9)0.0591 (9)0.0319 (10)0.0163 (9)0.0352 (8)
S10.0642 (11)0.216 (3)0.0843 (12)0.0322 (13)0.0012 (9)0.0380 (14)
C110.058 (3)0.044 (2)0.040 (2)0.001 (2)0.006 (2)0.0134 (19)
C70.048 (3)0.052 (3)0.052 (3)0.001 (2)0.007 (2)0.022 (2)
N40.059 (2)0.058 (2)0.056 (2)0.0086 (19)0.0118 (19)0.0269 (19)
C100.046 (2)0.049 (2)0.048 (3)0.0038 (19)0.0056 (19)0.022 (2)
N20.048 (2)0.048 (2)0.0406 (19)0.0012 (16)0.0037 (16)0.0170 (17)
C210.068 (3)0.065 (3)0.049 (3)0.006 (2)0.013 (2)0.021 (2)
C200.049 (2)0.052 (3)0.041 (2)0.002 (2)0.0045 (19)0.020 (2)
C150.052 (3)0.051 (3)0.044 (3)0.003 (2)0.002 (2)0.018 (2)
C140.052 (3)0.059 (3)0.042 (2)0.006 (2)0.012 (2)0.020 (2)
C250.078 (3)0.049 (3)0.048 (3)0.006 (2)0.013 (2)0.015 (2)
N30.062 (2)0.049 (2)0.050 (2)0.0015 (18)0.0014 (18)0.0191 (18)
C130.045 (2)0.049 (2)0.043 (2)0.0040 (19)0.0044 (19)0.018 (2)
C120.048 (2)0.047 (2)0.045 (2)0.0013 (19)0.0058 (19)0.023 (2)
C50.096 (4)0.055 (3)0.066 (3)0.014 (3)0.030 (3)0.017 (3)
C40.071 (3)0.064 (3)0.060 (3)0.009 (3)0.014 (3)0.029 (3)
C80.068 (3)0.053 (3)0.052 (3)0.005 (2)0.015 (2)0.018 (2)
N10.115 (4)0.072 (3)0.072 (3)0.035 (3)0.029 (3)0.019 (3)
C90.071 (3)0.067 (3)0.055 (3)0.002 (3)0.024 (2)0.026 (3)
C160.066 (3)0.065 (3)0.051 (3)0.007 (2)0.008 (2)0.016 (2)
C220.084 (4)0.069 (3)0.053 (3)0.005 (3)0.019 (3)0.021 (3)
C60.077 (4)0.062 (3)0.060 (3)0.008 (3)0.026 (3)0.022 (3)
C170.088 (4)0.065 (3)0.051 (3)0.006 (3)0.009 (3)0.009 (3)
C260.074 (4)0.091 (4)0.049 (3)0.013 (3)0.009 (3)0.024 (3)
C230.090 (4)0.090 (4)0.065 (4)0.001 (3)0.029 (3)0.038 (3)
C180.088 (4)0.057 (3)0.062 (3)0.002 (3)0.003 (3)0.004 (3)
C240.079 (4)0.075 (4)0.070 (4)0.013 (3)0.014 (3)0.035 (3)
N60.086 (3)0.059 (3)0.066 (3)0.002 (2)0.001 (2)0.032 (2)
C190.081 (4)0.050 (3)0.065 (3)0.003 (3)0.001 (3)0.017 (3)
O20.142 (5)0.142 (5)0.098 (4)0.003 (4)0.047 (3)0.050 (3)
O10.304 (13)0.181 (8)0.201 (9)0.063 (8)0.005 (8)0.024 (7)
C30.141 (6)0.099 (5)0.088 (5)0.033 (4)0.046 (4)0.035 (4)
N70.090 (4)0.110 (4)0.090 (4)0.039 (3)0.033 (3)0.054 (4)
N50.054 (3)0.090 (3)0.081 (3)0.010 (2)0.005 (2)0.038 (3)
C290.125 (7)0.135 (7)0.095 (6)0.028 (5)0.032 (5)0.058 (5)
C20.177 (9)0.112 (6)0.097 (6)0.048 (6)0.042 (6)0.042 (5)
C280.159 (9)0.111 (7)0.146 (8)0.044 (6)0.004 (6)0.051 (6)
C10.167 (10)0.183 (11)0.143 (9)0.081 (9)0.005 (8)0.029 (9)
