research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 249-251

Crystal structure of 2-ethyl-3-(4-fluoro­phenyl­sulfon­yl)-5,7-di­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 15 August 2014; accepted 15 September 2014; online 24 September 2014)

In the title compound, C18H17FO3S, the dihedral angle between the plane of the benzo­furan ring [r.m.s. deviation = 0.006 (1) Å] and that of the 4-fluoro­phenyl ring [r.m.s. deviation = 0.004 (1) Å] is 82.45 (4)°. In the crystal, mol­ecules are linked via three different pairs of C—H⋯O hydrogen bonds, forming chains along [001] and enclosing two R22(10) and one R22(12) ring motifs. The chains are further linked by ππ inter­actions [inter-centroid distance = 3.566 (1) Å] between the furan rings of inversion-related mol­ecules, forming a two-dimensional network lying parallel to (100).

1. Chemical Context

Substituted benzo­furans show important pharmacological properties such as anti­bacterial and anti­fungal, anti­tumour and anti­viral, and anti­microbial activities (Aslam et al. 2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol.Res. 164, 191-195.]; Galal et al., 2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]; Khan et al., 2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]), and are potential inhibit­ors of β-amyloid aggregation (Howlett et al., 1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]; Ono et al., 2002[Ono, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633-642.]). These benzo­furan compounds occur in a great number of natural products (Akgul & Anil, 2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]; Soekamto et al., 2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). As a part of our ongoing project concerning 2-alkyl-3-(phenyl­sulfon­yl)-5,7-dimethyl-1-benzo­furan derivatives, we report herein on the synthesis and crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

In the title mol­ecule, Fig. 1[link], the benzo­furan unit (O1/C1–C8) is essentially planar, with a mean deviation of 0.006 (1) Å from the mean plane defined by the nine constituent atoms. The 4-fluoro­phenyl ring (C13–C18) is inclined to the benzo­furan ring by 82.45 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked via three different pairs of C—H⋯O hydrogen bonds, forming chains along [001] and enclosing two [R_{2}^{2}](10) and one [R_{2}^{2}](12) ring motifs (Fig. 2[link] and Table 1[link]). The chains are further linked by ππ inter­actions between the furan rings of inversion-related mol­ecules, forming a two-dimensional network lying parallel to (100) [illustrated in Fig. 2[link]; Cg1⋯Cg1i = 3.566 (1), inter­planar distance = 3.553 (1); slippage = 0.305 Å; Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring; symmetry code: (i) −x + 1, −y + 1, −z + 1].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.55 3.4804 (18) 167
C14—H14⋯O2ii 0.95 2.49 3.1211 (17) 124
C18—H18⋯O3i 0.95 2.36 3.2742 (17) 160
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+2, -z.
[Figure 2]
Figure 2
A view of the C—H⋯O and ππ inter­actions (dotted lines) in the crystal structure of the title compound [see Table 1[link] for details; H atoms not involved in hydrogen bonding have been omitted for clarity; symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) −x + 1, −y + 2, −z; (iii) −x + 1, −y + 1, −z + 1].

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) for 3-(phenyl­sulfon­yl)benzo­furan gave 65 hits. Six of these involve 5,7-dimethyl-3-(phenyl­sulfon­yl)benzo­furan derivatives. They include the 2-methyl derivative of the title compound, 2-methyl-3-(4-fluoro­phenyl­sulfon­yl)-5,7-dimethyl-1-benzo­furan (Choi et al., 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1813.]). In these six compounds, the dihedral angle between the phenyl­sulfonyl ring and the benzo­furan ring varies from ca. 72.68° in the 2-methyl derivative mentioned above, to 87.61° in 2-methyl-3-(2-fluoro­phenyl­sulfon­yl)-5,7-dimethyl-1-benzo­furan (Choi et al., 2014[Choi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o566.]). The same angle in the title compound is 82.45 (4)°.

5. Synthesis and crystallization

The starting material 2-ethyl-3-(4-fluoro­phenyl­sulfan­yl)-5,7-dimethyl-1-benzo­furan was prepared by a literature method (Choi et al. 1999[Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606-608.]). 3-Chloro­per­oxy­benzoic acid (77%, 448 mg, 2.0 mmol) was added in small portions to a stirred solution of 2-ethyl-3-(4-fluoro­phenyl­sulfan­yl)-5,7-dimethyl-1-benzo­furan (270 mg, 0.9 mmol) in di­chloro­methane (35 ml) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution (2 × 15 ml) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexa­ne–ethyl acetate, 4:1 v/v) to afford the title compound as a colourless solid [yield 61% (236 mg); m.p. 416–417 K; Rf = 0.63 (hexa­ne–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound (21 mg) in acetone (15 ml) at room temperature. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 7.99–8.04 (m, 2H), 7.47 (s, 1H), 7.14–7.19 (m, 2H), 6.93 (s, 1H), 3.22 (q, J = 7.52 Hz, 2H), 2.43 (s, 3H), 2.41 (s, 3H), 1.36 (t, J = 7.54 Hz, 3H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined as riding atoms: C—H = 0.95 Å for aryl, 0.99 Å for methyl­ene and 0.98 Å for methyl H atoms, respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C18H17FO3S
Mr 332.38
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.8756 (2), 9.3917 (2), 11.0284 (2)
α, β, γ (°) 65.735 (1), 80.735 (1), 71.145 (1)
V3) 792.68 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.39 × 0.33 × 0.30
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.918, 0.936
No. of measured, independent and observed [I > 2σ(I)] reflections 14813, 3934, 3489
Rint 0.025
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.07
No. of reflections 3934
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.44
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical Context top

Substituted benzo­furans show important pharmacological properties such as anti­bacterial and anti­fungal, anti­tumour and anti­viral, and anti­microbial activities (Aslam et al. 2009; Galal et al., 2009; Khan et al., 2005), and are potential inhibitors of β-amyloid aggregation (Howlett et al., 1999; Ono et al., 2002). These benzo­furan compounds occur in a great number of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing project concerning 2-alkyl-3-(phenyl­sulfonyl)-5,7-di­methyl-1-benzo­furan derivatives, we report herein on the synthesis and crystal structure of the title compound.

Structural commentary top

In the title molecule, Fig. 1, the benzo­furan unit (O1/C1–C8) is essentially planar, with a mean deviation of 0.006 (1) Å from the mean plane defined by the nine constituent atoms. The 4-fluoro­phenyl ring (C13–C18) is inclined to the benzo­furan ring by 82.45 (4)°.

Supra­molecular features top

In the crystal, molecules are linked via three different pairs of C—H···O hydrogen bonds, forming chains along [001] and enclosing two R22(10) and one R22(12) ring motifs (Fig. 2 and Table 1). The chains are further linked by ππ inter­actions between the furan rings of inversion-related molecules, forming a two-dimensional network lying parallel to (100) [illustrated in Fig. 2; Cg1···Cg1i = 3.566 (1), inter­planar distance = 3.553 (1); slippage = 0.305 Å; Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring; symmetry code: (i) -x+1, -y+1, -z+1].

Database survey top

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen, 2002) for 3-(phenyl­sulfonyl)­benzo­furan gave 65 hits. Six of these involve 5,7-di­methyl-3-(phenyl­sulfonyl)­benzo­furan derivatives. They include the 2-methyl derivative of the title compound, 2-methyl-3-(4-fluoro­phenyl­sulfonyl)-5,7-di­methyl-1-benzo­furan (Choi et al., 2010). In these six compounds, the dihedral angle between the phenyl­sulfonyl ring and the benzo­furan ring varies from ca. 72.68° in the 2-methyl derivative mentioned above, to 87.61° in 2-methyl-3-(2-fluoro­phenyl­sulfonyl)-5,7-di­methyl-1-benzo­furan (Choi et al., 2014). The same angle in the title compound is 82.45 (4)°.

Synthesis and crystallization top

The starting material 2-ethyl-3-(4-fluoro­phenyl­sulfanyl)-5,7-di­methyl-1-benzo­furan was prepared by a literature method (Choi et al. 1999). 3-Chloro­per­oxy­benzoic acid (77%, 448 mg, 2.0 mmol) was added in small portions to a stirred solution of 2-ethyl-3-(4-fluoro­phenyl­sulfanyl)-5,7-di­methyl-1-benzo­furan (270 mg, 0.9 mmol) in di­chloro­methane (35 ml) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution (2 × 15 ml) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 4:1 v/v) to afford the title compound as a colourless solid [yield 61% (236 mg); m.p. 416–417 K; Rf = 0.63 (hexane–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound (21 mg) in acetone (15 ml) at room temperature. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 7.99–8.04 (m, 2H), 7.47 (s, 1H), 7.14–7.19 (m, 2H), 6.93 (s, 1H), 3.22 (q, J = 7.52 Hz, 2H), 2.43 (s, 3H), 2.41 (s, 3H), 1.36 (t, J = 7.54 Hz, 3H).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were positioned geometrically and refined as riding atoms: C—H = 0.95 Å for aryl, 0.99 Å for methyl­ene and 0.98 Å for methyl H atoms, respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Related literature top

For the pharmacological properties of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Howlett et al. (1999); Khan et al. (2005); Ono et al. (2002). For natural products with a benzofuran ring, see: Akgul & Anil (2003); Soekamto et al. (2003). For the synthesis of the starting material 2-ethyl-3-(4-fluorophenylsulfanyl)-5,7-dimethyl-1-benzofuran. see: Choi et al. (1999). For a related structure, see: Choi et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the C—H···O and ππ interactions (dotted lines) in the crystal structure of the title compound [see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity; symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 2, -z; (iii) -x + 1, -y + 1, -z + 1].
2-Ethyl-3-(4-fluorophenylsulfonyl)-5,7-dimethyl-1-benzofuran top
Crystal data top
C18H17FO3SZ = 2
Mr = 332.38F(000) = 348
Triclinic, P1Dx = 1.393 Mg m3
Hall symbol: -P 1Melting point = 417–416 K
a = 8.8756 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3917 (2) ÅCell parameters from 6147 reflections
c = 11.0284 (2) Åθ = 2.4–28.2°
α = 65.735 (1)°µ = 0.23 mm1
β = 80.735 (1)°T = 173 K
γ = 71.145 (1)°Block, colourless
V = 792.68 (3) Å30.39 × 0.33 × 0.30 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3934 independent reflections
Radiation source: rotating anode3489 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.025
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.0°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.918, Tmax = 0.936l = 1414
14813 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.108H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.2229P]
where P = (Fo2 + 2Fc2)/3
3934 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C18H17FO3Sγ = 71.145 (1)°
Mr = 332.38V = 792.68 (3) Å3
Triclinic, P1Z = 2
a = 8.8756 (2) ÅMo Kα radiation
b = 9.3917 (2) ŵ = 0.23 mm1
c = 11.0284 (2) ÅT = 173 K
α = 65.735 (1)°0.39 × 0.33 × 0.30 mm
β = 80.735 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3934 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3489 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.936Rint = 0.025
14813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
3934 reflectionsΔρmin = 0.44 e Å3
211 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47686 (4)0.90767 (4)0.29373 (3)0.02612 (11)
F10.95796 (13)1.25062 (13)0.04333 (11)0.0519 (3)
O10.69433 (12)0.44317 (12)0.38093 (10)0.0329 (2)
O20.37720 (12)0.93598 (13)0.19098 (10)0.0339 (2)
O30.40523 (12)0.95254 (13)0.40432 (10)0.0331 (2)
C10.58429 (16)0.70342 (16)0.35637 (13)0.0268 (3)
C20.68621 (15)0.62616 (16)0.46953 (13)0.0274 (3)
C30.72804 (16)0.67484 (18)0.55984 (13)0.0300 (3)
H30.68400.78340.55550.036*
C40.83619 (17)0.5600 (2)0.65658 (14)0.0343 (3)
C50.89864 (17)0.40020 (19)0.66131 (15)0.0374 (3)
H50.97240.32410.72820.045*
C60.85859 (17)0.34717 (18)0.57367 (15)0.0352 (3)
C70.75119 (16)0.46619 (17)0.47913 (14)0.0304 (3)
C80.59290 (16)0.58923 (17)0.30738 (14)0.0296 (3)
C90.8875 (2)0.6073 (2)0.75486 (16)0.0472 (4)
H9A0.82990.72120.73980.071*
H9B1.00230.59460.74320.071*
H9C0.86360.53700.84560.071*
C100.9270 (2)0.17627 (19)0.57832 (19)0.0461 (4)
H10A0.85230.15030.53970.069*
H10B0.94490.09980.67100.069*
H10C1.02840.16730.52730.069*
C110.52011 (18)0.58876 (19)0.19537 (15)0.0364 (3)
H11A0.41810.67640.17470.044*
H11B0.49620.48360.22330.044*
C120.6270 (2)0.6136 (2)0.06985 (16)0.0425 (4)
H12A0.64190.72250.03610.064*
H12B0.57720.60310.00200.064*
H12C0.73070.53110.09070.064*
C130.62269 (16)1.01143 (16)0.21923 (13)0.0261 (3)
C140.68862 (17)1.01386 (17)0.09555 (13)0.0306 (3)
H140.65620.95960.05270.037*
C150.80202 (18)1.09615 (19)0.03520 (14)0.0348 (3)
H150.84851.09980.04950.042*
C160.84549 (18)1.17233 (17)0.10114 (15)0.0349 (3)
C170.7805 (2)1.17300 (18)0.22324 (15)0.0363 (3)
H170.81301.22830.26500.044*
C180.66666 (17)1.09115 (17)0.28363 (14)0.0307 (3)
H180.61941.08950.36770.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02580 (17)0.02980 (17)0.02171 (17)0.00369 (12)0.00149 (12)0.01186 (13)
F10.0532 (6)0.0496 (6)0.0541 (6)0.0289 (5)0.0052 (5)0.0128 (5)
O10.0315 (5)0.0285 (5)0.0380 (5)0.0076 (4)0.0000 (4)0.0131 (4)
O20.0317 (5)0.0415 (6)0.0287 (5)0.0063 (4)0.0073 (4)0.0145 (4)
O30.0316 (5)0.0399 (5)0.0275 (5)0.0046 (4)0.0029 (4)0.0185 (4)
C10.0262 (6)0.0289 (6)0.0241 (6)0.0070 (5)0.0012 (5)0.0104 (5)
C20.0243 (6)0.0301 (6)0.0240 (6)0.0092 (5)0.0027 (5)0.0069 (5)
C30.0280 (6)0.0354 (7)0.0243 (6)0.0101 (5)0.0016 (5)0.0092 (5)
C40.0288 (7)0.0445 (8)0.0244 (6)0.0135 (6)0.0014 (5)0.0067 (6)
C50.0288 (7)0.0398 (8)0.0293 (7)0.0094 (6)0.0023 (6)0.0008 (6)
C60.0271 (7)0.0299 (7)0.0371 (8)0.0084 (5)0.0021 (6)0.0028 (6)
C70.0265 (6)0.0307 (7)0.0303 (7)0.0100 (5)0.0028 (5)0.0081 (5)
C80.0266 (6)0.0313 (6)0.0306 (7)0.0084 (5)0.0018 (5)0.0124 (6)
C90.0453 (9)0.0623 (11)0.0312 (8)0.0132 (8)0.0081 (7)0.0144 (8)
C100.0366 (8)0.0301 (7)0.0568 (10)0.0065 (6)0.0028 (7)0.0042 (7)
C110.0357 (7)0.0402 (8)0.0403 (8)0.0100 (6)0.0021 (6)0.0226 (7)
C120.0564 (10)0.0399 (8)0.0350 (8)0.0134 (7)0.0004 (7)0.0187 (7)
C130.0284 (6)0.0242 (6)0.0225 (6)0.0029 (5)0.0030 (5)0.0086 (5)
C140.0339 (7)0.0341 (7)0.0252 (6)0.0077 (6)0.0014 (5)0.0139 (6)
C150.0358 (7)0.0366 (7)0.0279 (7)0.0081 (6)0.0023 (6)0.0114 (6)
C160.0339 (7)0.0274 (6)0.0368 (8)0.0090 (6)0.0029 (6)0.0052 (6)
C170.0464 (8)0.0290 (7)0.0359 (8)0.0101 (6)0.0072 (6)0.0133 (6)
C180.0382 (7)0.0281 (6)0.0253 (6)0.0055 (5)0.0033 (5)0.0121 (5)
Geometric parameters (Å, º) top
S1—O21.4353 (10)C9—H9B0.9800
S1—O31.4383 (10)C9—H9C0.9800
S1—C11.7341 (14)C10—H10A0.9800
S1—C131.7648 (14)C10—H10B0.9800
F1—C161.3520 (17)C10—H10C0.9800
O1—C81.3684 (17)C11—C121.525 (2)
O1—C71.3833 (18)C11—H11A0.9900
C1—C81.3630 (19)C11—H11B0.9900
C1—C21.4482 (18)C12—H12A0.9800
C2—C71.3892 (19)C12—H12B0.9800
C2—C31.3935 (19)C12—H12C0.9800
C3—C41.392 (2)C13—C141.3891 (18)
C3—H30.9500C13—C181.3901 (19)
C4—C51.403 (2)C14—C151.385 (2)
C4—C91.505 (2)C14—H140.9500
C5—C61.389 (2)C15—C161.373 (2)
C5—H50.9500C15—H150.9500
C6—C71.385 (2)C16—C171.379 (2)
C6—C101.503 (2)C17—C181.385 (2)
C8—C111.485 (2)C17—H170.9500
C9—H9A0.9800C18—H180.9500
O2—S1—O3119.08 (6)C6—C10—H10A109.5
O2—S1—C1108.98 (6)C6—C10—H10B109.5
O3—S1—C1108.06 (6)H10A—C10—H10B109.5
O2—S1—C13108.05 (6)C6—C10—H10C109.5
O3—S1—C13107.27 (6)H10A—C10—H10C109.5
C1—S1—C13104.43 (6)H10B—C10—H10C109.5
C8—O1—C7107.20 (11)C8—C11—C12113.00 (13)
C8—C1—C2108.02 (12)C8—C11—H11A109.0
C8—C1—S1127.10 (11)C12—C11—H11A109.0
C2—C1—S1124.84 (10)C8—C11—H11B109.0
C7—C2—C3119.68 (13)C12—C11—H11B109.0
C7—C2—C1104.35 (12)H11A—C11—H11B107.8
C3—C2—C1135.96 (13)C11—C12—H12A109.5
C4—C3—C2118.14 (14)C11—C12—H12B109.5
C4—C3—H3120.9H12A—C12—H12B109.5
C2—C3—H3120.9C11—C12—H12C109.5
C3—C4—C5119.77 (15)H12A—C12—H12C109.5
C3—C4—C9120.17 (15)H12B—C12—H12C109.5
C5—C4—C9120.05 (14)C14—C13—C18121.55 (13)
C6—C5—C4123.62 (14)C14—C13—S1118.74 (10)
C6—C5—H5118.2C18—C13—S1119.70 (10)
C4—C5—H5118.2C15—C14—C13119.42 (13)
C7—C6—C5114.32 (14)C15—C14—H14120.3
C7—C6—C10122.25 (15)C13—C14—H14120.3
C5—C6—C10123.43 (14)C16—C15—C14118.19 (13)
O1—C7—C6125.00 (14)C16—C15—H15120.9
O1—C7—C2110.53 (12)C14—C15—H15120.9
C6—C7—C2124.47 (14)F1—C16—C15118.29 (14)
C1—C8—O1109.89 (12)F1—C16—C17118.31 (14)
C1—C8—C11135.05 (13)C15—C16—C17123.41 (14)
O1—C8—C11115.06 (12)C16—C17—C18118.51 (13)
C4—C9—H9A109.5C16—C17—H17120.7
C4—C9—H9B109.5C18—C17—H17120.7
H9A—C9—H9B109.5C17—C18—C13118.92 (13)
C4—C9—H9C109.5C17—C18—H18120.5
H9A—C9—H9C109.5C13—C18—H18120.5
H9B—C9—H9C109.5
O2—S1—C1—C88.30 (15)C3—C2—C7—C60.5 (2)
O3—S1—C1—C8139.05 (12)C1—C2—C7—C6179.20 (13)
C13—S1—C1—C8106.97 (13)C2—C1—C8—O10.30 (15)
O2—S1—C1—C2173.96 (10)S1—C1—C8—O1177.75 (9)
O3—S1—C1—C243.20 (13)C2—C1—C8—C11179.77 (15)
C13—S1—C1—C270.78 (12)S1—C1—C8—C111.7 (2)
C8—C1—C2—C70.46 (14)C7—O1—C8—C10.01 (15)
S1—C1—C2—C7177.64 (10)C7—O1—C8—C11179.60 (11)
C8—C1—C2—C3179.96 (15)C1—C8—C11—C1295.6 (2)
S1—C1—C2—C31.9 (2)O1—C8—C11—C1283.88 (16)
C7—C2—C3—C40.70 (19)O2—S1—C13—C1438.40 (12)
C1—C2—C3—C4178.83 (14)O3—S1—C13—C14167.95 (10)
C2—C3—C4—C50.4 (2)C1—S1—C13—C1477.52 (12)
C2—C3—C4—C9178.89 (13)O2—S1—C13—C18140.33 (11)
C3—C4—C5—C60.1 (2)O3—S1—C13—C1810.79 (13)
C9—C4—C5—C6179.43 (14)C1—S1—C13—C18103.75 (12)
C4—C5—C6—C70.4 (2)C18—C13—C14—C150.6 (2)
C4—C5—C6—C10179.40 (14)S1—C13—C14—C15179.36 (11)
C8—O1—C7—C6179.37 (13)C13—C14—C15—C160.2 (2)
C8—O1—C7—C20.30 (15)C14—C15—C16—F1179.00 (13)
C5—C6—C7—O1179.55 (12)C14—C15—C16—C171.0 (2)
C10—C6—C7—O10.5 (2)F1—C16—C17—C18179.19 (13)
C5—C6—C7—C20.1 (2)C15—C16—C17—C180.8 (2)
C10—C6—C7—C2179.13 (13)C16—C17—C18—C130.1 (2)
C3—C2—C7—O1179.87 (11)C14—C13—C18—C170.8 (2)
C1—C2—C7—O10.47 (14)S1—C13—C18—C17179.53 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.553.4804 (18)167
C14—H14···O2ii0.952.493.1211 (17)124
C18—H18···O3i0.952.363.2742 (17)160
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.553.4804 (18)167
C14—H14···O2ii0.952.493.1211 (17)124
C18—H18···O3i0.952.363.2742 (17)160
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC18H17FO3S
Mr332.38
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.8756 (2), 9.3917 (2), 11.0284 (2)
α, β, γ (°)65.735 (1), 80.735 (1), 71.145 (1)
V3)792.68 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.39 × 0.33 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.918, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
14813, 3934, 3489
Rint0.025
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.07
No. of reflections3934
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998), SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The X-ray centre of Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol.Res. 164, 191–195.  CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o566.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606–608.  CAS Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOno, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633–642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 249-251
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds