research communications
κ4N,N′,N′′,N′′′)(1,6,7,12-tetraazaperylene-κ2N1,N12)ruthenium(II) bis(hexafluoridophosphate) acetonitrile 1.422-solvate
of (2,11-diaza[3.3](2,6)pyridinophane-aUniversität Potsdam, Institut für Chemie, Anorganische Chemie, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
*Correspondence e-mail: us@chem.uni-potsdam.de
In the title compound, [Ru(C14H16N4)(C16H8N4)](PF6)2·1.422CH3CN, discrete dimers of complex cations, [Ru(L–N4H2)tape]2+ are formed {L–N4H2 = 2,11-diaza[3.3](2,6)pyridinophane; tape = 1,6,7,12-tetraazaperylene}, held together by π–π stacking interactions via the tape ligand moieties with a centroid–centroid distance of 3.49 (2) Å, assisted by hydrogen bonds between the non-coordinating tape ligand α,α′-diimine unit and the amine proton of a 2,11-diaza[3.3](2,6)-pyridinophane ligand of the opposite complex cation. The combination of these interactions leads to an unusual nearly face-to-face π–π stacking mode. Additional weak C—H⋯N, C—H⋯F, N—H⋯F and P—F⋯π-ring (tape, py) (with F⋯centroid distances of 2.925–3.984 Å) interactions are found, leading to a three-dimensional architecture. The RuII atom is coordinated in a distorted octahedral geometry, particularly manifested by the Namine—Ru—Namine angle of 153.79 (10)°. The counter-charge is provided by two hexafluoridophosphate anions and the is completed by acetonitrile solvent molecules of crystallization. Disorder was observed for both the hexafluoridophosphate anions as well as the acetonitrile solvate molecules, with occupancies for the major moieties of 0.801 (6) for one of the PF6 anions, and a shared occupancy of 0.9215 (17) for the second PF6 anion and a partially occupied acetonitrile molecule. A second CH3CN molecule is fully occupied, but 1:1 disordered across a crystallographic inversion center.
Keywords: crystal structure; coordination compound; ruthenium; stacking.
CCDC reference: 1025408
1. Chemical context
Heteroaromatic ligands with more than three fused rings are commonly called large-surface ligands. Such ligands have attracted attention due to their use as connecting building blocks for supramolecular assemblies. If large-surface ligands feature more than one ligand donor site, connection between neighboring complexes can be realized through normal metal coordination (Ishow et al., 1998), but the large π system also allows for strong π–π stacking interactions. (Kammer et al., 2006; Gut et al., 2002). In order to study the properties of ruthenium complexes containing large-surface ligands, we have recently reported an easy entry to such complexes (Brietzke, Mickler, Kelling, Schilde et al., 2012). Therein, we formulated the advantages of the 2,11-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane (L–N4Me2) macrocycle over bipyridine (bpy)-type ligands in saturating the coordination sphere of an octahedral ruthenium complex containing the large-surface ligand of interest. The microwave-assisted synthesis of the precursor [Ru(L–N4Me2)]2+, starting from [Ru(DMSO)4Cl2] and L–N4Me2, in an ethanolic solution finished within 30 min. It is not only fast, but also reproducible with only few byproducts, and hence requires no labor-intensive workup. Moreover, using the C2v symmetric macrocycle rather than bipyridine-type ligands avoids the formation of mono- and dinuclear complexes with multiple stereoisomeric forms (Brietzke, Mickler, Kelling & Holdt, 2012; Brietzke et al., 2014). To test the applicability of our microwave-assisted synthetic strategy for use with other related macrocyclic ligands, we choose the unmethylated parent compound of L–N4Me2, 2,11-diaza[3.3](2,6)-pyridinophane (L–N4H2) as a new ligand for RuII. Herein, we present the structure of the complex [Ru(L–N4H2)tape](PF6)2, (tape = 1,6,7,12-tetraazaperylene), obtained as its acetonitrile solvate.
2. Structural commentary
Fig. 1 illustrates the molecular structure of the complex [Ru(L–N4H2)tape]2+ in [Ru(C14H16N4)(C16H8N4](PF6)2·1.422CH3CN. The Ru—N bond lengths formed by the tape ligand (Table 1) are very close to those reported earlier for [Ru(L–N4Me2)tape]2+ (Brietzke, Mickler, Kelling, Schilde et al., 2012). The deviation of the Namine—Ru—Namine angle [153.79 (10)°] from the idealized value of 180° is slightly larger than for analogous ruthenium L–N4Me2 complexes [155.46 (9)–155.93 (17)°; Brietzke, Mickler, Kelling, Schilde et al., 2012].
|
3. Supramolecular features
In the π–π stacking interactions via the planar tetraazaperylene units, with a typical interplanar distance of 3.39 Å. For the tape ligand, the root-mean-square deviation from planarity was calculated to be 0.0211 Å. However, in the case of [Ru(L–N4H2)tape]2+, the dimers are also connected through bifurcated hydrogen bonds between one of the two L–N4H2 ligand amine protons and both nitrogen atoms of the non-coordinating tape ligand α,α′-diimine unit of the second complex cation of the dimer. In the these additional hydrogen bonds result in a short Ru⋯Ru distance of 8.8306 (2) Å, a tape ligand centroid–centroid distance of 3.49 (2) Å and an angle of 13.7 (1.4)° between the ring normal and the centroid-to-centroid vector. Therefore, the π–π stacking motif can be described as parallel-displaced, but near to face-to-face (Fig. 2). In metal complexes, a near face-to-face alignment of the polycyclic units is extremely rare (Janiak, 2000). Furthermore, a large number of weak hydrogen bonds connect cations, anions and solvent molecules, stabilizing the crystal packing (Table 2), supported by P—F⋯π-ring (tape, py) interactions with F⋯centroid distances from 2.925 to 3.984 Å. In the packing, the dimers are oriented in a herringbone-like motif, surrounded by hexafluoridophosphate anions. The solvent acetonitrile molecules fill the space between complex moieties (Fig. 3). For a description of the disorder of the anions and solvent molecules, see the Refinement section.
the cations form discrete centrosymmetric dimers, similar to those seen previously in mononuclear ruthenium–tape complexes. The dimers are held together by4. Database survey
For related RuII complexes with 2,11-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane, see Brietzke, Mickler, Kelling, Schilde et al. (2012). For RuII tetraazaperylene complexes containing bipyridine-type ligands, see: Brietzke, Mickler, Kelling & Holdt (2012); Brietzke et al. (2014).
5. Synthesis and crystallization
The syntheses of the ligands L–N4H2 (Bottino et al., 1988) and tape (Brietzke, Mickler, Kelling & Holdt, 2012) have been reported previously. [Ru(L–N4H2)tape](PF6)2 was synthesized as reported for [Ru(L–N4Me2)tape](PF6)2 (Brietzke, Mickler, Kelling, Schilde et al., 2012), using L–N4H2 (73.5 mg, 306 µmol) instead of L–N4Me2. A yield of 44% (120.0 mg, 135 µmol) was obtained; m.p. > 573 K. 1H NMR = (MeCN–d3): δ = 8.69 (d, J = 5.5 Hz, 2H, Cd—H), 8.56 (d, J = 6.6 Hz, 2H, Ca—H), 8.01 (t, J = 8.0 Hz, 2H, C4—H), 7.77 (d, J = 5.5 Hz, 2H, Cc—H), 7.72 (d, J = 6.6 Hz, 2H, Cb—H), 7.65 (d, J = 8.0 Hz, 4H, C3—H + C5—H), 5.6 (bs, 2H, N—H), 4.83 (bd, J = 14.0 Hz, 4H, CH2), 4.47 (d, J = 17.4 Hz, 4H, CH2) p.p.m. 13C NMR = (MeCN-d3): δ = 160.0 (C2 + C6), 152.4 (Ce), 150.28 (Cd), 150.24 (Ca), 145.7 (Cf), 138.9 (C4), 136.7 (Cb′), 123.5 (Cb), 122.7 (C3 + C5), 122.0 (Cc), 119.3 (Ce′), 64.8 (CH2) p.p.m. ESI=-MS: calculated for [M–PF6]+ 743.0809; found 743.0778.
Crystals suitable for X-ray structure analysis were obtained by vapor diffusion of diethyl ether into a saturated acetonitrile solution of [Ru(L–N4H2)tape](PF6)2. The solution was filled into a test tube, which was placed into a diethyl ether-containing bottle. Dark-green crystals began to form at ambient temperature within a few days.
6. Refinement
Disorder was observed for both the hexafluoridophosphate anions as well as the acetonitrile solvate molecules. Both PF6 anions were refined as disordered over one major and one minor moiety each. The geometry of the minor moieties were each restrained to be similar to that of the major moieties (within an estimated standard deviation of 0.02 Å). The minor moieties were subjected to a rigid bond restraint (RIGU command of SHELX2014, estimated standard deviation 0.004 Å2), and the anisotropic displacement parameters of the major and minor phosphorus atoms were each constrained to be identical. Associated with the major moiety of the PF6 anion of P1 is an acetonitrile molecule that is absent for the minor moiety. Subject to the restraints and constraints used, the occupancy ratios refined to 0.9215 (17) to 0.0785 (17) for the PF6 units of P1A and P1B, and to 0.801 (6) and 0.199 (6) for those of P2A and P2B.
A second acetonitrile molecule is disordered across a crystallographic inversion center, with substantial overlap for the two carbon atoms of symmetry-related molecules. The geometry of the molecule was restrained to be similar to that of the first acetonitrile molecule, and the ADPs of its C and N atoms were restrained to be have similar Uij components to their neighbors closer than 2 Å, including those of symmetry-related atoms (SIMU restraint in SHELX2014, estimated standard deviation 0.01 Å2).
All hydrogen atoms connected to C and N atoms were placed in their expected calculated positions and refined as riding with C—H = 0.98 (CH3), 0.99 (CH2), 0.95 (Carom), N—H = 1.0 Å, and with Uiso(H) = 1.2Ueq(C) with the exception of methyl hydrogen atoms, which were refined with Uiso(H) = 1.5Ueq(C).
Crystal data, data collection and structure .
details are summarized in Table 3
|
Supporting information
CCDC reference: 1025408
10.1107/S1600536814021060/zl2602sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814021060/zl2602Isup2.hkl
Heteroaromatic ligands with more than three fused rings are commonly called large-surface ligands. These ligand have attracted attention due to their use as connecting building blocks for supramolecular assemblies. If large-surface ligands feature more than one ligand donor site, connection between neighboring complexes can be realized through normal metal coordination, (Ishow et al., 1998), but the large π system also allows for strong π–π stacking interactions. (Kammer et al., 2006; Gut et al., 2002). In order to study the properties of ruthenium complexes containing large-surface ligands, we have recently reported an easy entry to such complexes (Brietzke, Mickler, Kelling, Schilde et al., 2012). Therein, we formulated the advantages of the macrocycle 2,11-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane (L–N4Me2) over bipyridine (bpy)-type ligands in saturating the coordination sphere of an octahedral ruthenium complex containing the large-surface ligand of interest. The microwave-assisted synthesis of the precursor [Ru(L–N4Me2)]2+, starting from [Ru(DMSO)4Cl2] and L–N4Me2, in an ethanolic solution finished within 30 min. It is not only fast, but also reproducible with only few byproducts, and hence requires no labor-intensive workup. Moreover, using the C2v symmetric macrocycle rather than bipyridine-type ligands avoids the formation of mono- and dinuclear complexes with multiple stereoisomeric forms (Brietzke, Mickler, Kelling & Holdt, 2012; Brietzke et al., 2014). To test the applicability of our microwave-assisted synthetic strategy for use with other related macrocyclic ligands, we choose the unmethylated parent compound of L–N4Me2, 2,11-diaza[3.3](2,6)-pyridinophane (L–N4H2) as a new ligand for RuII. Herein, we present the structure of the complex [Ru(L–N4H2)tape](PF6)2, (L–N4H2 = 2,11-diaza[3.3](2,6)pyridinophane; tape = 1,6,7,12-tetraazaperylene), obtained as its acetonitrile solvate.
Fig. 1 illustrates the molecular structure of the complex [Ru(L–N4H2)tape]2+ in [Ru(C14H16N4)(C16H8N4](PF6)2·1.422 C2H3N. The Ru—N bond lengths formed by the tape ligand (Table 1) are very close to those reported earlier for [Ru(L–N4Me2)tape]2+ (Brietzke, Mickler, Kelling, Schilde et al., 2012). The deviation of the Namine—Ru—Namine angle [153.79 (10)°] from the idealized value of 180° is slightly larger than for analogous ruthenium L–N4Me2 complexes [155.46 (9)–155.93 (17)°; Brietzke, Mickler, Kelling, Schilde et al., 2012].
In the solid state, the cations form discrete centrosymmetric dimers, similar to those seen previously in mononuclear ruthenium–tape complexes. The dimers are held together by π–π stacking interactions via the planar tetraazaperylene units, with a typical interplanar distance of 3.39 Å. For the tape ligand, the root-mean-square deviation from planarity was calculated to be 0.0211 Å. However, in the case of [Ru(L–N4H2)tape]2+, the dimers are also connected through bifurcated hydrogen bonds between one of the two L–N4H2 ligand amine protons and both nitrogen atoms of the uncoordinated tape ligand α,α'-diimine unit of the second complex cation of the dimer. In the solid state, these additional hydrogen bonds result in a short Ru···Ru distance of 8.8306 (2) Å, a tape ligand centroid–centroid distance of 3.49 (2) Å and an angle of 13.7 (1.4)° between the ring normal and the centroid-to-centroid vector. Therefore, the π–π stacking motif can be described as parallel-displaced, but near to face-to-face (Fig. 2). In metal complexes, a near face-to-face alignment of the polycyclic units is extremely rare (Janiak, 2000). Furthermore, a large number of weak hydrogen bonds connect cations, anions and solvent molecules, stabilizing the crystal packing (Table 2), supported by P—F···π-ring (tape, py) interactions [please provide some numerical details]. In the packing, the dimers are oriented in a herringbone-like motif, surrounded by hexafluoridophosphate anions. The solvent acetonitrile molecules fill the space between complex moieties (Fig. 3). For a description of the disorder of the anions and solvent molecules, see the section.
For related RuII complexes with 2,11-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane, see Brietzke, Mickler, Kelling, Schilde et al. (2012); Brietzke et al. (2014). For RuII tetraazaperylene complexes containing bipyridine-type ligands, see: Brietzke, Mickler, Kelling & Holdt (2012).
The synthesis of the ligands L–N4H2 (Bottino et al., 1988) and tape (Brietzke, Mickler, Kelling & Holdt, 2012) have been reported previously. [Ru(L–N4H2)tape](PF6)2 was synthesized as reported for [Ru(L–N4Me2)tape](PF6)2 (Brietzke, Mickler, Kelling, Schilde et al., 2012), using L–N4H2 (73.5 mg, 306 µmol) instead of L–N4Me2. A yield of 44% (120.0 mg, 135 µmol) was obtained; m.p. > 573 K. 1H NMR = (MeCN–d3): δ = 8.69 (d, J = 5.5 Hz, 2H, Cd—H), 8.56 (d, J = 6.6 Hz, 2H, Ca—H), 8.01 (t, J = 8.0 Hz, 2H, C4—H), 7.77 (d, J = 5.5 Hz, 2H, Cc—H), 7.72 (d, J = 6.6 Hz, 2H, Cb—H), 7.65 (d, J = 8.0 Hz, 4H, C3—H + C5—H), 5.6 (bs, 2H, N—H), 4.83 (bd, J = 14.0 Hz, 4H, CH2), 4.47 (d, J = 17.4 Hz, 4H, CH2) p.p.m. 13C NMR = (MeCN-d3): δ = 160.0 (C2 + C6), 152.4 (Ce), 150.28 (Cd), 150.24 (Ca), 145.7 (Cf), 138.9 (C4), 136.7 (Cb'), 123.5 (Cb), 122.7 (C3 + C5), 122.0 (Cc), 119.3 (Ce'), 64.8 (CH2) p.p.m.. ESI=-MS: calculated for [M–PF6]+ 743.0809; found 743.0778.
Crystals suitable for X-ray structure analysis were obtained by vapor diffusion of diethyl ether into a saturated acetonitrile solution of [Ru(L–N4H2)tape](PF6)2. The solution was filled into a test tube, which was placed into a diethyl ether-containing bottle. Dark-green crystals began to form at ambient temperature within a few days.
Disorder was observed for both the hexafluoridophosphate anions as well as the acetonitrile solvate molecules. Both PF6 anions were refined as disordered over one major and one minor moiety each. The geometry of the minor moieties were each restrained to be similar to that of the major moieties (within an estimated standard deviation of 0.02 Å). The minor moieties were subjected to a rigid bond restraint (RIGU command of SHELX2014, estimated standard deviation 0.004 Å2), and the anisotropic displacement parameters of the major and minor phosphorus atoms were each constrained to be identical. Associated with the major moiety of the PF6 anion of P1 is an acetonitrile molecule that is absent for the minor moiety. Subject to the restraints and constraints used, the occupancy ratios refined to 0.9215 (17) to 0.0785 (17) for the PF6 units of P1A and P1B, and to 0.801 (6) and 0.1999 (6) for those of P2A and P2B.
A second acetonitrile molecule is disordered across a crystallographic inversion center, with substantial overlap for the two carbon atoms of symmetry-related molecules. The geometry of the molecule was restrained to be similar to that of the first acetonitrile molecule, and the ADPs of its C and N atoms were restrained to be have similar Uij components to their neighbors closer than 2 Å, including those of symmetry-related atoms (SIMU restraint in SHELX2014, estimated standard deviation 0.01 Å2).
All hydrogen atoms connected to C and N atoms were placed in their expected calculated positions and refined as riding with C—H = 0.98 (CH3), 0.99 (CH2), 0.95 (Carom), N—H = 1.0 Å, and with Uiso(H) = 1.2Ueq(C) with the exception of methyl hydrogen atoms, which were refined with Uiso(H) = 1.5Ueq(C).
Crystal data, data collection and structure
details are summarized in Table 3.Data collection: X-AREA (Stoe & Cie, 2011); cell
X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006), ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008), SHELXLE (Hübschle et al., 2011), publCIF (Westrip, 2010).Fig. 1. The molecular structure of [Ru(L–N4H2)tape]2+ in [Ru(L–N4H2)tape](PF6)2·1.422 C2H3N with the atomic numbering scheme and 30% probability displacement ellipsoids. Anions and solvent molecules are omitted for clarity. | |
Fig. 2. (a) Illustration of the asymmetric unit rendering the disorder of the hexafluoridophosphate anions and acetonitrile solvate molecules (see Refinement section for details). An additional π–π stacked [Ru(L–N4H2)tape]2+ cation demonstrates, due to the view along the normal of the tape ligand's r.m.s. plane, the nearly face-to-face π–π stacking motif between the tape ligand moieties. The atomic numbering is shown for the anions and solvent molecules as well as for the ruthenium atoms. Hydrogen atoms are omitted for clarity. [Symmetry codes: (ii) 1-x, -y, 1-z, (ix) 1-x, 1-y, -z.] (b) A side view of the dimer formed by two [Ru(L–N4H2)tape]2+ in [Ru(L–N4H2)tape](PF6)2·1.422 C2H3N, featuring the stacking interactions via planar tape ligand moieties. Only H atoms essential for illustration of the hydrogen bonds, shown as orange dashed lines, are included. | |
Fig. 3. A packing diagram of the title compound is displayed along the c axis, illustrating the herringbone-type motif formed by two [Ru(L–N4H2)tape]2+ dimers. The disordered minor atoms are omitted for clarity. |
[Ru(C14H16N4)(C16H8N4)](PF6)2·1.422C2H3N | F(000) = 1893.4 |
Mr = 946.11 | Dx = 1.791 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.7027 (3) Å | Cell parameters from 63561 reflections |
b = 21.7157 (7) Å | θ = 1.5–29.6° |
c = 13.9377 (4) Å | µ = 0.65 mm−1 |
β = 97.938 (2)° | T = 150 K |
V = 3508.08 (18) Å3 | Prism, dark green |
Z = 4 | 1.30 × 0.65 × 0.31 mm |
STOE IPDS 2 diffractometer | 9454 independent reflections |
Radiation source: sealed X-ray tube | 7744 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.087 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.3°, θmin = 1.8° |
rotation method scans | h = −16→14 |
Absorption correction: integration (X-RED; Stoe & Cie, 2011) | k = −29→29 |
Tmin = 0.613, Tmax = 0.843 | l = −19→19 |
60767 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.146 | w = 1/[σ2(Fo2) + (0.0787P)2 + 2.127P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.002 |
9454 reflections | Δρmax = 1.84 e Å−3 |
651 parameters | Δρmin = −1.22 e Å−3 |
183 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0041 (4) |
[Ru(C14H16N4)(C16H8N4)](PF6)2·1.422C2H3N | V = 3508.08 (18) Å3 |
Mr = 946.11 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.7027 (3) Å | µ = 0.65 mm−1 |
b = 21.7157 (7) Å | T = 150 K |
c = 13.9377 (4) Å | 1.30 × 0.65 × 0.31 mm |
β = 97.938 (2)° |
STOE IPDS 2 diffractometer | 9454 independent reflections |
Absorption correction: integration (X-RED; Stoe & Cie, 2011) | 7744 reflections with I > 2σ(I) |
Tmin = 0.613, Tmax = 0.843 | Rint = 0.087 |
60767 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 183 restraints |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.09 | Δρmax = 1.84 e Å−3 |
9454 reflections | Δρmin = −1.22 e Å−3 |
651 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ru1 | 0.40042 (2) | 0.19157 (2) | 0.58944 (2) | 0.03723 (9) | |
N1 | 0.49654 (19) | 0.11825 (11) | 0.64626 (15) | 0.0367 (5) | |
N2 | 0.46354 (19) | 0.15956 (11) | 0.46830 (16) | 0.0368 (4) | |
N3 | 0.5182 (2) | 0.26652 (13) | 0.6188 (2) | 0.0537 (7) | |
H3N | 0.5905 | 0.2585 | 0.6061 | 0.064* | |
N4 | 0.3005 (2) | 0.26143 (11) | 0.53082 (16) | 0.0398 (5) | |
N5 | 0.2354 (2) | 0.14885 (11) | 0.58215 (17) | 0.0411 (5) | |
H5N | 0.2357 | 0.1112 | 0.5582 | 0.049* | |
N6 | 0.3522 (2) | 0.22164 (12) | 0.71383 (17) | 0.0458 (6) | |
N7 | 0.7375 (2) | −0.04526 (12) | 0.55594 (17) | 0.0410 (5) | |
N8 | 0.7102 (2) | 0.00109 (12) | 0.36755 (17) | 0.0431 (5) | |
C1 | 0.5101 (2) | 0.09624 (14) | 0.73954 (19) | 0.0419 (6) | |
H1 | 0.4729 | 0.1176 | 0.7861 | 0.050* | |
C2 | 0.5738 (2) | 0.04565 (14) | 0.76894 (18) | 0.0403 (6) | |
H2 | 0.5793 | 0.0321 | 0.8342 | 0.048* | |
C3 | 0.7009 (3) | −0.03870 (14) | 0.72236 (19) | 0.0416 (6) | |
H3 | 0.7137 | −0.0553 | 0.7860 | 0.050* | |
C4 | 0.7498 (3) | −0.06536 (15) | 0.6482 (2) | 0.0464 (7) | |
H4 | 0.7961 | −0.1009 | 0.6634 | 0.056* | |
C5 | 0.6950 (3) | 0.02554 (16) | 0.2771 (2) | 0.0489 (7) | |
H5 | 0.7336 | 0.0061 | 0.2296 | 0.059* | |
C6 | 0.6285 (3) | 0.07603 (15) | 0.2488 (2) | 0.0465 (7) | |
H6 | 0.6210 | 0.0904 | 0.1839 | 0.056* | |
C7 | 0.4978 (3) | 0.15793 (14) | 0.3018 (2) | 0.0435 (6) | |
H7 | 0.4836 | 0.1756 | 0.2390 | 0.052* | |
C8 | 0.4473 (3) | 0.18253 (14) | 0.3751 (2) | 0.0433 (6) | |
H8 | 0.3983 | 0.2173 | 0.3615 | 0.052* | |
C9 | 0.5501 (2) | 0.08765 (12) | 0.58204 (17) | 0.0330 (5) | |
C10 | 0.6189 (2) | 0.03545 (12) | 0.60524 (17) | 0.0327 (5) | |
C11 | 0.6734 (2) | 0.00476 (12) | 0.53437 (18) | 0.0339 (5) | |
C12 | 0.6582 (2) | 0.02915 (12) | 0.43437 (18) | 0.0349 (5) | |
C13 | 0.5882 (2) | 0.08220 (13) | 0.41366 (17) | 0.0341 (5) | |
C14 | 0.5334 (2) | 0.11075 (12) | 0.48493 (18) | 0.0335 (5) | |
C15 | 0.6323 (2) | 0.01304 (13) | 0.70162 (18) | 0.0357 (5) | |
C16 | 0.5714 (2) | 0.10613 (14) | 0.31837 (19) | 0.0392 (6) | |
C17 | 0.4761 (3) | 0.31805 (17) | 0.5503 (3) | 0.0596 (9) | |
H17A | 0.5040 | 0.3580 | 0.5787 | 0.072* | |
H17B | 0.5074 | 0.3126 | 0.4884 | 0.072* | |
C18 | 0.3465 (3) | 0.31816 (15) | 0.5318 (3) | 0.0486 (7) | |
C19 | 0.2756 (3) | 0.36940 (16) | 0.5145 (2) | 0.0534 (7) | |
H19 | 0.3077 | 0.4096 | 0.5146 | 0.064* | |
C20 | 0.1575 (3) | 0.36070 (16) | 0.4970 (2) | 0.0499 (7) | |
H20 | 0.1076 | 0.3952 | 0.4850 | 0.060* | |
C21 | 0.1115 (3) | 0.30167 (15) | 0.4970 (2) | 0.0467 (7) | |
H21 | 0.0304 | 0.2953 | 0.4854 | 0.056* | |
C22 | 0.1864 (2) | 0.25246 (14) | 0.51419 (18) | 0.0406 (6) | |
C23 | 0.1520 (3) | 0.18614 (14) | 0.5144 (2) | 0.0447 (6) | |
H23A | 0.1483 | 0.1693 | 0.4480 | 0.054* | |
H23B | 0.0741 | 0.1828 | 0.5340 | 0.054* | |
C24 | 0.2034 (3) | 0.14619 (16) | 0.6821 (2) | 0.0505 (7) | |
H24A | 0.2333 | 0.1076 | 0.7143 | 0.061* | |
H24B | 0.1183 | 0.1462 | 0.6788 | 0.061* | |
C25 | 0.2531 (3) | 0.20074 (15) | 0.7401 (2) | 0.0486 (7) | |
C26 | 0.2081 (4) | 0.22746 (19) | 0.8173 (2) | 0.0605 (10) | |
H26 | 0.1382 | 0.2129 | 0.8367 | 0.073* | |
C27 | 0.2687 (4) | 0.2763 (2) | 0.8653 (2) | 0.0725 (13) | |
H27 | 0.2399 | 0.2952 | 0.9186 | 0.087* | |
C28 | 0.3680 (4) | 0.2973 (2) | 0.8372 (3) | 0.0711 (13) | |
H28 | 0.4082 | 0.3308 | 0.8703 | 0.085* | |
C29 | 0.4110 (3) | 0.26922 (17) | 0.7592 (2) | 0.0578 (9) | |
C30 | 0.5223 (3) | 0.2836 (2) | 0.7230 (3) | 0.0664 (11) | |
H30A | 0.5388 | 0.3281 | 0.7309 | 0.080* | |
H30B | 0.5856 | 0.2607 | 0.7620 | 0.080* | |
P2A_a | 0.8068 (3) | 0.42105 (13) | 0.4826 (2) | 0.0447 (4) | 0.801 (6) |
F7A_a | 0.7169 (3) | 0.4256 (2) | 0.3859 (2) | 0.0686 (11) | 0.801 (6) |
F8A_a | 0.8952 (6) | 0.4132 (4) | 0.5788 (4) | 0.073 (2) | 0.801 (6) |
F9A_a | 0.8867 (5) | 0.4699 (2) | 0.4427 (3) | 0.119 (2) | 0.801 (6) |
F10A_a | 0.7290 (3) | 0.3697 (2) | 0.5217 (3) | 0.1071 (18) | 0.801 (6) |
F11A_a | 0.8748 (3) | 0.3704 (2) | 0.4319 (2) | 0.0715 (11) | 0.801 (6) |
F12A_a | 0.7436 (5) | 0.4740 (2) | 0.5315 (3) | 0.122 (2) | 0.801 (6) |
P2B_b | 0.7944 (11) | 0.4130 (6) | 0.4882 (10) | 0.0447 (4) | 0.199 (6) |
F7B_b | 0.6911 (14) | 0.4026 (9) | 0.4033 (11) | 0.076 (4) | 0.199 (6) |
F8B_b | 0.8948 (19) | 0.4222 (13) | 0.5756 (15) | 0.053 (4) | 0.199 (6) |
F9B_b | 0.7949 (14) | 0.4848 (5) | 0.4693 (10) | 0.075 (4) | 0.199 (6) |
F10B_b | 0.8082 (15) | 0.3414 (5) | 0.4931 (10) | 0.090 (4) | 0.199 (6) |
F11B_b | 0.8886 (12) | 0.4117 (9) | 0.4167 (9) | 0.081 (4) | 0.199 (6) |
F12B_b | 0.6988 (9) | 0.4239 (8) | 0.5536 (8) | 0.068 (3) | 0.199 (6) |
P1A_a | 0.33081 (8) | 0.31111 (5) | 0.17529 (8) | 0.0538 (3) | 0.9215 (17) |
F1A_a | 0.4320 (3) | 0.31248 (12) | 0.2642 (3) | 0.0900 (11) | 0.9215 (17) |
F2A_a | 0.2279 (2) | 0.30908 (12) | 0.08663 (17) | 0.0644 (6) | 0.9215 (17) |
F3A_a | 0.3730 (4) | 0.37384 (18) | 0.1391 (4) | 0.1430 (19) | 0.9215 (17) |
F4A_a | 0.2860 (2) | 0.24711 (14) | 0.2119 (2) | 0.0810 (8) | 0.9215 (17) |
F5A_a | 0.2477 (3) | 0.3457 (2) | 0.2363 (2) | 0.1186 (15) | 0.9215 (17) |
F6A_a | 0.4133 (3) | 0.2749 (2) | 0.1160 (3) | 0.1041 (11) | 0.9215 (17) |
P1B_b | 0.3791 (8) | 0.3534 (5) | 0.2328 (8) | 0.0538 (3) | 0.0785 (17) |
F1B_b | 0.2932 (17) | 0.3068 (10) | 0.2780 (18) | 0.061 (5) | 0.0785 (17) |
F2B_b | 0.4610 (19) | 0.3981 (11) | 0.185 (2) | 0.082 (6) | 0.0785 (17) |
F3B_b | 0.2821 (18) | 0.3626 (12) | 0.1461 (17) | 0.073 (5) | 0.0785 (17) |
F4B_b | 0.4705 (19) | 0.3486 (12) | 0.3286 (16) | 0.076 (5) | 0.0785 (17) |
F5B_b | 0.433 (2) | 0.2970 (9) | 0.187 (2) | 0.065 (5) | 0.0785 (17) |
F6B_b | 0.324 (2) | 0.4083 (11) | 0.288 (2) | 0.085 (6) | 0.0785 (17) |
N9_a | 0.5253 (5) | 0.5581 (3) | 0.2892 (6) | 0.135 (3) | 0.9215 (17) |
C31_a | 0.4952 (4) | 0.5135 (3) | 0.3184 (5) | 0.0832 (15) | 0.9215 (17) |
C32_a | 0.4527 (5) | 0.4596 (3) | 0.3578 (6) | 0.105 (2) | 0.9215 (17) |
H32A_a | 0.3799 | 0.4689 | 0.3821 | 0.158* | 0.9215 (17) |
H32B_a | 0.5092 | 0.4446 | 0.4111 | 0.158* | 0.9215 (17) |
H32C_a | 0.4394 | 0.4279 | 0.3074 | 0.158* | 0.9215 (17) |
N10 | 0.4690 (12) | 0.4178 (5) | −0.0541 (15) | 0.189 (6) | 0.5 |
C33 | 0.482 (2) | 0.4656 (7) | −0.023 (2) | 0.151 (6) | 0.5 |
C34 | 0.5079 (14) | 0.5265 (5) | 0.0086 (15) | 0.088 (4) | 0.5 |
H34A | 0.4426 | 0.5534 | −0.0144 | 0.132* | 0.5 |
H34B | 0.5769 | 0.5410 | −0.0172 | 0.132* | 0.5 |
H34C | 0.5219 | 0.5273 | 0.0796 | 0.132* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.03631 (13) | 0.04128 (15) | 0.03304 (13) | 0.00739 (8) | 0.00104 (8) | −0.00181 (8) |
N1 | 0.0365 (11) | 0.0423 (12) | 0.0302 (10) | 0.0077 (9) | 0.0011 (8) | −0.0006 (8) |
N2 | 0.0355 (10) | 0.0411 (12) | 0.0333 (10) | 0.0032 (9) | 0.0029 (8) | 0.0002 (9) |
N3 | 0.0371 (12) | 0.0515 (15) | 0.0704 (18) | 0.0019 (11) | −0.0005 (12) | −0.0090 (13) |
N4 | 0.0406 (12) | 0.0421 (12) | 0.0352 (10) | 0.0084 (10) | −0.0001 (9) | 0.0012 (9) |
N5 | 0.0420 (12) | 0.0401 (12) | 0.0417 (12) | 0.0047 (10) | 0.0078 (9) | −0.0039 (9) |
N6 | 0.0511 (14) | 0.0498 (14) | 0.0344 (11) | 0.0186 (11) | −0.0018 (10) | −0.0052 (10) |
N7 | 0.0402 (12) | 0.0447 (13) | 0.0363 (11) | 0.0072 (10) | −0.0011 (9) | −0.0051 (9) |
N8 | 0.0434 (12) | 0.0516 (14) | 0.0348 (11) | 0.0036 (10) | 0.0076 (9) | −0.0061 (10) |
C1 | 0.0432 (14) | 0.0517 (16) | 0.0308 (12) | 0.0084 (12) | 0.0055 (10) | −0.0032 (11) |
C2 | 0.0434 (14) | 0.0486 (15) | 0.0282 (11) | 0.0044 (12) | 0.0024 (10) | 0.0005 (10) |
C3 | 0.0447 (14) | 0.0463 (15) | 0.0318 (12) | 0.0063 (12) | −0.0018 (10) | −0.0003 (10) |
C4 | 0.0505 (16) | 0.0466 (16) | 0.0394 (14) | 0.0125 (13) | −0.0029 (12) | −0.0025 (12) |
C5 | 0.0502 (16) | 0.0620 (19) | 0.0362 (13) | 0.0018 (14) | 0.0122 (12) | −0.0040 (13) |
C6 | 0.0510 (16) | 0.0565 (18) | 0.0329 (12) | −0.0012 (14) | 0.0093 (11) | 0.0022 (12) |
C7 | 0.0464 (15) | 0.0485 (16) | 0.0349 (12) | −0.0006 (12) | 0.0029 (11) | 0.0080 (11) |
C8 | 0.0422 (14) | 0.0469 (15) | 0.0394 (14) | 0.0027 (12) | 0.0010 (11) | 0.0070 (11) |
C9 | 0.0286 (10) | 0.0381 (13) | 0.0316 (11) | 0.0003 (9) | 0.0015 (9) | −0.0022 (9) |
C10 | 0.0302 (11) | 0.0356 (12) | 0.0311 (11) | −0.0008 (9) | 0.0000 (9) | −0.0022 (9) |
C11 | 0.0300 (11) | 0.0376 (12) | 0.0331 (11) | −0.0031 (9) | 0.0006 (9) | −0.0044 (9) |
C12 | 0.0321 (11) | 0.0410 (13) | 0.0312 (11) | −0.0022 (10) | 0.0033 (9) | −0.0039 (10) |
C13 | 0.0305 (11) | 0.0400 (13) | 0.0314 (11) | −0.0034 (9) | 0.0026 (9) | −0.0015 (9) |
C14 | 0.0296 (11) | 0.0380 (12) | 0.0321 (11) | −0.0008 (9) | 0.0015 (9) | −0.0012 (9) |
C15 | 0.0353 (12) | 0.0402 (13) | 0.0303 (11) | 0.0002 (10) | 0.0006 (9) | −0.0018 (10) |
C16 | 0.0389 (13) | 0.0461 (15) | 0.0327 (12) | −0.0044 (11) | 0.0053 (10) | 0.0006 (10) |
C17 | 0.0472 (17) | 0.0492 (18) | 0.081 (3) | −0.0014 (14) | 0.0055 (17) | 0.0021 (17) |
C18 | 0.0466 (16) | 0.0450 (15) | 0.0534 (17) | 0.0032 (13) | 0.0043 (13) | 0.0038 (13) |
C19 | 0.0590 (19) | 0.0432 (16) | 0.0572 (18) | 0.0068 (14) | 0.0060 (15) | 0.0073 (14) |
C20 | 0.0555 (18) | 0.0518 (17) | 0.0414 (14) | 0.0147 (14) | 0.0025 (13) | 0.0042 (13) |
C21 | 0.0440 (15) | 0.0586 (18) | 0.0354 (13) | 0.0153 (13) | −0.0018 (11) | −0.0015 (12) |
C22 | 0.0407 (13) | 0.0492 (15) | 0.0303 (11) | 0.0089 (12) | −0.0002 (10) | −0.0032 (10) |
C23 | 0.0376 (14) | 0.0517 (17) | 0.0433 (15) | 0.0064 (12) | 0.0005 (11) | −0.0073 (12) |
C24 | 0.0557 (18) | 0.0502 (17) | 0.0493 (16) | 0.0112 (14) | 0.0208 (14) | 0.0039 (13) |
C25 | 0.0599 (18) | 0.0540 (17) | 0.0324 (13) | 0.0250 (14) | 0.0081 (12) | 0.0026 (11) |
C26 | 0.074 (2) | 0.072 (2) | 0.0370 (14) | 0.0348 (19) | 0.0137 (14) | 0.0020 (14) |
C27 | 0.088 (3) | 0.088 (3) | 0.0377 (15) | 0.049 (2) | −0.0052 (17) | −0.0161 (17) |
C28 | 0.072 (3) | 0.079 (3) | 0.0531 (19) | 0.037 (2) | −0.0241 (18) | −0.0289 (18) |
C29 | 0.0607 (19) | 0.0594 (19) | 0.0465 (16) | 0.0259 (16) | −0.0171 (14) | −0.0149 (14) |
C30 | 0.0500 (18) | 0.068 (2) | 0.074 (2) | 0.0122 (17) | −0.0178 (17) | −0.0264 (19) |
P2A_a | 0.0495 (8) | 0.0536 (9) | 0.0305 (5) | 0.0068 (6) | 0.0035 (5) | −0.0021 (6) |
F7A_a | 0.0612 (19) | 0.095 (3) | 0.0446 (14) | 0.0162 (18) | −0.0104 (13) | 0.0000 (16) |
F8A_a | 0.074 (3) | 0.103 (5) | 0.038 (2) | 0.017 (3) | −0.0093 (19) | −0.001 (2) |
F9A_a | 0.144 (4) | 0.119 (4) | 0.087 (3) | −0.066 (3) | −0.012 (3) | 0.035 (2) |
F10A_a | 0.065 (2) | 0.146 (4) | 0.111 (3) | −0.030 (2) | 0.017 (2) | 0.056 (3) |
F11A_a | 0.0552 (16) | 0.095 (3) | 0.0623 (18) | 0.0215 (17) | −0.0006 (13) | −0.0264 (18) |
F12A_a | 0.166 (5) | 0.118 (4) | 0.070 (2) | 0.093 (4) | −0.020 (3) | −0.035 (2) |
P2B_b | 0.0495 (8) | 0.0536 (9) | 0.0305 (5) | 0.0068 (6) | 0.0035 (5) | −0.0021 (6) |
F7B_b | 0.075 (7) | 0.082 (9) | 0.067 (7) | 0.024 (5) | −0.008 (5) | −0.032 (6) |
F8B_b | 0.056 (7) | 0.062 (8) | 0.042 (7) | −0.006 (5) | 0.008 (5) | −0.015 (5) |
F9B_b | 0.101 (8) | 0.057 (5) | 0.070 (7) | 0.003 (4) | 0.015 (6) | −0.008 (4) |
F10B_b | 0.115 (10) | 0.067 (5) | 0.080 (7) | 0.016 (5) | −0.020 (6) | −0.016 (4) |
F11B_b | 0.085 (7) | 0.110 (10) | 0.050 (5) | 0.029 (6) | 0.021 (5) | −0.011 (6) |
F12B_b | 0.052 (5) | 0.097 (9) | 0.056 (5) | −0.012 (5) | 0.011 (4) | −0.038 (5) |
P1A_a | 0.0385 (4) | 0.0567 (6) | 0.0637 (6) | 0.0047 (4) | −0.0018 (4) | 0.0080 (4) |
F1A_a | 0.0674 (17) | 0.0674 (17) | 0.119 (3) | −0.0021 (13) | −0.0435 (18) | 0.0102 (16) |
F2A_a | 0.0545 (13) | 0.0872 (18) | 0.0500 (12) | 0.0095 (11) | 0.0013 (10) | 0.0056 (10) |
F3A_a | 0.107 (3) | 0.093 (2) | 0.210 (5) | −0.032 (2) | −0.046 (3) | 0.080 (3) |
F4A_a | 0.0538 (13) | 0.0899 (19) | 0.0937 (19) | −0.0141 (13) | −0.0099 (13) | 0.0333 (16) |
F5A_a | 0.104 (2) | 0.160 (4) | 0.082 (2) | 0.069 (3) | −0.0224 (18) | −0.049 (2) |
F6A_a | 0.0612 (17) | 0.136 (3) | 0.121 (3) | 0.0272 (19) | 0.0349 (17) | 0.007 (2) |
P1B_b | 0.0385 (4) | 0.0567 (6) | 0.0637 (6) | 0.0047 (4) | −0.0018 (4) | 0.0080 (4) |
F1B_b | 0.040 (7) | 0.061 (9) | 0.078 (10) | 0.011 (6) | −0.008 (7) | 0.022 (7) |
F2B_b | 0.054 (9) | 0.066 (9) | 0.123 (12) | 0.009 (7) | 0.004 (8) | 0.029 (8) |
F3B_b | 0.050 (8) | 0.063 (11) | 0.103 (8) | 0.001 (7) | −0.004 (6) | 0.033 (7) |
F4B_b | 0.052 (8) | 0.066 (11) | 0.103 (8) | 0.006 (7) | −0.014 (6) | 0.008 (7) |
F5B_b | 0.047 (9) | 0.058 (7) | 0.087 (10) | 0.002 (6) | −0.001 (8) | 0.020 (7) |
F6B_b | 0.061 (10) | 0.073 (8) | 0.119 (11) | 0.012 (7) | 0.002 (8) | 0.005 (7) |
N9_a | 0.069 (3) | 0.072 (3) | 0.264 (9) | 0.004 (3) | 0.021 (4) | −0.011 (4) |
C31_a | 0.047 (2) | 0.073 (3) | 0.127 (5) | 0.007 (2) | 0.005 (3) | −0.018 (3) |
C32_a | 0.064 (3) | 0.099 (4) | 0.152 (6) | 0.001 (3) | 0.010 (3) | 0.007 (4) |
N10 | 0.114 (9) | 0.095 (8) | 0.335 (18) | −0.005 (7) | −0.052 (11) | −0.012 (11) |
C33 | 0.079 (9) | 0.113 (10) | 0.247 (15) | −0.004 (9) | −0.025 (10) | −0.005 (11) |
C34 | 0.039 (5) | 0.085 (6) | 0.142 (10) | 0.010 (5) | 0.018 (6) | 0.025 (7) |
Ru1—N6 | 2.005 (2) | C20—C21 | 1.390 (5) |
Ru1—N4 | 2.018 (2) | C20—H20 | 0.9500 |
Ru1—N1 | 2.045 (2) | C21—C22 | 1.382 (4) |
Ru1—N2 | 2.055 (2) | C21—H21 | 0.9500 |
Ru1—N5 | 2.132 (3) | C22—C23 | 1.495 (4) |
Ru1—N3 | 2.135 (3) | C23—H23A | 0.9900 |
N1—C9 | 1.338 (3) | C23—H23B | 0.9900 |
N1—C1 | 1.374 (3) | C24—C25 | 1.505 (5) |
N2—C14 | 1.339 (3) | C24—H24A | 0.9900 |
N2—C8 | 1.380 (4) | C24—H24B | 0.9900 |
N3—C30 | 1.492 (5) | C25—C26 | 1.388 (4) |
N3—C17 | 1.509 (5) | C26—C27 | 1.395 (6) |
N3—H3N | 0.9051 | C26—H26 | 0.9500 |
N4—C22 | 1.338 (4) | C27—C28 | 1.356 (7) |
N4—C18 | 1.343 (4) | C27—H27 | 0.9500 |
N5—C24 | 1.493 (4) | C28—C29 | 1.400 (5) |
N5—C23 | 1.499 (4) | C28—H28 | 0.9500 |
N5—H5N | 0.8825 | C29—C30 | 1.494 (6) |
N6—C25 | 1.342 (5) | C30—H30A | 0.9900 |
N6—C29 | 1.349 (5) | C30—H30B | 0.9900 |
N7—C11 | 1.330 (4) | P2A_a—F9A_a | 1.566 (4) |
N7—C4 | 1.347 (4) | P2A_a—F12A_a | 1.573 (4) |
N8—C12 | 1.328 (3) | P2A_a—F11A_a | 1.581 (4) |
N8—C5 | 1.356 (4) | P2A_a—F10A_a | 1.583 (4) |
C1—C2 | 1.359 (4) | P2A_a—F8A_a | 1.585 (4) |
C1—H1 | 0.9500 | P2A_a—F7A_a | 1.594 (4) |
C2—C15 | 1.424 (4) | P2B_b—F12B_b | 1.556 (13) |
C2—H2 | 0.9500 | P2B_b—F10B_b | 1.565 (14) |
C3—C4 | 1.376 (4) | P2B_b—F9B_b | 1.581 (14) |
C3—C15 | 1.388 (4) | P2B_b—F8B_b | 1.584 (14) |
C3—H3 | 0.9500 | P2B_b—F11B_b | 1.585 (13) |
C4—H4 | 0.9500 | P2B_b—F7B_b | 1.586 (14) |
C5—C6 | 1.371 (5) | P1A_a—F3A_a | 1.556 (3) |
C5—H5 | 0.9500 | P1A_a—F6A_a | 1.566 (3) |
C6—C16 | 1.411 (4) | P1A_a—F5A_a | 1.569 (3) |
C6—H6 | 0.9500 | P1A_a—F1A_a | 1.592 (3) |
C7—C8 | 1.358 (4) | P1A_a—F4A_a | 1.594 (3) |
C7—C16 | 1.416 (4) | P1A_a—F2A_a | 1.603 (3) |
C7—H7 | 0.9500 | P1B_b—F3B_b | 1.552 (15) |
C8—H8 | 0.9500 | P1B_b—F5B_b | 1.555 (16) |
C9—C10 | 1.402 (4) | P1B_b—F2B_b | 1.576 (15) |
C9—C14 | 1.431 (3) | P1B_b—F4B_b | 1.594 (15) |
C10—C11 | 1.415 (3) | P1B_b—F6B_b | 1.601 (16) |
C10—C15 | 1.417 (3) | P1B_b—F1B_b | 1.614 (15) |
C11—C12 | 1.479 (4) | N9_a—C31_a | 1.125 (8) |
C12—C13 | 1.420 (4) | C31_a—C32_a | 1.413 (8) |
C13—C14 | 1.400 (3) | C32_a—H32A_a | 0.9800 |
C13—C16 | 1.414 (4) | C32_a—H32B_a | 0.9800 |
C17—C18 | 1.504 (5) | C32_a—H32C_a | 0.9800 |
C17—H17A | 0.9900 | N10—C33 | 1.125 (8) |
C17—H17B | 0.9900 | C33—C34 | 1.413 (8) |
C18—C19 | 1.389 (5) | C34—H34A | 0.9800 |
C19—C20 | 1.383 (5) | C34—H34B | 0.9800 |
C19—H19 | 0.9500 | C34—H34C | 0.9800 |
N6—Ru1—N4 | 83.61 (9) | C21—C22—C23 | 125.5 (3) |
N6—Ru1—N1 | 97.14 (9) | C22—C23—N5 | 111.7 (2) |
N4—Ru1—N1 | 177.60 (10) | C22—C23—H23A | 109.3 |
N6—Ru1—N2 | 175.16 (9) | N5—C23—H23A | 109.3 |
N4—Ru1—N2 | 100.11 (9) | C22—C23—H23B | 109.3 |
N1—Ru1—N2 | 79.27 (9) | N5—C23—H23B | 109.3 |
N6—Ru1—N5 | 79.72 (10) | H23A—C23—H23B | 107.9 |
N4—Ru1—N5 | 80.65 (10) | N5—C24—C25 | 110.0 (3) |
N1—Ru1—N5 | 97.22 (9) | N5—C24—H24A | 109.7 |
N2—Ru1—N5 | 103.86 (9) | C25—C24—H24A | 109.7 |
N6—Ru1—N3 | 80.65 (12) | N5—C24—H24B | 109.7 |
N4—Ru1—N3 | 80.06 (11) | C25—C24—H24B | 109.7 |
N1—Ru1—N3 | 102.31 (11) | H24A—C24—H24B | 108.2 |
N2—Ru1—N3 | 96.87 (11) | N6—C25—C26 | 120.3 (3) |
N5—Ru1—N3 | 153.79 (10) | N6—C25—C24 | 113.8 (3) |
C9—N1—C1 | 117.2 (2) | C26—C25—C24 | 125.8 (4) |
C9—N1—Ru1 | 114.26 (17) | C25—C26—C27 | 117.8 (4) |
C1—N1—Ru1 | 128.52 (18) | C25—C26—H26 | 121.1 |
C14—N2—C8 | 116.8 (2) | C27—C26—H26 | 121.1 |
C14—N2—Ru1 | 113.92 (17) | C28—C27—C26 | 121.2 (3) |
C8—N2—Ru1 | 129.2 (2) | C28—C27—H27 | 119.4 |
C30—N3—C17 | 113.3 (3) | C26—C27—H27 | 119.4 |
C30—N3—Ru1 | 108.0 (2) | C27—C28—C29 | 119.4 (4) |
C17—N3—Ru1 | 107.4 (2) | C27—C28—H28 | 120.3 |
C30—N3—H3N | 109.4 | C29—C28—H28 | 120.3 |
C17—N3—H3N | 104.6 | N6—C29—C28 | 118.9 (4) |
Ru1—N3—H3N | 114.3 | N6—C29—C30 | 114.4 (3) |
C22—N4—C18 | 121.6 (3) | C28—C29—C30 | 126.5 (4) |
C22—N4—Ru1 | 118.0 (2) | N3—C30—C29 | 111.4 (3) |
C18—N4—Ru1 | 118.4 (2) | N3—C30—H30A | 109.3 |
C24—N5—C23 | 112.5 (2) | C29—C30—H30A | 109.3 |
C24—N5—Ru1 | 108.35 (19) | N3—C30—H30B | 109.3 |
C23—N5—Ru1 | 107.56 (18) | C29—C30—H30B | 109.3 |
C24—N5—H5N | 109.4 | H30A—C30—H30B | 108.0 |
C23—N5—H5N | 107.3 | F9A_a—P2A_a—F12A_a | 89.9 (4) |
Ru1—N5—H5N | 111.7 | F9A_a—P2A_a—F11A_a | 87.2 (3) |
C25—N6—C29 | 122.3 (3) | F12A_a—P2A_a—F11A_a | 177.0 (4) |
C25—N6—Ru1 | 118.9 (2) | F9A_a—P2A_a—F10A_a | 177.8 (4) |
C29—N6—Ru1 | 117.9 (2) | F12A_a—P2A_a—F10A_a | 92.3 (4) |
C11—N7—C4 | 117.6 (2) | F11A_a—P2A_a—F10A_a | 90.7 (3) |
C12—N8—C5 | 117.3 (3) | F9A_a—P2A_a—F8A_a | 91.2 (4) |
C2—C1—N1 | 123.6 (2) | F12A_a—P2A_a—F8A_a | 90.2 (4) |
C2—C1—H1 | 118.2 | F11A_a—P2A_a—F8A_a | 89.6 (3) |
N1—C1—H1 | 118.2 | F10A_a—P2A_a—F8A_a | 88.4 (4) |
C1—C2—C15 | 119.8 (2) | F9A_a—P2A_a—F7A_a | 90.8 (3) |
C1—C2—H2 | 120.1 | F12A_a—P2A_a—F7A_a | 91.5 (3) |
C15—C2—H2 | 120.1 | F11A_a—P2A_a—F7A_a | 88.8 (2) |
C4—C3—C15 | 118.2 (3) | F10A_a—P2A_a—F7A_a | 89.5 (2) |
C4—C3—H3 | 120.9 | F8A_a—P2A_a—F7A_a | 177.3 (4) |
C15—C3—H3 | 120.9 | F12B_b—P2B_b—F10B_b | 101.7 (11) |
N7—C4—C3 | 125.4 (3) | F12B_b—P2B_b—F9B_b | 88.2 (10) |
N7—C4—H4 | 117.3 | F10B_b—P2B_b—F9B_b | 170.0 (12) |
C3—C4—H4 | 117.3 | F12B_b—P2B_b—F8B_b | 92.7 (12) |
N8—C5—C6 | 125.2 (3) | F10B_b—P2B_b—F8B_b | 91.7 (13) |
N8—C5—H5 | 117.4 | F9B_b—P2B_b—F8B_b | 89.2 (12) |
C6—C5—H5 | 117.4 | F12B_b—P2B_b—F11B_b | 171.9 (13) |
C5—C6—C16 | 118.5 (3) | F10B_b—P2B_b—F11B_b | 86.2 (11) |
C5—C6—H6 | 120.8 | F9B_b—P2B_b—F11B_b | 83.9 (10) |
C16—C6—H6 | 120.8 | F8B_b—P2B_b—F11B_b | 88.8 (12) |
C8—C7—C16 | 120.6 (3) | F12B_b—P2B_b—F7B_b | 85.6 (9) |
C8—C7—H7 | 119.7 | F10B_b—P2B_b—F7B_b | 87.3 (10) |
C16—C7—H7 | 119.7 | F9B_b—P2B_b—F7B_b | 92.1 (10) |
C7—C8—N2 | 123.2 (3) | F8B_b—P2B_b—F7B_b | 177.8 (14) |
C7—C8—H8 | 118.4 | F11B_b—P2B_b—F7B_b | 93.0 (11) |
N2—C8—H8 | 118.4 | F3A_a—P1A_a—F6A_a | 91.3 (3) |
N1—C9—C10 | 123.7 (2) | F3A_a—P1A_a—F5A_a | 90.3 (3) |
N1—C9—C14 | 116.3 (2) | F6A_a—P1A_a—F5A_a | 178.4 (3) |
C10—C9—C14 | 120.0 (2) | F3A_a—P1A_a—F1A_a | 90.06 (19) |
C9—C10—C11 | 121.3 (2) | F6A_a—P1A_a—F1A_a | 88.5 (2) |
C9—C10—C15 | 118.8 (2) | F5A_a—P1A_a—F1A_a | 91.1 (2) |
C11—C10—C15 | 119.9 (2) | F3A_a—P1A_a—F4A_a | 179.29 (18) |
N7—C11—C10 | 121.4 (2) | F6A_a—P1A_a—F4A_a | 89.1 (2) |
N7—C11—C12 | 119.8 (2) | F5A_a—P1A_a—F4A_a | 89.3 (2) |
C10—C11—C12 | 118.8 (2) | F1A_a—P1A_a—F4A_a | 90.53 (15) |
N8—C12—C13 | 122.5 (2) | F3A_a—P1A_a—F2A_a | 90.70 (18) |
N8—C12—C11 | 119.3 (2) | F6A_a—P1A_a—F2A_a | 91.83 (18) |
C13—C12—C11 | 118.2 (2) | F5A_a—P1A_a—F2A_a | 88.55 (15) |
C14—C13—C16 | 119.1 (2) | F1A_a—P1A_a—F2A_a | 179.18 (18) |
C14—C13—C12 | 121.6 (2) | F4A_a—P1A_a—F2A_a | 88.72 (14) |
C16—C13—C12 | 119.3 (2) | F3B_b—P1B_b—F5B_b | 94.2 (14) |
N2—C14—C13 | 123.8 (2) | F3B_b—P1B_b—F2B_b | 90.7 (13) |
N2—C14—C9 | 116.2 (2) | F5B_b—P1B_b—F2B_b | 90.3 (13) |
C13—C14—C9 | 120.0 (2) | F3B_b—P1B_b—F4B_b | 173.7 (15) |
C3—C15—C10 | 117.4 (2) | F5B_b—P1B_b—F4B_b | 91.9 (13) |
C3—C15—C2 | 125.6 (2) | F2B_b—P1B_b—F4B_b | 91.0 (13) |
C10—C15—C2 | 117.0 (2) | F3B_b—P1B_b—F6B_b | 88.9 (13) |
C6—C16—C13 | 117.2 (3) | F5B_b—P1B_b—F6B_b | 175.5 (15) |
C6—C16—C7 | 126.2 (3) | F2B_b—P1B_b—F6B_b | 92.9 (14) |
C13—C16—C7 | 116.5 (2) | F4B_b—P1B_b—F6B_b | 85.0 (13) |
C18—C17—N3 | 110.1 (3) | F3B_b—P1B_b—F1B_b | 87.5 (12) |
C18—C17—H17A | 109.6 | F5B_b—P1B_b—F1B_b | 88.8 (12) |
N3—C17—H17A | 109.6 | F2B_b—P1B_b—F1B_b | 178.0 (15) |
C18—C17—H17B | 109.6 | F4B_b—P1B_b—F1B_b | 90.9 (12) |
N3—C17—H17B | 109.6 | F6B_b—P1B_b—F1B_b | 88.1 (13) |
H17A—C17—H17B | 108.2 | N9_a—C31_a—C32_a | 176.6 (7) |
N4—C18—C19 | 120.3 (3) | C31_a—C32_a—H32A_a | 109.5 |
N4—C18—C17 | 113.2 (3) | C31_a—C32_a—H32B_a | 109.5 |
C19—C18—C17 | 126.5 (3) | H32A_a—C32_a—H32B_a | 109.5 |
C20—C19—C18 | 118.6 (3) | C31_a—C32_a—H32C_a | 109.5 |
C20—C19—H19 | 120.7 | H32A_a—C32_a—H32C_a | 109.5 |
C18—C19—H19 | 120.7 | H32B_a—C32_a—H32C_a | 109.5 |
C19—C20—C21 | 120.3 (3) | N10—C33—C34 | 174.0 (19) |
C19—C20—H20 | 119.9 | C33—C34—H34A | 109.5 |
C21—C20—H20 | 119.9 | C33—C34—H34B | 109.5 |
C22—C21—C20 | 118.4 (3) | H34A—C34—H34B | 109.5 |
C22—C21—H21 | 120.8 | C33—C34—H34C | 109.5 |
C20—C21—H21 | 120.8 | H34A—C34—H34C | 109.5 |
N4—C22—C21 | 120.8 (3) | H34B—C34—H34C | 109.5 |
N4—C22—C23 | 113.7 (2) | ||
C9—N1—C1—C2 | −0.3 (4) | C1—C2—C15—C10 | −0.9 (4) |
Ru1—N1—C1—C2 | 177.9 (2) | C5—C6—C16—C13 | 0.7 (4) |
N1—C1—C2—C15 | 1.0 (5) | C5—C6—C16—C7 | −178.7 (3) |
C11—N7—C4—C3 | 0.5 (5) | C14—C13—C16—C6 | 179.9 (3) |
C15—C3—C4—N7 | 0.4 (5) | C12—C13—C16—C6 | −1.4 (4) |
C12—N8—C5—C6 | −1.5 (5) | C14—C13—C16—C7 | −0.7 (4) |
N8—C5—C6—C16 | 0.8 (5) | C12—C13—C16—C7 | 178.1 (2) |
C16—C7—C8—N2 | 0.0 (5) | C8—C7—C16—C6 | 179.6 (3) |
C14—N2—C8—C7 | 0.3 (4) | C8—C7—C16—C13 | 0.2 (4) |
Ru1—N2—C8—C7 | 177.6 (2) | C30—N3—C17—C18 | −85.1 (4) |
C1—N1—C9—C10 | −0.5 (4) | Ru1—N3—C17—C18 | 34.0 (4) |
Ru1—N1—C9—C10 | −178.98 (19) | C22—N4—C18—C19 | −0.6 (5) |
C1—N1—C9—C14 | 179.0 (2) | Ru1—N4—C18—C19 | −164.4 (3) |
Ru1—N1—C9—C14 | 0.6 (3) | C22—N4—C18—C17 | −179.1 (3) |
N1—C9—C10—C11 | 179.9 (2) | Ru1—N4—C18—C17 | 17.1 (4) |
C14—C9—C10—C11 | 0.3 (4) | N3—C17—C18—N4 | −34.3 (4) |
N1—C9—C10—C15 | 0.6 (4) | N3—C17—C18—C19 | 147.3 (3) |
C14—C9—C10—C15 | −179.0 (2) | N4—C18—C19—C20 | 0.5 (5) |
C4—N7—C11—C10 | −0.8 (4) | C17—C18—C19—C20 | 178.8 (3) |
C4—N7—C11—C12 | 179.3 (3) | C18—C19—C20—C21 | 0.0 (5) |
C9—C10—C11—N7 | −179.1 (2) | C19—C20—C21—C22 | −0.4 (5) |
C15—C10—C11—N7 | 0.2 (4) | C18—N4—C22—C21 | 0.3 (4) |
C9—C10—C11—C12 | 0.8 (4) | Ru1—N4—C22—C21 | 164.1 (2) |
C15—C10—C11—C12 | −179.9 (2) | C18—N4—C22—C23 | 179.1 (3) |
C5—N8—C12—C13 | 0.7 (4) | Ru1—N4—C22—C23 | −17.1 (3) |
C5—N8—C12—C11 | −179.1 (3) | C20—C21—C22—N4 | 0.2 (4) |
N7—C11—C12—N8 | −0.9 (4) | C20—C21—C22—C23 | −178.4 (3) |
C10—C11—C12—N8 | 179.2 (2) | N4—C22—C23—N5 | 31.3 (3) |
N7—C11—C12—C13 | 179.3 (2) | C21—C22—C23—N5 | −150.0 (3) |
C10—C11—C12—C13 | −0.6 (4) | C24—N5—C23—C22 | 90.0 (3) |
N8—C12—C13—C14 | 179.4 (2) | Ru1—N5—C23—C22 | −29.3 (3) |
C11—C12—C13—C14 | −0.7 (4) | C23—N5—C24—C25 | −86.8 (3) |
N8—C12—C13—C16 | 0.7 (4) | Ru1—N5—C24—C25 | 32.0 (3) |
C11—C12—C13—C16 | −179.5 (2) | C29—N6—C25—C26 | −0.9 (4) |
C8—N2—C14—C13 | −0.8 (4) | Ru1—N6—C25—C26 | −169.9 (2) |
Ru1—N2—C14—C13 | −178.5 (2) | C29—N6—C25—C24 | −178.3 (3) |
C8—N2—C14—C9 | 179.6 (2) | Ru1—N6—C25—C24 | 12.7 (3) |
Ru1—N2—C14—C9 | 1.9 (3) | N5—C24—C25—N6 | −30.1 (4) |
C16—C13—C14—N2 | 1.0 (4) | N5—C24—C25—C26 | 152.7 (3) |
C12—C13—C14—N2 | −177.7 (2) | N6—C25—C26—C27 | 0.3 (5) |
C16—C13—C14—C9 | −179.4 (2) | C24—C25—C26—C27 | 177.3 (3) |
C12—C13—C14—C9 | 1.9 (4) | C25—C26—C27—C28 | 0.4 (5) |
N1—C9—C14—N2 | −1.7 (3) | C26—C27—C28—C29 | −0.5 (6) |
C10—C9—C14—N2 | 177.9 (2) | C25—N6—C29—C28 | 0.8 (5) |
N1—C9—C14—C13 | 178.7 (2) | Ru1—N6—C29—C28 | 170.0 (2) |
C10—C9—C14—C13 | −1.7 (4) | C25—N6—C29—C30 | 176.9 (3) |
C4—C3—C15—C10 | −0.9 (4) | Ru1—N6—C29—C30 | −13.9 (4) |
C4—C3—C15—C2 | 178.9 (3) | C27—C28—C29—N6 | −0.1 (5) |
C9—C10—C15—C3 | 180.0 (2) | C27—C28—C29—C30 | −175.7 (4) |
C11—C10—C15—C3 | 0.7 (4) | C17—N3—C30—C29 | 90.1 (4) |
C9—C10—C15—C2 | 0.1 (4) | Ru1—N3—C30—C29 | −28.7 (4) |
C11—C10—C15—C2 | −179.2 (2) | N6—C29—C30—N3 | 28.9 (4) |
C1—C2—C15—C3 | 179.3 (3) | C28—C29—C30—N3 | −155.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···F2A_ai | 0.91 | 2.22 | 3.037 (4) | 150 |
N3—H3N···F4A_ai | 0.91 | 2.55 | 3.236 (4) | 133 |
N5—H5N···N7ii | 0.88 | 2.20 | 3.006 (3) | 153 |
N5—H5N···N8ii | 0.88 | 2.69 | 3.373 (4) | 135 |
C1—H1···F11A_aiii | 0.95 | 2.48 | 3.376 (5) | 157 |
C1—H1···F11B_biii | 0.95 | 2.28 | 3.019 (11) | 134 |
C3—H3···F8A_aiv | 0.95 | 2.51 | 3.301 (8) | 141 |
C3—H3···F12A_aiv | 0.95 | 2.60 | 3.414 (5) | 144 |
C3—H3···F8B_biv | 0.95 | 2.50 | 3.28 (3) | 140 |
C3—H3···F12B_biv | 0.95 | 2.37 | 3.283 (10) | 161 |
C5—H5···F7A_av | 0.95 | 2.50 | 3.404 (5) | 159 |
C8—H8···F1A_a | 0.95 | 2.53 | 3.211 (4) | 128 |
C8—H8···F4A_a | 0.95 | 2.40 | 3.085 (4) | 129 |
C8—H8···F1B_b | 0.95 | 2.50 | 3.42 (2) | 163 |
C17—H17A···N9_avi | 0.99 | 2.65 | 3.500 (8) | 145 |
C17—H17B···F4B_b | 0.99 | 2.34 | 3.15 (2) | 138 |
C19—H19···F9B_bvi | 0.95 | 2.61 | 3.287 (12) | 128 |
C21—H21···F11A_avii | 0.95 | 2.48 | 3.166 (4) | 129 |
C23—H23B···F6A_aiii | 0.99 | 2.51 | 3.409 (4) | 151 |
C24—H24A···F7A_aiii | 0.99 | 2.53 | 3.224 (5) | 127 |
C24—H24B···F2B_biii | 0.99 | 2.09 | 3.00 (2) | 152 |
C24—H24B···F5B_biii | 0.99 | 2.51 | 3.41 (3) | 150 |
C26—H26···F1A_aiii | 0.95 | 2.55 | 3.328 (5) | 140 |
C26—H26···F4B_biii | 0.95 | 2.36 | 3.26 (3) | 156 |
C28—H28···N10viii | 0.95 | 2.23 | 3.169 (12) | 169 |
C30—H30A···N9_avi | 0.99 | 2.59 | 3.484 (7) | 151 |
C30—H30B···F4A_ai | 0.99 | 2.54 | 3.182 (5) | 122 |
C32_a—H32A_a···F12A_avi | 0.98 | 2.36 | 3.273 (8) | 155 |
C32_a—H32B_a···F7A_a | 0.98 | 2.54 | 3.150 (7) | 121 |
C32_a—H32C_a···F1A_a | 0.98 | 2.58 | 3.446 (8) | 148 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x+3/2, y−1/2, −z+3/2; (v) −x+3/2, y−1/2, −z+1/2; (vi) −x+1, −y+1, −z+1; (vii) x−1, y, z; (viii) x, y, z+1. |
Ru1—N6 | 2.005 (2) | Ru1—N2 | 2.055 (2) |
Ru1—N4 | 2.018 (2) | Ru1—N5 | 2.132 (3) |
Ru1—N1 | 2.045 (2) | Ru1—N3 | 2.135 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···F2A_ai | 0.91 | 2.22 | 3.037 (4) | 149.8 |
N3—H3N···F4A_ai | 0.91 | 2.55 | 3.236 (4) | 133.2 |
N5—H5N···N7ii | 0.88 | 2.20 | 3.006 (3) | 152.5 |
N5—H5N···N8ii | 0.88 | 2.69 | 3.373 (4) | 134.9 |
C1—H1···F11A_aiii | 0.95 | 2.48 | 3.376 (5) | 156.6 |
C1—H1···F11B_biii | 0.95 | 2.28 | 3.019 (11) | 134.4 |
C3—H3···F8A_aiv | 0.95 | 2.51 | 3.301 (8) | 140.6 |
C3—H3···F12A_aiv | 0.95 | 2.60 | 3.414 (5) | 143.6 |
C3—H3···F8B_biv | 0.95 | 2.50 | 3.28 (3) | 139.7 |
C3—H3···F12B_biv | 0.95 | 2.37 | 3.283 (10) | 160.9 |
C5—H5···F7A_av | 0.95 | 2.50 | 3.404 (5) | 159.1 |
C8—H8···F1A_a | 0.95 | 2.53 | 3.211 (4) | 128.4 |
C8—H8···F4A_a | 0.95 | 2.40 | 3.085 (4) | 129.1 |
C8—H8···F1B_b | 0.95 | 2.50 | 3.42 (2) | 162.6 |
C17—H17A···N9_avi | 0.99 | 2.65 | 3.500 (8) | 144.5 |
C17—H17B···F4B_b | 0.99 | 2.34 | 3.15 (2) | 138.4 |
C19—H19···F9B_bvi | 0.95 | 2.61 | 3.287 (12) | 128.4 |
C21—H21···F11A_avii | 0.95 | 2.48 | 3.166 (4) | 129.1 |
C23—H23B···F6A_aiii | 0.99 | 2.51 | 3.409 (4) | 151.2 |
C24—H24A···F7A_aiii | 0.99 | 2.53 | 3.224 (5) | 126.9 |
C24—H24B···F2B_biii | 0.99 | 2.09 | 3.00 (2) | 152.1 |
C24—H24B···F5B_biii | 0.99 | 2.51 | 3.41 (3) | 150.2 |
C26—H26···F1A_aiii | 0.95 | 2.55 | 3.328 (5) | 139.9 |
C26—H26···F4B_biii | 0.95 | 2.36 | 3.26 (3) | 156.2 |
C28—H28···N10viii | 0.95 | 2.23 | 3.169 (12) | 169.0 |
C30—H30A···N9_avi | 0.99 | 2.59 | 3.484 (7) | 150.8 |
C30—H30B···F4A_ai | 0.99 | 2.54 | 3.182 (5) | 122.1 |
C32_a—H32A_a···F12A_avi | 0.98 | 2.36 | 3.273 (8) | 155.3 |
C32_a—H32B_a···F7A_a | 0.98 | 2.54 | 3.150 (7) | 120.5 |
C32_a—H32C_a···F1A_a | 0.98 | 2.58 | 3.446 (8) | 147.9 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x+3/2, y−1/2, −z+3/2; (v) −x+3/2, y−1/2, −z+1/2; (vi) −x+1, −y+1, −z+1; (vii) x−1, y, z; (viii) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ru(C14H16N4)(C16H8N4)](PF6)2·1.422C2H3N |
Mr | 946.11 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 11.7027 (3), 21.7157 (7), 13.9377 (4) |
β (°) | 97.938 (2) |
V (Å3) | 3508.08 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.65 |
Crystal size (mm) | 1.30 × 0.65 × 0.31 |
Data collection | |
Diffractometer | STOE IPDS 2 diffractometer |
Absorption correction | Integration (X-RED; Stoe & Cie, 2011) |
Tmin, Tmax | 0.613, 0.843 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 60767, 9454, 7744 |
Rint | 0.087 |
(sin θ/λ)max (Å−1) | 0.689 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.146, 1.09 |
No. of reflections | 9454 |
No. of parameters | 651 |
No. of restraints | 183 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.84, −1.22 |
Computer programs: X-AREA (Stoe & Cie, 2011), X-RED (Stoe & Cie, 2011), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), ORTEP-3 for Windows (Farrugia, 2012), SHELXL2014 (Sheldrick, 2008), SHELXLE (Hübschle et al., 2011), publCIF (Westrip, 2010).
Acknowledgements
We gratefully acknowledge financial assistance provided by the University of Potsdam.
References
Bottino, F., Di Grazia, M., Finocchiaro, P., Fronczek, F. R., Mamo, A. & Pappalardo, S. (1988). J. Org. Chem. 53, 3521–3529. CSD CrossRef CAS Web of Science Google Scholar
Brietzke, T., Kässler, D., Kelling, A., Schilde, U. & Holdt, H.-J. (2014). Acta Cryst. E70, m238–m239. CSD CrossRef CAS IUCr Journals Google Scholar
Brietzke, T., Mickler, W., Kelling, A. & Holdt, H.-J. (2012). Dalton Trans. 41, 2788–2797. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brietzke, T., Mickler, W., Kelling, A., Schilde, U., Krüger, H.-J. & Holdt, H.-J. (2012). Eur. J. Inorg. Chem. pp. 4632–4643. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gut, D., Rudi, A., Kopilov, J., Goldberg, I. & Kol, M. (2002). J. Am. Chem. Soc. 124, 5449–5456. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Ishow, E., Gourdon, A., Launay, J.-P., Lecante, P., Verelst, M., Chiorboli, C., Scandola, F. & Bignozzi, C.-A. (1998). Inorg. Chem. 37, 3603–3609. Web of Science CrossRef PubMed CAS Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Kammer, S., Müller, H., Grunwald, N., Bellin, A., Kelling, A., Schilde, U., Mickler, W., Dosche, C. & Holdt, H.-J. (2006). Eur. J. Inorg. Chem. pp. 1547–1551. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.