C270.090 (5)0.252 (12)0.157 (8)0.045 (6)0.039 (5)0.145 (8)
Geometric parameters (Å, º) top
Zn1—N22.051 (4)N1—C31.472 (7)
Zn1—N32.163 (4)C9—H90.9300
Zn1—N42.224 (4)C16—C171.389 (7)
Zn1—N51.953 (5)C16—H160.9300
Zn1—N61.969 (4)C22—C231.367 (8)
S2—C251.623 (6)C22—H220.9300
S1—C261.613 (7)C6—H60.9300
C11—C121.359 (6)C17—C181.372 (8)
C11—C101.410 (6)C17—H170.9300
C11—H110.9300C26—N51.139 (7)
C7—C81.395 (6)C23—C241.357 (8)
C7—C61.404 (7)C23—H230.9300
C7—C101.462 (6)C18—C191.369 (8)
N4—C201.331 (6)C18—H180.9300
N4—C241.351 (6)C24—H240.9300
C10—C141.401 (6)C19—H190.9300
N2—C131.339 (5)O2—C291.229 (8)
N2—C121.341 (5)O1—C11.412 (12)
C21—C201.370 (6)O1—H1C0.9600
C21—C221.382 (7)C3—H3A0.9600
C21—H210.9300C3—H3B0.9600
C20—C121.499 (6)C3—H3C0.9600
C15—N31.330 (6)N7—C291.283 (9)
C15—C161.378 (6)N7—C271.418 (8)
C15—C131.505 (6)N7—C281.423 (10)
C14—C131.366 (6)C29—H290.9300
C14—H140.9300C2—C11.459 (13)
C25—N61.130 (6)C2—H2A0.9700
N3—C191.343 (6)C2—H2B0.9700
C5—C61.355 (7)C28—H28A0.9600
C5—C41.405 (7)C28—H28B0.9600
C5—H50.9300C28—H28C0.9600
C4—N11.362 (6)C1—H1A0.9700
C4—C91.397 (7)C1—H1B0.9700
C8—C91.368 (6)C27—H27A0.9600
C8—H80.9300C27—H27B0.9600
N1—C21.471 (9)C27—H27C0.9600
N5—Zn1—N6113.0 (2)C15—C16—H16121.1
N5—Zn1—N2122.32 (17)C17—C16—H16121.1
N6—Zn1—N2124.49 (17)C23—C22—C21118.9 (5)
N5—Zn1—N399.89 (17)C23—C22—H22120.6
N6—Zn1—N3100.04 (16)C21—C22—H22120.6
N2—Zn1—N375.96 (14)C5—C6—C7122.8 (5)
N5—Zn1—N496.67 (17)C5—C6—H6118.6
N6—Zn1—N495.28 (16)C7—C6—H6118.6
N2—Zn1—N474.93 (14)C18—C17—C16119.4 (5)
N3—Zn1—N4150.86 (15)C18—C17—H17120.3
C12—C11—C10120.8 (4)C16—C17—H17120.3
C12—C11—H11119.6N5—C26—S1177.1 (6)
C10—C11—H11119.6C24—C23—C22119.2 (5)
C8—C7—C6114.9 (4)C24—C23—H23120.4
C8—C7—C10123.1 (4)C22—C23—H23120.4
C6—C7—C10122.0 (4)C19—C18—C17119.3 (5)
C20—N4—C24118.1 (4)C19—C18—H18120.3
C20—N4—Zn1115.1 (3)C17—C18—H18120.3
C24—N4—Zn1126.8 (3)N4—C24—C23122.6 (5)
C14—C10—C11115.6 (4)N4—C24—H24118.7
C14—C10—C7122.6 (4)C23—C24—H24118.7
C11—C10—C7121.7 (4)C25—N6—Zn1166.5 (4)
C13—N2—C12118.7 (4)N3—C19—C18121.7 (5)
C13—N2—Zn1120.2 (3)N3—C19—H19119.1
C12—N2—Zn1121.1 (3)C18—C19—H19119.1
C20—C21—C22119.1 (5)C1—O1—H1C109.1
C20—C21—H21120.4N1—C3—H3A109.5
C22—C21—H21120.4N1—C3—H3B109.5
N4—C20—C21122.1 (4)H3A—C3—H3B109.5
N4—C20—C12114.6 (4)N1—C3—H3C109.5
C21—C20—C12123.2 (4)H3A—C3—H3C109.5
N3—C15—C16122.7 (4)H3B—C3—H3C109.5
N3—C15—C13115.0 (4)C29—N7—C27122.1 (8)
C16—C15—C13122.3 (4)C29—N7—C28120.4 (7)
C13—C14—C10120.5 (4)C27—N7—C28117.3 (8)
C13—C14—H14119.7C26—N5—Zn1174.8 (5)
C10—C14—H14119.7O2—C29—N7125.8 (9)
N6—C25—S2178.5 (5)O2—C29—H29117.1
C15—N3—C19118.9 (4)N7—C29—H29117.1
C15—N3—Zn1115.7 (3)C1—C2—N1106.5 (9)
C19—N3—Zn1125.4 (4)C1—C2—H2A110.4
N2—C13—C14122.3 (4)N1—C2—H2A110.4
N2—C13—C15113.2 (4)C1—C2—H2B110.4
C14—C13—C15124.5 (4)N1—C2—H2B110.4
N2—C12—C11122.0 (4)H2A—C2—H2B108.6
N2—C12—C20114.2 (4)N7—C28—H28A109.5
C11—C12—C20123.7 (4)N7—C28—H28B109.5
C6—C5—C4121.8 (5)H28A—C28—H28B109.5
C6—C5—H5119.1N7—C28—H28C109.5
C4—C5—H5119.1H28A—C28—H28C109.5
N1—C4—C9122.4 (5)H28B—C28—H28C109.5
N1—C4—C5121.6 (5)O1—C1—C2108.1 (11)
C9—C4—C5116.1 (4)O1—C1—H1A110.1
C9—C8—C7123.0 (4)C2—C1—H1A110.1
C9—C8—H8118.5O1—C1—H1B110.1
C7—C8—H8118.5C2—C1—H1B110.1
C4—N1—C2121.9 (5)H1A—C1—H1B108.4
C4—N1—C3121.0 (5)N7—C27—H27A109.5
C2—N1—C3117.1 (5)N7—C27—H27B109.5
C8—C9—C4121.4 (4)H27A—C27—H27B109.5
C8—C9—H9119.3N7—C27—H27C109.5
C4—C9—H9119.3H27A—C27—H27C109.5
C15—C16—C17117.9 (5)H27B—C27—H27C109.5
N5—Zn1—N4—C20121.1 (3)C13—N2—C12—C110.5 (6)
N6—Zn1—N4—C20124.9 (3)Zn1—N2—C12—C11179.5 (3)
N2—Zn1—N4—C200.6 (3)C13—N2—C12—C20179.7 (4)
N3—Zn1—N4—C203.3 (5)Zn1—N2—C12—C200.7 (5)
N5—Zn1—N4—C2457.5 (5)C10—C11—C12—N20.5 (7)
N6—Zn1—N4—C2456.4 (5)C10—C11—C12—C20179.4 (4)
N2—Zn1—N4—C24179.3 (5)N4—C20—C12—N21.2 (6)
N3—Zn1—N4—C24178.1 (4)C21—C20—C12—N2179.6 (4)
C12—C11—C10—C140.7 (6)N4—C20—C12—C11179.0 (4)
C12—C11—C10—C7179.8 (4)C21—C20—C12—C110.2 (7)
C8—C7—C10—C146.0 (7)C6—C5—C4—N1178.4 (6)
C6—C7—C10—C14173.5 (5)C6—C5—C4—C90.2 (9)
C8—C7—C10—C11173.0 (4)C6—C7—C8—C90.4 (8)
C6—C7—C10—C117.5 (7)C10—C7—C8—C9179.9 (5)
N5—Zn1—N2—C1392.5 (4)C9—C4—N1—C2176.4 (7)
N6—Zn1—N2—C1393.1 (3)C5—C4—N1—C22.1 (10)
N3—Zn1—N2—C130.4 (3)C9—C4—N1—C34.1 (9)
N4—Zn1—N2—C13179.1 (3)C5—C4—N1—C3177.4 (6)
N5—Zn1—N2—C1288.5 (4)C7—C8—C9—C40.8 (8)
N6—Zn1—N2—C1285.9 (4)N1—C4—C9—C8179.5 (6)
N3—Zn1—N2—C12178.6 (3)C5—C4—C9—C80.9 (8)
N4—Zn1—N2—C120.1 (3)N3—C15—C16—C170.0 (7)
C24—N4—C20—C210.9 (7)C13—C15—C16—C17179.4 (4)
Zn1—N4—C20—C21179.7 (4)C20—C21—C22—C230.3 (8)
C24—N4—C20—C12179.9 (4)C4—C5—C6—C71.5 (10)
Zn1—N4—C20—C121.1 (5)C8—C7—C6—C51.5 (8)
C22—C21—C20—N40.4 (7)C10—C7—C6—C5179.0 (5)
C22—C21—C20—C12179.5 (4)C15—C16—C17—C180.4 (8)
C11—C10—C14—C130.0 (6)C21—C22—C23—C240.4 (9)
C7—C10—C14—C13179.1 (4)C16—C17—C18—C191.0 (9)
C16—C15—N3—C190.2 (7)C20—N4—C24—C230.8 (8)
C13—C15—N3—C19179.6 (4)Zn1—N4—C24—C23179.4 (4)
C16—C15—N3—Zn1179.9 (4)C22—C23—C24—N40.2 (9)
C13—C15—N3—Zn10.5 (5)S2—C25—N6—Zn187 (18)
N5—Zn1—N3—C15120.5 (3)N5—Zn1—N6—C25107 (2)
N6—Zn1—N3—C15123.8 (3)N2—Zn1—N6—C2567 (2)
N2—Zn1—N3—C150.5 (3)N3—Zn1—N6—C25147 (2)
N4—Zn1—N3—C153.2 (5)N4—Zn1—N6—C258 (2)
N5—Zn1—N3—C1959.3 (4)C15—N3—C19—C180.8 (8)
N6—Zn1—N3—C1956.3 (4)Zn1—N3—C19—C18179.3 (4)
N2—Zn1—N3—C19179.6 (4)C17—C18—C19—N31.2 (9)
N4—Zn1—N3—C19177.0 (4)S1—C26—N5—Zn1148 (8)
C12—N2—C13—C141.2 (6)N6—Zn1—N5—C26133 (5)
Zn1—N2—C13—C14179.8 (3)N2—Zn1—N5—C2642 (5)
C12—N2—C13—C15178.7 (4)N3—Zn1—N5—C26122 (5)
Zn1—N2—C13—C150.3 (5)N4—Zn1—N5—C2634 (5)
C10—C14—C13—N21.0 (7)C27—N7—C29—O2179.2 (7)
C10—C14—C13—C15179.0 (4)C28—N7—C29—O24.5 (12)
N3—C15—C13—N20.2 (5)C4—N1—C2—C185.3 (9)
C16—C15—C13—N2179.6 (4)C3—N1—C2—C194.2 (8)
N3—C15—C13—C14179.7 (4)N1—C2—C1—O1175.1 (7)
C16—C15—C13—C140.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.543.457 (8)170
C14—H14···O2i0.932.543.470 (7)177
C16—H16···O2i0.932.433.356 (9)178
C24—H24···O1ii0.932.583.488 (13)164
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z.
Selected bond lengths (Å) top
Zn1—N22.051 (4)Zn1—N51.953 (5)
Zn1—N32.163 (4)Zn1—N61.969 (4)
Zn1—N42.224 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.543.457 (8)170
C14—H14···O2i0.932.543.470 (7)177
C16—H16···O2i0.932.433.356 (9)178
C24—H24···O1ii0.932.583.488 (13)164
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported by Anhui Provincial Natural Science Foundation (grant No. 1308085MB24) and the Educational Commission of Anhui Province of China (grant No. KJ2012A025).

References

First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEryazici, I., Moorefield, C. N. & Newkome, G. R. (2008). Chem. Rev. 108, 1834–1895.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKharat, A. N., Bakhoda, A. & Bruno, G. (2012). Polyhedron, 45, 9–14.  Web of Science CSD CrossRef CAS Google Scholar
First citationNie, C., Zhang, Q. & Ding, H. (2014). Dalton Trans. 43, 599–608.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages m347-m348
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds