organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1078-o1079

Crystal structure of 5-chloro-3-(4-fluoro­phenyl­sulfin­yl)-2,4,6-tri­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 25 August 2014; accepted 26 August 2014; online 3 September 2014)

In the title compound, C17H14ClFO2S, the dihedral angle between the mean planes of the benzo­furan ring system [maximum deviation = 0.037 (2) Å] and the 4-fluoro­benzene ring is 71.92 (5)°. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked by ππ stacking between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.7103 (10) Å]. These mol­ecules are further linked by C—S⋯π [S⋯centroid = 3.570 (1) Å] and C—H⋯O inter­actions, resulting in a three-dimensional supra­molecular network.

1. Related literature

For the pharmacological properties of benzo­furan compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]); Ono et al. (2002[Ono, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633-642.]). For natural products with a benzo­furan ring, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the synthesis of the starting material 5-chloro-3-(4-fluoro­phenyl­sulfan­yl)-2,4,6-trimethyl-1-benzo­furan, see: Choi et al. (1999[Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606-608.]). For a related structure, see: Choi et al. (2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o2080.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H14ClFO2S

  • Mr = 336.79

  • Monoclinic, C 2/c

  • a = 21.7503 (3) Å

  • b = 10.6444 (2) Å

  • c = 16.4061 (3) Å

  • β = 126.622 (1)°

  • V = 3048.49 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 173 K

  • 0.43 × 0.26 × 0.25 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.846, Tmax = 0.908

  • 14427 measured reflections

  • 3777 independent reflections

  • 3158 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.096

  • S = 1.06

  • 3777 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O2 0.98 2.45 3.3901 (19) 161
C13—H13⋯O2i 0.95 2.46 3.3191 (19) 150
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran compounds show interesting biological activity such as antibacterial and antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al. 2009, Galal et al., 2009, Khan et al., 2005), and potential inhibitor of β-amyloid aggregation (Howlett et al., 1999, Ono et al., 2002). These benzofuran compounds occur in a great number of natural products. (Akgul & Anil, 2003, Soekamto et al., 2003). As a part of our ongoing study of 3-arylsulfinyl-5-chloro-2-methyl-1-benzofuran derivatives containing 4-bromophenylsulfinyl substituent in 3-position (Choi et al., 2012), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.022 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring and the 4-fluorophenyl ring is 71.92 (5)°. In the crystal structure (Fig. 2), molecules are linked by π···π interactions between the benzene rings of neighbouring molecules, with a Cg1···Cg1ii distance of 3.7103 (10) Å and an interplanar distance of 3.489 (1) Å resulting in a slippage of 1.261 (1) Å (Cg1 is the centroid of the C2–C7 benzene ring). These molecules are further linked by C—S···π interactions between the sulfur atom and the centroid of the benzene ring of an adjacent molecule with S1···Cg1iii being 3.570 (1) Å, and by C—H···O hydrogen bonds (Table 1), resulting in a three-dimensional network.

Related literature top

For the pharmacological properties of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Howlett et al. (1999); Khan et al. (2005); Ono et al. (2002). For natural products with a benzofuran ring, see: Akgul & Anil (2003); Soekamto et al. (2003). For the synthesis of the starting material 5-chloro-3-(4-fluorophenylsulfanyl)-2,4,6-trimethyl-1-benzofuran, see: Choi et al. (1999). For a related structure, see: Choi et al. (2012).

Experimental top

The starting material 5-chloro-3-(4-fluorophenylsulfanyl)-2,4,6-trimethyl-1-benzofuran was prepared by literature method (Choi et al. 1999). 3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-chloro-3-(4-fluorophenylsulfanyl)-2,4,6-trimethyl-1-benzofuran (288 mg, 0.9 mmol) in dichloromethane (20 mL) at 273 K. After being stirred at room temperature for 10h, the mixture was washed with saturated sodium bicarbonate solution (2 X 10 mL) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 64% (215 mg); m.p. 432–433 K; Rf = 0.62 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound (24 mg) in ethyl acetate (15 mL) at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, Uiso (H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97 command AFIX 137 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O, C—S···π and π···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 3/2, y - 1/2, - z + 3/2; (ii) - x + 1, - y + 1 , - z + 1; (iii) 1.5- x + 3/2, y + 1/2, - y + 3/2.]
5-Chloro-3-(4-fluorophenylsulfinyl)-2,4,6-trimethyl-1-benzofuran top
Crystal data top
C17H14ClFO2SF(000) = 1392
Mr = 336.79Dx = 1.468 Mg m3
Monoclinic, C2/cMelting point = 433–432 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 21.7503 (3) ÅCell parameters from 6565 reflections
b = 10.6444 (2) Åθ = 2.6–28.3°
c = 16.4061 (3) ŵ = 0.40 mm1
β = 126.622 (1)°T = 173 K
V = 3048.49 (9) Å3Block, colourless
Z = 80.43 × 0.26 × 0.25 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3777 independent reflections
Radiation source: rotating anode3158 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.2°
ϕ and ω scansh = 2828
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1413
Tmin = 0.846, Tmax = 0.908l = 1721
14427 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.096H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0482P)2 + 1.6356P]
where P = (Fo2 + 2Fc2)/3
3777 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C17H14ClFO2SV = 3048.49 (9) Å3
Mr = 336.79Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.7503 (3) ŵ = 0.40 mm1
b = 10.6444 (2) ÅT = 173 K
c = 16.4061 (3) Å0.43 × 0.26 × 0.25 mm
β = 126.622 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3777 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3158 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.908Rint = 0.030
14427 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
3777 reflectionsΔρmin = 0.38 e Å3
202 parameters
Special details top

Experimental. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 7.42-7.49 (m, 2H), 7.21 (s, 1H), 7.11-7.17 (m, 2H), 2.72 (s, 3H), 2.44 (s, 3H), 2.31 (s, 3H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.53070 (2)0.33359 (4)0.37985 (3)0.03606 (13)
S10.74572 (2)0.73246 (4)0.72173 (3)0.02365 (11)
F10.93275 (7)0.44638 (11)0.63815 (9)0.0507 (3)
O10.64319 (6)0.49502 (10)0.78458 (8)0.0269 (2)
O20.70024 (6)0.82105 (10)0.63429 (8)0.0292 (3)
C10.68686 (8)0.61394 (14)0.71580 (11)0.0226 (3)
C20.63706 (8)0.51802 (14)0.64153 (11)0.0213 (3)
C30.61055 (8)0.48595 (14)0.54264 (11)0.0221 (3)
C40.56460 (8)0.37943 (14)0.50245 (11)0.0241 (3)
C50.54266 (8)0.30586 (15)0.55238 (12)0.0265 (3)
C60.56660 (8)0.34393 (15)0.64791 (12)0.0266 (3)
H60.55150.29960.68360.032*
C70.61300 (8)0.44806 (14)0.68942 (11)0.0232 (3)
C80.68791 (9)0.59471 (15)0.79844 (11)0.0262 (3)
C90.63008 (9)0.56232 (16)0.48421 (11)0.0283 (3)
H9A0.67350.52370.49010.042*
H9B0.64380.64780.51180.042*
H9C0.58570.56540.41260.042*
C100.49526 (10)0.18871 (17)0.50524 (15)0.0374 (4)
H10A0.49030.14670.55420.056*
H10B0.52030.13200.48620.056*
H10C0.44430.21110.44450.056*
C110.72805 (11)0.65747 (18)0.89850 (13)0.0383 (4)
H11A0.69060.68390.90990.057*
H11B0.75560.73120.89980.057*
H11C0.76460.59880.95210.057*
C120.80080 (8)0.63903 (14)0.69532 (11)0.0225 (3)
C130.83516 (9)0.52796 (15)0.74711 (12)0.0284 (3)
H130.82770.49700.79490.034*
C140.88046 (10)0.46287 (16)0.72827 (13)0.0331 (4)
H140.90480.38660.76290.040*
C150.88957 (10)0.51084 (16)0.65836 (13)0.0327 (4)
C160.85635 (9)0.62098 (16)0.60663 (12)0.0299 (4)
H160.86350.65110.55830.036*
C170.81203 (9)0.68691 (14)0.62708 (11)0.0255 (3)
H170.78950.76480.59420.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0410 (2)0.0357 (3)0.0314 (2)0.00531 (17)0.0216 (2)0.01340 (17)
S10.0279 (2)0.0221 (2)0.0255 (2)0.00352 (14)0.01845 (17)0.00428 (14)
F10.0588 (7)0.0477 (7)0.0658 (8)0.0197 (6)0.0481 (7)0.0053 (6)
O10.0290 (6)0.0332 (6)0.0228 (5)0.0028 (5)0.0177 (5)0.0011 (4)
O20.0361 (6)0.0221 (6)0.0356 (6)0.0038 (5)0.0247 (5)0.0023 (5)
C10.0241 (7)0.0236 (8)0.0232 (7)0.0011 (6)0.0158 (6)0.0016 (6)
C20.0220 (7)0.0216 (7)0.0220 (7)0.0020 (6)0.0140 (6)0.0010 (6)
C30.0233 (7)0.0228 (7)0.0234 (7)0.0034 (6)0.0156 (6)0.0003 (6)
C40.0235 (7)0.0235 (8)0.0238 (7)0.0035 (6)0.0133 (6)0.0032 (6)
C50.0205 (7)0.0224 (8)0.0329 (8)0.0016 (6)0.0139 (7)0.0004 (6)
C60.0229 (7)0.0268 (8)0.0309 (8)0.0027 (6)0.0165 (7)0.0072 (6)
C70.0221 (7)0.0253 (8)0.0229 (7)0.0030 (6)0.0138 (6)0.0019 (6)
C80.0268 (8)0.0301 (8)0.0242 (7)0.0009 (6)0.0166 (7)0.0006 (6)
C90.0332 (8)0.0314 (9)0.0252 (8)0.0028 (7)0.0202 (7)0.0030 (6)
C100.0341 (9)0.0292 (9)0.0456 (10)0.0074 (7)0.0220 (8)0.0049 (8)
C110.0463 (10)0.0478 (11)0.0248 (8)0.0100 (8)0.0234 (8)0.0070 (7)
C120.0221 (7)0.0221 (7)0.0233 (7)0.0024 (6)0.0136 (6)0.0026 (6)
C130.0301 (8)0.0269 (8)0.0295 (8)0.0008 (6)0.0185 (7)0.0035 (6)
C140.0339 (9)0.0256 (8)0.0384 (9)0.0065 (7)0.0209 (8)0.0071 (7)
C150.0331 (9)0.0316 (9)0.0404 (9)0.0038 (7)0.0256 (8)0.0032 (7)
C160.0355 (9)0.0308 (9)0.0324 (8)0.0001 (7)0.0251 (8)0.0014 (7)
C170.0294 (8)0.0223 (8)0.0270 (8)0.0000 (6)0.0181 (7)0.0012 (6)
Geometric parameters (Å, º) top
Cl1—C41.7487 (15)C9—H9A0.9800
S1—O21.4943 (11)C9—H9B0.9800
S1—C11.7581 (16)C9—H9C0.9800
S1—C121.7977 (15)C10—H10A0.9800
F1—C151.3543 (19)C10—H10B0.9800
O1—C81.3637 (19)C10—H10C0.9800
O1—C71.3767 (18)C11—H11A0.9800
C1—C81.358 (2)C11—H11B0.9800
C1—C21.458 (2)C11—H11C0.9800
C2—C71.391 (2)C12—C171.378 (2)
C2—C31.402 (2)C12—C131.386 (2)
C3—C41.390 (2)C13—C141.382 (2)
C3—C91.499 (2)C13—H130.9500
C4—C51.406 (2)C14—C151.374 (2)
C5—C61.385 (2)C14—H140.9500
C5—C101.505 (2)C15—C161.373 (2)
C6—C71.375 (2)C16—C171.386 (2)
C6—H60.9500C16—H160.9500
C8—C111.481 (2)C17—H170.9500
O2—S1—C1110.89 (7)H9A—C9—H9C109.5
O2—S1—C12105.80 (7)H9B—C9—H9C109.5
C1—S1—C1299.07 (7)C5—C10—H10A109.5
C8—O1—C7106.37 (11)C5—C10—H10B109.5
C8—C1—C2106.89 (13)H10A—C10—H10B109.5
C8—C1—S1118.35 (12)C5—C10—H10C109.5
C2—C1—S1134.60 (11)H10A—C10—H10C109.5
C7—C2—C3119.32 (14)H10B—C10—H10C109.5
C7—C2—C1104.18 (12)C8—C11—H11A109.5
C3—C2—C1136.49 (14)C8—C11—H11B109.5
C4—C3—C2115.50 (13)H11A—C11—H11B109.5
C4—C3—C9122.47 (13)C8—C11—H11C109.5
C2—C3—C9122.03 (13)H11A—C11—H11C109.5
C3—C4—C5125.13 (14)H11B—C11—H11C109.5
C3—C4—Cl1117.63 (12)C17—C12—C13121.44 (15)
C5—C4—Cl1117.24 (12)C17—C12—S1117.25 (12)
C6—C5—C4117.84 (14)C13—C12—S1121.15 (12)
C6—C5—C10120.25 (15)C14—C13—C12119.09 (15)
C4—C5—C10121.90 (15)C14—C13—H13120.5
C7—C6—C5117.75 (14)C12—C13—H13120.5
C7—C6—H6121.1C15—C14—C13118.54 (15)
C5—C6—H6121.1C15—C14—H14120.7
C6—C7—O1124.54 (14)C13—C14—H14120.7
C6—C7—C2124.32 (14)F1—C15—C16117.87 (16)
O1—C7—C2111.12 (13)F1—C15—C14118.86 (15)
C1—C8—O1111.43 (13)C16—C15—C14123.27 (15)
C1—C8—C11133.34 (15)C15—C16—C17117.94 (15)
O1—C8—C11115.22 (13)C15—C16—H16121.0
C3—C9—H9A109.5C17—C16—H16121.0
C3—C9—H9B109.5C12—C17—C16119.69 (15)
H9A—C9—H9B109.5C12—C17—H17120.2
C3—C9—H9C109.5C16—C17—H17120.2
O2—S1—C1—C8126.73 (13)C8—O1—C7—C20.91 (16)
C12—S1—C1—C8122.41 (13)C3—C2—C7—C63.0 (2)
O2—S1—C1—C258.56 (17)C1—C2—C7—C6177.73 (14)
C12—S1—C1—C252.31 (16)C3—C2—C7—O1178.47 (13)
C8—C1—C2—C70.45 (17)C1—C2—C7—O10.84 (16)
S1—C1—C2—C7174.69 (13)C2—C1—C8—O10.09 (18)
C8—C1—C2—C3178.67 (17)S1—C1—C8—O1176.16 (10)
S1—C1—C2—C36.2 (3)C2—C1—C8—C11178.60 (18)
C7—C2—C3—C43.6 (2)S1—C1—C8—C112.5 (3)
C1—C2—C3—C4177.39 (16)C7—O1—C8—C10.60 (17)
C7—C2—C3—C9175.93 (14)C7—O1—C8—C11178.34 (14)
C1—C2—C3—C93.1 (3)O2—S1—C12—C1720.45 (14)
C2—C3—C4—C51.2 (2)C1—S1—C12—C17135.32 (13)
C9—C3—C4—C5178.27 (14)O2—S1—C12—C13164.15 (12)
C2—C3—C4—Cl1179.26 (11)C1—S1—C12—C1349.28 (14)
C9—C3—C4—Cl11.2 (2)C17—C12—C13—C141.2 (2)
C3—C4—C5—C62.0 (2)S1—C12—C13—C14176.44 (12)
Cl1—C4—C5—C6177.49 (11)C12—C13—C14—C150.2 (2)
C3—C4—C5—C10177.52 (15)C13—C14—C15—F1178.81 (16)
Cl1—C4—C5—C103.0 (2)C13—C14—C15—C160.5 (3)
C4—C5—C6—C72.8 (2)F1—C15—C16—C17179.87 (15)
C10—C5—C6—C7176.77 (15)C14—C15—C16—C170.5 (3)
C5—C6—C7—O1177.99 (14)C13—C12—C17—C162.3 (2)
C5—C6—C7—C20.4 (2)S1—C12—C17—C16177.70 (12)
C8—O1—C7—C6177.66 (14)C15—C16—C17—C121.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O20.982.453.3901 (19)161
C13—H13···O2i0.952.463.3191 (19)150
Symmetry code: (i) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O20.982.453.3901 (19)161
C13—H13···O2i0.952.463.3191 (19)150
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The X-ray centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o2080.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606–608.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOno, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633–642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1078-o1079
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds