organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1104-o1105

Crystal structure of (E)-2-(2-{5-[(2-acet­­oxy­eth­yl)(meth­yl)amino]­thio­phen-2-yl}vin­yl)-3-methyl­benzo­thia­zolium iodide monohydrate

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: ahuddl09@126.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 5 September 2014; accepted 6 September 2014; online 13 September 2014)

In the cation of the title hydrated salt, C19H21N2O2S2+·I·H2O, the benzo­thia­zolium ring system is approximately planar [maximum deviation = 0.0251 (15) Å], and it makes a small dihedral angle of 1.16 (18)° with the plane of the thio­phene ring. In the crystal, the cations, anions and crystalline water mol­ecules are linked by classical O—H⋯O, O—H⋯I and weak C—H⋯O hydrogn bonds, forming a three-dimensional supra­molecular network. ππ stacking is observed between parallel thia­zole rings of adjacent cations [centroid–centroid distance = 3.5945 (16) Å].

1. Related literature

Interest in organic compounds with non-linear optical (NLO) properties is driven by the prospective of their applications in optical information technologies. The most common design of molecules with large NLO-activity comprises strong electron donors and acceptors connected by a π-conjugated system, see: Hao et al. (2009[Hao, F.-Y., Zhang, X.-J., Tian, Y.-P., Zhou, H.-P., Li, L., Wu, J.-Y., Zhang, S.-Y., Yang, J.-X., Jin, B.-K., Tao, X.-T., Zhou, G.-Y. & Jiang, M.-H. (2009). J. Mater. Chem. 19, 9163-9169.]); Zhou et al. (2011[Zhou, S.-S., Zhang, Q., Tian, X.-H., Hu, G.-J., Hao, F.-Y., Wu, J.-Y. & Tian, Y.-P. (2011). Dyes Pigm. 92, 689-695.]). For the crystal structures of related benzo­thia­zolium derivatives, see: Quist et al. (2009[Quist, F., Vande Velde, C. M. L., Didier, D., Teshome, A., Asselberghs, I., Clays, K. & Sergeyev, S. (2009). Dyes Pigm. 81, 203-210.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H21N2O2S2+·I·H2O

  • Mr = 518.43

  • Triclinic, [P \overline 1]

  • a = 9.6689 (9) Å

  • b = 11.1237 (11) Å

  • c = 11.1693 (11) Å

  • α = 94.420 (1)°

  • β = 110.067 (1)°

  • γ = 99.919 (1)°

  • V = 1099.40 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.18 mm

2.2. Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • 8450 measured reflections

  • 4211 independent reflections

  • 3638 reflections with I > 2σ(I)

  • Rint = 0.016

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.071

  • S = 0.97

  • 4211 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯I1i 0.85 2.95 3.647 (3) 140
O2—H2C⋯O3ii 0.85 2.35 3.056 (5) 140
C7—H7A⋯O3i 0.96 2.46 3.364 (5) 157
C19—H19A⋯O2 0.96 2.60 3.554 (6) 173
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Interest in organic compounds with non-linear optical (NLO) properties is driven by the prospective of their applications in optical information technologies. The most common design of molecules with large NLO-active comprises strong electron-donors and acceptors connected by a π-conjugated system (Hao et al., 2009; Zhou et al., 2011). Besides, the introduction about the highpolarizability of sulfur atoms in thiophene rings leads to a stabilization of the conjugated chain and to excellent charge transport properties. In the title compound (I) (Fig. 1), the benzothiazolium-CHCH-thiophene part of the molecule is nearly coplanar (plane of CHCH makes angles of 0.663 (8)° and 0.847 (1)° with the planes of the benzothiazolium and the thiophene rings), while in related benzothiazolium derivatives (Quist et al. 2009), the corresponding angles are 5.61 (18)° and 1.78 (19)°, respectively.

Related literature top

For background to this study, see: Hao et al. (2009); Zhou et al. (2011). For the crystal structures of related benzothiazolium derivatives, see: Quist et al. (2009).

Experimental top

A mixture of 2,3-dimethylbenzothiazolium iodide (1 mmol), 5-[(2-hydroxyethyl)methylamino]thiophene-2-carbaldehyde (1 mmol) and acetic anhydride (20 ml) was refluxed for 20 min, than poured into a warm solution of potassium iodide (4 mmol) in water (20 ml). The precipitated product was filtered, washed with water and recrystallized from a methanol/water solution. 1H NMR: (400 Hz, DMSO-d6), d(p.p.m.):8.14 (d, 1H), 8.11 (d, 1H), 7.89 (d, 1H), 7.83 (s, 1H), 7.66 (t, 1H), 7.53 (t, 1H), 6.73 (s, 1H), 6.54 (d, 1H), 4.33 (t, 2H), 4.00 (s, 3H), 3.85 (t, 2H), 3.24 (s, 3H), 1.94 (s, 3H).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with O—H = 0.85, C—H = 0.93–0.97 Å, Uiso(H) = 1.5Ueq(C,O) for methyl H and water H atoms, and 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound (I) showing 30% probability displacement ellipsoids.
(E)-2-(2-{5-[(2-Acetoxyethyl)(methyl)amino]thiophen-2-yl}vinyl)-3-methylbenzothiazolium iodide monohydrate top
Crystal data top
C19H21N2O2S2+·I·H2OZ = 2
Mr = 518.43F(000) = 520
Triclinic, P1Dx = 1.566 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6689 (9) ÅCell parameters from 3223 reflections
b = 11.1237 (11) Åθ = 2.6–26.8°
c = 11.1693 (11) ŵ = 1.67 mm1
α = 94.420 (1)°T = 293 K
β = 110.067 (1)°Block, red
γ = 99.919 (1)°0.20 × 0.20 × 0.18 mm
V = 1099.40 (18) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3638 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
phi and ω scansh = 1111
8450 measured reflectionsk = 1313
4211 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.036P)2 + 0.5766P]
where P = (Fo2 + 2Fc2)/3
4211 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C19H21N2O2S2+·I·H2Oγ = 99.919 (1)°
Mr = 518.43V = 1099.40 (18) Å3
Triclinic, P1Z = 2
a = 9.6689 (9) ÅMo Kα radiation
b = 11.1237 (11) ŵ = 1.67 mm1
c = 11.1693 (11) ÅT = 293 K
α = 94.420 (1)°0.20 × 0.20 × 0.18 mm
β = 110.067 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3638 reflections with I > 2σ(I)
8450 measured reflectionsRint = 0.016
4211 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.97Δρmax = 0.67 e Å3
4211 reflectionsΔρmin = 0.30 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8392 (4)1.1137 (3)1.1880 (3)0.0617 (8)
H10.91511.12251.15400.074*
C20.8380 (4)1.2036 (3)1.2804 (4)0.0735 (10)
H20.91381.27471.30760.088*
C30.7274 (4)1.1903 (3)1.3330 (3)0.0710 (9)
H30.73181.25131.39680.085*
C40.6105 (4)1.0881 (3)1.2926 (3)0.0608 (8)
H40.53531.07971.32740.073*
C50.6088 (3)0.9985 (2)1.1986 (3)0.0476 (6)
C60.7227 (3)1.0101 (3)1.1481 (3)0.0483 (6)
C70.8124 (4)0.8983 (3)0.9953 (3)0.0698 (9)
H7A0.78630.81810.94520.105*
H7B0.91120.91001.06000.105*
H7C0.81130.96040.94010.105*
C80.5782 (3)0.8216 (2)1.0354 (2)0.0432 (6)
C90.5304 (3)0.7106 (3)0.9491 (3)0.0481 (6)
H90.58900.69250.90210.058*
C100.4006 (3)0.6289 (3)0.9325 (3)0.0485 (6)
H100.34680.65120.98240.058*
C110.3379 (3)0.5172 (3)0.8514 (3)0.0498 (6)
C120.2052 (3)0.4370 (3)0.8388 (3)0.0565 (7)
H120.14710.45330.88690.068*
C130.1650 (3)0.3322 (3)0.7507 (3)0.0553 (7)
H130.07800.27200.73290.066*
C140.2699 (3)0.3259 (3)0.6907 (3)0.0481 (6)
C150.1367 (4)0.1291 (3)0.5589 (3)0.0627 (8)
H15A0.12560.09330.63140.094*
H15B0.15320.06850.50220.094*
H15C0.04690.15690.51340.094*
C160.3834 (4)0.2325 (3)0.5509 (3)0.0616 (8)
H16A0.40970.15220.55330.074*
H16B0.47250.29340.60450.074*
C170.3371 (4)0.2598 (3)0.4147 (3)0.0679 (9)
H17A0.41750.25630.38210.081*
H17B0.24820.19960.35970.081*
C180.2295 (4)0.4128 (3)0.3042 (4)0.0652 (9)
C190.1969 (5)0.5379 (4)0.3189 (5)0.1004 (14)
H19A0.17880.57030.23900.151*
H19B0.28150.59150.38520.151*
H19C0.10930.53260.34200.151*
I10.77902 (2)0.097609 (18)0.70194 (2)0.06164 (9)
N10.7029 (3)0.9082 (2)1.0575 (2)0.0474 (5)
N20.2650 (3)0.2336 (2)0.6039 (2)0.0543 (6)
O10.3053 (3)0.38152 (19)0.4157 (2)0.0676 (6)
O20.0975 (4)0.6590 (3)0.0227 (3)0.1165 (11)
H2A0.09010.72840.05480.175*
H2C0.01150.62070.03000.175*
O30.1931 (4)0.3467 (3)0.2039 (3)0.1068 (10)
S10.47604 (8)0.86129 (6)1.12820 (7)0.04896 (17)
S20.41617 (9)0.45592 (7)0.74660 (7)0.05390 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0601 (19)0.0565 (18)0.0615 (19)0.0025 (15)0.0177 (16)0.0112 (15)
C20.076 (2)0.0509 (19)0.074 (2)0.0031 (17)0.0110 (19)0.0046 (16)
C30.081 (2)0.0509 (18)0.070 (2)0.0110 (17)0.0186 (19)0.0075 (16)
C40.068 (2)0.0529 (17)0.0599 (18)0.0168 (15)0.0211 (16)0.0001 (14)
C50.0508 (16)0.0426 (14)0.0440 (15)0.0127 (12)0.0091 (12)0.0068 (12)
C60.0536 (16)0.0468 (15)0.0409 (14)0.0120 (13)0.0110 (12)0.0107 (12)
C70.066 (2)0.082 (2)0.066 (2)0.0033 (18)0.0367 (17)0.0024 (17)
C80.0467 (15)0.0472 (15)0.0371 (13)0.0148 (12)0.0143 (11)0.0091 (11)
C90.0509 (16)0.0527 (16)0.0423 (14)0.0135 (13)0.0187 (12)0.0030 (12)
C100.0521 (16)0.0505 (15)0.0436 (15)0.0154 (13)0.0172 (12)0.0015 (12)
C110.0511 (16)0.0530 (16)0.0466 (15)0.0145 (13)0.0192 (13)0.0008 (12)
C120.0516 (17)0.0603 (18)0.0597 (18)0.0108 (14)0.0255 (14)0.0024 (14)
C130.0455 (16)0.0543 (17)0.0610 (18)0.0055 (13)0.0174 (14)0.0010 (14)
C140.0468 (15)0.0492 (15)0.0424 (14)0.0137 (13)0.0080 (12)0.0025 (12)
C150.067 (2)0.0493 (17)0.0566 (18)0.0091 (15)0.0084 (15)0.0061 (14)
C160.0627 (19)0.0632 (19)0.0597 (18)0.0244 (16)0.0203 (15)0.0024 (15)
C170.097 (3)0.0546 (18)0.063 (2)0.0304 (18)0.0367 (19)0.0014 (15)
C180.067 (2)0.0576 (19)0.076 (2)0.0120 (16)0.0336 (19)0.0065 (18)
C190.114 (4)0.069 (2)0.126 (4)0.039 (2)0.042 (3)0.019 (2)
I10.06545 (15)0.05325 (13)0.06963 (15)0.00855 (9)0.03333 (11)0.00352 (9)
N10.0494 (13)0.0504 (13)0.0425 (12)0.0090 (11)0.0174 (10)0.0077 (10)
N20.0555 (14)0.0523 (14)0.0496 (13)0.0115 (11)0.0149 (11)0.0053 (11)
O10.0943 (17)0.0500 (12)0.0587 (13)0.0227 (12)0.0266 (12)0.0024 (10)
O20.121 (3)0.121 (3)0.106 (2)0.028 (2)0.044 (2)0.013 (2)
O30.150 (3)0.093 (2)0.0662 (17)0.045 (2)0.0181 (18)0.0002 (15)
S10.0494 (4)0.0476 (4)0.0501 (4)0.0109 (3)0.0197 (3)0.0004 (3)
S20.0526 (4)0.0543 (4)0.0534 (4)0.0047 (3)0.0237 (3)0.0065 (3)
Geometric parameters (Å, º) top
C1—C21.384 (5)C12—C131.372 (4)
C1—C61.387 (4)C12—H120.9300
C1—H10.9300C13—C141.403 (4)
C2—C31.379 (5)C13—H130.9300
C2—H20.9300C14—N21.340 (3)
C3—C41.379 (5)C14—S21.741 (3)
C3—H30.9300C15—N21.459 (4)
C4—C51.385 (4)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.391 (4)C15—H15C0.9600
C5—S11.745 (3)C16—N21.459 (4)
C6—N11.401 (3)C16—C171.503 (5)
C7—N11.465 (4)C16—H16A0.9700
C7—H7A0.9600C16—H16B0.9700
C7—H7B0.9600C17—O11.439 (4)
C7—H7C0.9600C17—H17A0.9700
C8—N11.343 (3)C17—H17B0.9700
C8—C91.408 (4)C18—O31.196 (4)
C8—S11.740 (3)C18—O11.318 (4)
C9—C101.362 (4)C18—C191.489 (5)
C9—H90.9300C19—H19A0.9600
C10—C111.387 (4)C19—H19B0.9600
C10—H100.9300C19—H19C0.9600
C11—C121.387 (4)O2—H2A0.8500
C11—S21.752 (3)O2—H2C0.8500
C2—C1—C6117.4 (3)C14—C13—H13123.8
C2—C1—H1121.3N2—C14—C13126.6 (3)
C6—C1—H1121.3N2—C14—S2122.6 (2)
C3—C2—C1121.7 (3)C13—C14—S2110.8 (2)
C3—C2—H2119.2N2—C15—H15A109.5
C1—C2—H2119.2N2—C15—H15B109.5
C2—C3—C4121.1 (3)H15A—C15—H15B109.5
C2—C3—H3119.4N2—C15—H15C109.5
C4—C3—H3119.4H15A—C15—H15C109.5
C3—C4—C5117.8 (3)H15B—C15—H15C109.5
C3—C4—H4121.1N2—C16—C17112.6 (3)
C5—C4—H4121.1N2—C16—H16A109.1
C4—C5—C6121.1 (3)C17—C16—H16A109.1
C4—C5—S1128.1 (3)N2—C16—H16B109.1
C6—C5—S1110.7 (2)C17—C16—H16B109.1
C1—C6—C5120.8 (3)H16A—C16—H16B107.8
C1—C6—N1126.9 (3)O1—C17—C16107.5 (2)
C5—C6—N1112.3 (2)O1—C17—H17A110.2
N1—C7—H7A109.5C16—C17—H17A110.2
N1—C7—H7B109.5O1—C17—H17B110.2
H7A—C7—H7B109.5C16—C17—H17B110.2
N1—C7—H7C109.5H17A—C17—H17B108.5
H7A—C7—H7C109.5O3—C18—O1122.8 (3)
H7B—C7—H7C109.5O3—C18—C19125.1 (4)
N1—C8—C9126.3 (2)O1—C18—C19112.2 (3)
N1—C8—S1111.84 (19)C18—C19—H19A109.5
C9—C8—S1121.9 (2)C18—C19—H19B109.5
C10—C9—C8121.8 (2)H19A—C19—H19B109.5
C10—C9—H9119.1C18—C19—H19C109.5
C8—C9—H9119.1H19A—C19—H19C109.5
C9—C10—C11128.8 (3)H19B—C19—H19C109.5
C9—C10—H10115.6C8—N1—C6114.3 (2)
C11—C10—H10115.6C8—N1—C7123.9 (2)
C10—C11—C12126.4 (3)C6—N1—C7121.8 (2)
C10—C11—S2124.4 (2)C14—N2—C15119.5 (3)
C12—C11—S2109.2 (2)C14—N2—C16122.8 (3)
C13—C12—C11115.8 (3)C15—N2—C16117.7 (2)
C13—C12—H12122.1C18—O1—C17117.4 (2)
C11—C12—H12122.1H2A—O2—H2C109.5
C12—C13—C14112.4 (3)C8—S1—C590.83 (14)
C12—C13—H13123.8C14—S2—C1191.88 (14)
C6—C1—C2—C31.2 (5)C9—C8—N1—C71.4 (4)
C1—C2—C3—C42.0 (6)S1—C8—N1—C7178.5 (2)
C2—C3—C4—C50.8 (5)C1—C6—N1—C8178.9 (3)
C3—C4—C5—C61.1 (4)C5—C6—N1—C81.3 (3)
C3—C4—C5—S1179.4 (3)C1—C6—N1—C72.1 (4)
C2—C1—C6—C50.6 (4)C5—C6—N1—C7177.7 (3)
C2—C1—C6—N1179.2 (3)C13—C14—N2—C153.2 (4)
C4—C5—C6—C11.8 (4)S2—C14—N2—C15178.3 (2)
S1—C5—C6—C1178.6 (2)C13—C14—N2—C16177.0 (3)
C4—C5—C6—N1178.0 (3)S2—C14—N2—C161.5 (4)
S1—C5—C6—N11.6 (3)C17—C16—N2—C14105.5 (3)
N1—C8—C9—C10179.3 (3)C17—C16—N2—C1574.3 (4)
S1—C8—C9—C100.7 (4)O3—C18—O1—C173.4 (5)
C8—C9—C10—C11179.5 (3)C19—C18—O1—C17177.0 (3)
C9—C10—C11—C12179.7 (3)C16—C17—O1—C18164.4 (3)
C9—C10—C11—S20.9 (5)N1—C8—S1—C50.4 (2)
C10—C11—C12—C13179.2 (3)C9—C8—S1—C5179.6 (2)
S2—C11—C12—C130.3 (4)C4—C5—S1—C8178.4 (3)
C11—C12—C13—C140.8 (4)C6—C5—S1—C81.1 (2)
C12—C13—C14—N2177.7 (3)N2—C14—S2—C11178.0 (2)
C12—C13—C14—S21.0 (3)C13—C14—S2—C110.7 (2)
N2—C16—C17—O161.2 (4)C10—C11—S2—C14179.8 (3)
C9—C8—N1—C6179.6 (3)C12—C11—S2—C140.3 (2)
S1—C8—N1—C60.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···I1i0.852.953.647 (3)140
O2—H2C···O3ii0.852.353.056 (5)140
C7—H7A···O3i0.962.463.364 (5)157
C19—H19A···O20.962.603.554 (6)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···I1i0.852.953.647 (3)140
O2—H2C···O3ii0.852.353.056 (5)140
C7—H7A···O3i0.962.463.364 (5)157
C19—H19A···O20.962.603.554 (6)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21271004), the Education Committee of Anhui Province, China (grant No. KJ2010A030), and the Undergraduate Innovative Test Program in Anhui University (grant No. 201310357260).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHao, F.-Y., Zhang, X.-J., Tian, Y.-P., Zhou, H.-P., Li, L., Wu, J.-Y., Zhang, S.-Y., Yang, J.-X., Jin, B.-K., Tao, X.-T., Zhou, G.-Y. & Jiang, M.-H. (2009). J. Mater. Chem. 19, 9163–9169.  Web of Science CSD CrossRef CAS Google Scholar
First citationQuist, F., Vande Velde, C. M. L., Didier, D., Teshome, A., Asselberghs, I., Clays, K. & Sergeyev, S. (2009). Dyes Pigm. 81, 203–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, S.-S., Zhang, Q., Tian, X.-H., Hu, G.-J., Hao, F.-Y., Wu, J.-Y. & Tian, Y.-P. (2011). Dyes Pigm. 92, 689–695.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1104-o1105
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds