organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1210-o1211

Crystal structure of 1-(3-chloro­phen­yl)piperazin-1-ium picrate–picric acid (2/1)

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

Edited by R. J. Butcher, Howard University, USA (Received 2 August 2014; accepted 27 October 2014; online 31 October 2014)

The title salt {systematic name: bis­[1-(3-chloro­phen­yl)piperazinium 2,4,6-tri­nitro­phenolate]–picric acid (2/1)}, 2C10H14ClN2+·2C6H5N3O7·C6H6N3O7, crystallized with two independent 1-(3-chloro­phen­yl)piperazinium cations, two picrate anions and a picric acid mol­ecule in the asymmetric unit. The six-membered piperazine ring in each cation adopts a slightly distorted chair conformation and contains a protonated N atom. In the picric acid mol­ecule, the mean planes of the nitro groups in the ortho-, meta-, and para-positions are twisted from the benzene ring by 31.5 (3), 7.7 (1), and 3.8 (2)°, respectively. In the anions, the dihedral angles between the benzene ring and the ortho-, meta-, and para-nitro groups are 36.7 (1), 5.0 (6), 4.8 (2)°, and 34.4 (9), 15.3 (8), 4.5 (1)°, respectively. The nitro group in one anion is disordered and was modeled with two sites for one O atom with an occupancy ratio of 0.627 (7):0.373 (7). In the crystal, the picric acid mol­ecule inter­acts with the picrate anion through a trifurcated O—H⋯O four-centre hydrogen bond involving an intra­molecular O—H⋯O hydrogen bond and a weak C—H⋯O inter­action. Weak inter­molecular C—H⋯O inter­actions are responsible for the formation of cation–anion–cation trimers resulting in a chain along [010]. In addition, weak C—H⋯Cl and weak ππ inter­actions [centroid–centroid distances of 3.532 (3), 3.756 (4) and 3.705 (3) Å] are observed and contribute to the stability of the crystal packing.

1. Related literature

For related structures, see: Homrighausen et al. (2002[Homrighausen, C. L. & Krause Bauer, J. A. (2002). Acta Cryst. E58, o1395-o1396.]); Koysal et al. (2003[Koysal, Y., Işık, Ş., Köksal, M., Erdoğan, H. & Gökhan, N. (2003). Acta Cryst. E59, o1975-o1976.]). For the biological activity of piperazine derivatives, see: Berkheij et al. (2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369-2371.]); Humle & Cherrier (1999[Hulme, C. & Cherrier, M. P. (1999). Tetrahedron Lett. 40, 5295-5299.]); Kennett & Curzon (1988[Kennett, G. A. & Curzon, G. (1988). Psychopharmacology, 96, 93-100.]); Petkov et al. (1995[Petkov, V. D., Belcheva, S. & Konstantinova, E. (1995). Clin Pharm. 17, 659-68.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 2C10H14ClN2+·2C6H2N3O7·C6H3N3O7

  • Mr = 1080.69

  • Monoclinic, P c

  • a = 11.2213 (6) Å

  • b = 14.6239 (7) Å

  • c = 14.1804 (8) Å

  • β = 104.405 (5)°

  • V = 2253.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.48 × 0.46 × 0.38 mm

2.2. Data collection

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.598, Tmax = 1.000

  • 28568 measured reflections

  • 13782 independent reflections

  • 10981 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.139

  • S = 1.02

  • 13782 reflections

  • 671 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack x determined using 4095 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.09 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯Cl1Bi 1.00 2.78 3.665 (3) 147
N2A—H2A⋯O3C 0.88 2.29 2.723 (4) 110
N2A—H2A⋯O3D 0.88 2.34 2.787 (4) 112
C3A—H3AB⋯O7Dii 0.99 2.63 3.451 (5) 140
C4A—H4AA⋯Cl1Biii 0.99 2.88 3.690 (4) 139
C4A—H4AB⋯O2D 0.99 2.51 3.253 (5) 132
C8A—H8A⋯O7Civ 0.95 2.64 3.572 (5) 168
C10A—H10A⋯O6Ev 0.95 2.53 3.400 (5) 152
N1B—H1B⋯Cl1Avi 1.00 2.80 3.653 (3) 143
N2B—H2B⋯O3C 0.88 2.38 2.848 (4) 114
N2B—H2B⋯O3D 0.88 2.34 2.771 (4) 111
C1B—H1BA⋯O2C 0.99 2.66 3.375 (5) 129
C1B—H1BB⋯O2Dvii 0.99 2.52 3.317 (4) 137
C2B—H2BA⋯O7Cviii 0.99 2.56 3.419 (5) 145
C4B—H4BA⋯O1Ciii 0.99 2.63 3.232 (4) 120
C6C—H6C⋯O5Cvii 0.95 2.48 3.310 (4) 146
O3E—H3E⋯O4C 0.84 2.51 3.037 (4) 122
O3E—H3E⋯O5C 0.84 2.43 2.962 (4) 122
O3E—H3E⋯O4E 0.84 1.86 2.565 (4) 140
O3E—H3E⋯N2E 0.84 2.47 2.899 (4) 113
C4E—H4E⋯O4Dix 0.95 2.57 3.412 (6) 148
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) [x, -y+2, z-{\script{1\over 2}}]; (iv) x+1, y-1, z; (v) x+1, y, z+1; (vi) x, y+1, z; (vii) [x, -y+2, z+{\script{1\over 2}}]; (viii) x+1, y, z; (ix) x-1, y, z-1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Piperazine derived designer drug 1-(3-chlorophenyl)piperazine or meta-chlorophenylpiperazine (mCPP), a psychoactive drug of the phenylpiperazine class, is known to induce headaches in humans and has been used for testing potential antimigraine medications (Petkov et al., 1995). In addition, it has potent anorectic effects and has encouraged the development of selective 5-HT2C receptor agonists for the treatment of obesity (Kennett & Curzon, 1988). It is a major metabolite of the psychotropic drugs trazodone and nefazodone. Also piperazine derivatives are found in biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005) such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Humle & Cherrier, 1999). The crystal structures of some related compounds viz., 1-(3-chlorophenyl)-4-(3-chloropropyl)piperazinium chloride (Homrighausen et al., 2002), 3-[4-(2-chlorophenyl)piperazinomethyl]-5-methyl-1-benzoxazolin-2(3H)-one (Koysal et al., 2003), have been reported. In view of the importance of piperazines, this paper reports the crystal and molecular structure of the title compound, (I), 2 C10H14ClN2+ . 2 C6H5N3O7- . C6H6N3O7.

The title compound, (I), crystallizes with two independent 1-(3-chlorophenyl)piperazinium cations (A and B), two picrate anions (C and D) and a picric acid molecule (E) in the asymmetric unit (Fig. 1).The six-membered piperazine ring in each cation adopts a slightly distorted chair conformation with puckering parameters Q, θ, and ϕ = 0.5422 Å, 5.8 (2)° and 148.01 (21)° (A); Q, θ, and ϕ = 0.5515 Å, 176.0 (7)° and 38.66 (04)° (B) and contains a protonated N atom . In the picric acid molecule (E), the mean planes of the nitro groups at positions 2, 4 and 6 are twisted from the mean plane of the phenyl ring by 31.5 (3)°, 7.7 (1)° and 3.8 (2)°, respectively. The dihedral angles between the mean planes of the phenyl ring and nitro groups at positions 2,4 and 6 are 36.7 (1)°, 5.0 (6)°, 4.8 (2)° and 34.4 (9)°, 15.3 (8)°, 4.5 (1)° in anions D and E, respectively. Disorder was modeled over two sets of sites for the O5D oxygen of the nitro group in anion D with an occupancy ratio of 0.53 (3) : 0.47 (3). Bond lengths are in normal ranges. In the crystal, the picric acid molecule (E) interacts with the picrate anion (C) through a trifurcated O—H···O four centre hydrogen bond involving an O3E—H3E···O4E intramolecular hydrogen bond and a weak C—H···O intermolecular interaction with that of picrate anion (D) (Fig. 2). Additional weak C—H···O intermolecular interactions are responsible for the formation of cation-anion-cation trimers resulting in a 1D chain along [0 1 0] (Fig. 2). In addition, weak Cg1–Cg2, Cg3—Cg5 and Cg5—Cg7 ππ intermolecular interactions are observed and contribute to crystal packing stability (Cg1–Cg2 = 3.532 (3) Å, x, y, z ; Cg3—Cg5 = 3.756 (4) Å, -1+x, y, z ; 1+x, y, z ; Cg5—Cg7 = 3.705 (3) Å, x, 1-y, 1/z +z; Cg1 = C1D–C6D; Cg2 = C1C–C6C; Cg3 = C1E–C6E; Cg5 = C5A–C10A; Cg7 = C5B–C10B).

Related literature top

For related structures, see: Homrighausen et al. (2002); Koysal et al. (2003). For the biological activity of piperazine derivatives, see: Berkheij et al. (2005); Humle & Cherrier (1999); Kennett & Curzon (1988); Petkov et al. (1995).

Experimental top

1-(3-Chlorophenyl)piperazine hydrochloride (2.31 g, 0.01 mol) and picric acid (2.29 g, 0.01 mol) were dissolved in hot methanol and stirred over a heating magnetic stirrer for few minutes . The resulting solution was allowed to cool slowly at room temperature. X-ray quality crystals of the title compound appeared in a day. (M.P.: 408–413 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH); 0.99Å (CH2); 0.88Å, 1.00Å (NH) or 0.84Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (OH) times Ueq of the parent atom. Idealized tetrahedral OH was refined as a rotating group, O3E(H3E). Disorder was modeled over two sets of sites for the O5D oxygen of the nitro group in anion D with an occupancy ratio of 0.627 (7):0.373 (7)

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
Fig. 1. ORTEP drawing of (I) (2 C10H14ClN2+ .2 C6H5N3O7- . C6H6N3O7) showing the labeling scheme of the molecule with 30% probability displacement ellipsoids. Dashed lines indicate intramolecular O—H···O and bifurcated N—H···O hydrogen bonds and a weak C—H···O intermolecular interaction.

Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate a trifurcated O—H···O four centre hydrogen bond involving a O3E—H3E···O4E intramolecular hydrogen bond and a weak C—H···O interaction with that of picrate anion. Weak C—H···O interactions are responsible for the formation of cation-anion-cation trimers resulting in a 1D chain along [0 1 0]. H atoms not involved in hydrogen bonding have been removed for clarity.
1-(3-Chlorophenyl)piperazin-1-ium picrate–picric acid (2/1) top
Crystal data top
2C10H14ClN2+·2C6H2N3O7·C6H3N3O7F(000) = 1112
Mr = 1080.69Dx = 1.592 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 11.2213 (6) ÅCell parameters from 7430 reflections
b = 14.6239 (7) Åθ = 3.3–32.8°
c = 14.1804 (8) ŵ = 0.24 mm1
β = 104.405 (5)°T = 173 K
V = 2253.8 (2) Å3Irregular, violet
Z = 20.48 × 0.46 × 0.38 mm
Data collection top
Agilent Eos Gemini
diffractometer
10981 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.035
ω scansθmax = 32.9°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 1616
Tmin = 0.598, Tmax = 1.000k = 2118
28568 measured reflectionsl = 1721
13782 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.4633P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.139(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.65 e Å3
13782 reflectionsΔρmin = 0.49 e Å3
671 parametersAbsolute structure: Flack x determined using 4095 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
14 restraintsAbsolute structure parameter: 0.09 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
2C10H14ClN2+·2C6H2N3O7·C6H3N3O7V = 2253.8 (2) Å3
Mr = 1080.69Z = 2
Monoclinic, PcMo Kα radiation
a = 11.2213 (6) ŵ = 0.24 mm1
b = 14.6239 (7) ÅT = 173 K
c = 14.1804 (8) Å0.48 × 0.46 × 0.38 mm
β = 104.405 (5)°
Data collection top
Agilent Eos Gemini
diffractometer
13782 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
10981 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 1.000Rint = 0.035
28568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.65 e Å3
S = 1.02Δρmin = 0.49 e Å3
13782 reflectionsAbsolute structure: Flack x determined using 4095 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
671 parametersAbsolute structure parameter: 0.09 (3)
14 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.92045 (14)0.25015 (8)0.65989 (11)0.0641 (4)
N1A0.8303 (2)0.55334 (18)0.8092 (2)0.0248 (5)
H1A0.75080.53510.82370.030*
N2A0.7416 (3)0.73801 (19)0.7774 (2)0.0268 (5)
H2A0.74750.79630.76380.032*
C1A0.8725 (3)0.6246 (2)0.8820 (2)0.0299 (7)
H1AA0.94870.65250.87170.036*
H1AB0.89240.59670.94770.036*
C2A0.7768 (3)0.6980 (2)0.8767 (2)0.0307 (7)
H2AA0.70320.67150.89310.037*
H2AB0.80990.74650.92480.037*
C3A0.6952 (3)0.6651 (2)0.7044 (3)0.0337 (7)
H3AA0.67660.69190.63830.040*
H3AB0.61780.63980.71520.040*
C4A0.7874 (4)0.5890 (3)0.7109 (2)0.0356 (8)
H4AA0.74930.53870.66680.043*
H4AB0.85870.61190.68850.043*
C5A0.8936 (3)0.4696 (2)0.8210 (2)0.0260 (6)
C6A0.8836 (3)0.4097 (2)0.7423 (3)0.0306 (7)
H6A0.83920.42750.67890.037*
C7A0.9392 (4)0.3242 (2)0.7578 (3)0.0391 (9)
C8A1.0081 (4)0.2962 (3)0.8474 (4)0.0457 (10)
H8A1.04590.23760.85610.055*
C9A1.0203 (4)0.3564 (3)0.9246 (4)0.0449 (10)
H9A1.06770.33890.98720.054*
C10A0.9648 (3)0.4418 (3)0.9123 (3)0.0350 (8)
H10A0.97520.48190.96640.042*
Cl1B0.62724 (9)1.49001 (6)0.96487 (7)0.0378 (2)
N1B0.7345 (2)1.18462 (18)0.82700 (19)0.0239 (5)
H1B0.81441.19990.81150.029*
N2B0.8215 (3)1.00073 (19)0.8686 (2)0.0271 (5)
H2B0.81560.94330.88530.033*
C1B0.7757 (3)1.1532 (2)0.9275 (2)0.0292 (7)
H1BA0.70391.13170.95010.035*
H1BB0.81331.20490.96940.035*
C2B0.8692 (3)1.0758 (2)0.9376 (2)0.0306 (7)
H2BA0.94631.09980.92510.037*
H2BB0.88831.05191.00500.037*
C3B0.7848 (3)1.0360 (2)0.7668 (2)0.0302 (7)
H3BA0.75070.98540.72170.036*
H3BB0.85791.06060.74820.036*
C4B0.6894 (3)1.1104 (2)0.7587 (2)0.0286 (6)
H4BA0.66791.13490.69150.034*
H4BB0.61391.08430.77210.034*
C5B0.6729 (3)1.2684 (2)0.8106 (2)0.0220 (5)
C6B0.6776 (3)1.3311 (2)0.8870 (2)0.0239 (6)
H6B0.72061.31570.95160.029*
C7B0.6197 (3)1.4149 (2)0.8677 (2)0.0265 (6)
C8B0.5555 (3)1.4419 (2)0.7758 (3)0.0304 (7)
H8B0.51571.49970.76480.036*
C9B0.5519 (3)1.3805 (3)0.7003 (3)0.0325 (7)
H9B0.51001.39710.63580.039*
C10B0.6080 (3)1.2957 (2)0.7169 (2)0.0289 (6)
H10B0.60251.25500.66380.035*
O1C0.4915 (3)0.9428 (2)1.05874 (19)0.0454 (7)
O2C0.6523 (3)0.9650 (2)1.00322 (19)0.0452 (7)
O3C0.6151 (2)0.88075 (17)0.82868 (18)0.0296 (5)
O4C0.5437 (3)0.8427 (2)0.6392 (2)0.0467 (7)
O5C0.3560 (3)0.8683 (2)0.56305 (19)0.0466 (7)
O6C0.0627 (2)0.9996 (2)0.7057 (2)0.0401 (6)
O7C0.1213 (3)1.0683 (3)0.8433 (3)0.0700 (12)
N1C0.5411 (3)0.9534 (2)0.9911 (2)0.0299 (6)
N2C0.4405 (3)0.8721 (2)0.6368 (2)0.0295 (6)
N3C0.1412 (3)1.0204 (2)0.7786 (2)0.0347 (7)
C1C0.4624 (3)0.9527 (2)0.8926 (2)0.0223 (5)
C2C0.5083 (3)0.9130 (2)0.8151 (2)0.0229 (6)
C3C0.4156 (3)0.9126 (2)0.7237 (2)0.0221 (5)
C4C0.2976 (3)0.9478 (2)0.7118 (2)0.0243 (6)
H4C0.24040.94640.64990.029*
C5C0.2653 (3)0.9847 (2)0.7909 (2)0.0246 (6)
C6C0.3456 (3)0.9867 (2)0.8819 (2)0.0244 (6)
H6C0.32071.01100.93610.029*
O1D1.0791 (3)0.7969 (2)0.59714 (19)0.0411 (6)
O2D0.9161 (3)0.7703 (2)0.6472 (2)0.0480 (7)
O3D0.9480 (2)0.85104 (16)0.8231 (2)0.0324 (5)
O4D1.1744 (4)0.8446 (4)1.0946 (3)0.0869 (15)
O5D1.0035 (6)0.8857 (5)1.0074 (4)0.0618 (17)0.627 (7)
O5DA1.0678 (10)0.9384 (9)1.0013 (6)0.0618 (17)0.373 (7)
O6D1.4946 (2)0.7214 (2)0.9614 (2)0.0466 (7)
O7D1.4511 (3)0.6764 (2)0.8116 (2)0.0536 (8)
N1D1.0278 (3)0.7829 (2)0.6619 (2)0.0304 (6)
N2D1.1137 (3)0.8616 (2)1.0141 (2)0.0380 (7)
N3D1.4227 (3)0.7115 (2)0.8814 (2)0.0342 (7)
C1D1.1031 (3)0.7794 (2)0.7616 (2)0.0239 (6)
C2D1.0545 (3)0.81867 (19)0.8375 (2)0.0217 (5)
C3D1.1443 (3)0.8189 (2)0.9302 (2)0.0238 (6)
C4D1.2613 (3)0.7834 (2)0.9455 (2)0.0262 (6)
H4D1.31600.78451.00850.031*
C5D1.2975 (3)0.7461 (2)0.8674 (2)0.0263 (6)
C6D1.2204 (3)0.7449 (2)0.7751 (2)0.0256 (6)
H6D1.24750.72070.72190.031*
O1E0.3217 (3)0.4304 (2)0.5021 (2)0.0527 (8)
O2E0.3337 (3)0.5529 (2)0.5875 (2)0.0558 (8)
O3E0.4307 (3)0.68664 (19)0.50528 (19)0.0400 (6)
H3E0.44970.74120.49780.060*
O4E0.4634 (3)0.82228 (19)0.3998 (2)0.0444 (7)
O5E0.3773 (3)0.8250 (2)0.2456 (2)0.0542 (8)
O6E0.1041 (3)0.5869 (3)0.0935 (2)0.0641 (10)
O7E0.0989 (3)0.4590 (3)0.1698 (2)0.0573 (9)
N1E0.3236 (3)0.5143 (2)0.5112 (2)0.0369 (7)
N2E0.3960 (3)0.7887 (2)0.3253 (3)0.0381 (7)
N3E0.1328 (3)0.5378 (3)0.1652 (2)0.0450 (8)
C1E0.3074 (3)0.5679 (2)0.4215 (2)0.0287 (6)
C2E0.3609 (3)0.6551 (2)0.4227 (2)0.0286 (6)
C3E0.3377 (3)0.7005 (2)0.3325 (3)0.0290 (6)
C4E0.2639 (3)0.6635 (3)0.2476 (2)0.0325 (7)
H4E0.24800.69610.18780.039*
C5E0.2145 (3)0.5779 (3)0.2530 (2)0.0320 (7)
C6E0.2367 (3)0.5283 (2)0.3380 (3)0.0313 (7)
H6E0.20430.46840.33920.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0931 (10)0.0309 (5)0.0868 (9)0.0029 (5)0.0572 (8)0.0118 (5)
N1A0.0253 (12)0.0190 (12)0.0291 (13)0.0001 (10)0.0049 (10)0.0015 (10)
N2A0.0255 (13)0.0186 (12)0.0358 (14)0.0034 (10)0.0066 (11)0.0028 (10)
C1A0.0320 (17)0.0223 (15)0.0309 (16)0.0019 (13)0.0010 (13)0.0015 (12)
C2A0.0384 (19)0.0254 (16)0.0289 (16)0.0024 (13)0.0095 (14)0.0039 (12)
C3A0.0350 (18)0.0256 (16)0.0347 (17)0.0082 (13)0.0023 (14)0.0030 (13)
C4A0.046 (2)0.0296 (17)0.0271 (16)0.0135 (15)0.0007 (14)0.0012 (13)
C5A0.0193 (14)0.0195 (14)0.0393 (17)0.0021 (11)0.0071 (12)0.0025 (12)
C6A0.0295 (16)0.0237 (15)0.0428 (18)0.0013 (12)0.0169 (14)0.0020 (13)
C7A0.0363 (19)0.0222 (16)0.067 (3)0.0011 (14)0.0289 (18)0.0009 (16)
C8A0.0346 (19)0.0214 (17)0.086 (3)0.0046 (14)0.024 (2)0.0143 (18)
C9A0.0315 (18)0.0300 (19)0.068 (3)0.0023 (15)0.0029 (17)0.0184 (18)
C10A0.0314 (17)0.0273 (17)0.0421 (19)0.0006 (13)0.0014 (14)0.0082 (14)
Cl1B0.0468 (5)0.0253 (4)0.0420 (5)0.0016 (4)0.0122 (4)0.0059 (3)
N1B0.0239 (12)0.0224 (12)0.0234 (12)0.0041 (10)0.0020 (9)0.0012 (10)
N2B0.0244 (12)0.0204 (12)0.0351 (14)0.0046 (10)0.0046 (10)0.0008 (10)
C1B0.0332 (17)0.0261 (15)0.0246 (14)0.0102 (13)0.0001 (12)0.0018 (12)
C2B0.0282 (16)0.0281 (16)0.0317 (16)0.0055 (13)0.0003 (12)0.0020 (13)
C3B0.0345 (17)0.0278 (16)0.0286 (16)0.0053 (13)0.0088 (13)0.0051 (13)
C4B0.0294 (16)0.0243 (15)0.0278 (15)0.0003 (12)0.0013 (12)0.0037 (12)
C5B0.0189 (13)0.0209 (13)0.0255 (14)0.0006 (10)0.0039 (10)0.0004 (11)
C6B0.0244 (14)0.0203 (14)0.0259 (14)0.0021 (11)0.0040 (11)0.0013 (11)
C7B0.0266 (15)0.0208 (14)0.0329 (16)0.0028 (12)0.0087 (12)0.0027 (12)
C8B0.0255 (15)0.0245 (15)0.0388 (18)0.0017 (12)0.0036 (13)0.0079 (13)
C9B0.0308 (17)0.0306 (17)0.0319 (16)0.0031 (13)0.0001 (13)0.0065 (13)
C10B0.0294 (16)0.0302 (16)0.0240 (14)0.0022 (12)0.0007 (12)0.0013 (12)
O1C0.0474 (16)0.063 (2)0.0284 (12)0.0104 (14)0.0137 (11)0.0045 (12)
O2C0.0338 (14)0.064 (2)0.0338 (14)0.0053 (14)0.0014 (11)0.0042 (13)
O3C0.0242 (11)0.0269 (12)0.0375 (12)0.0049 (9)0.0076 (9)0.0051 (9)
O4C0.0469 (16)0.0616 (19)0.0347 (14)0.0250 (14)0.0158 (12)0.0032 (13)
O5C0.0498 (17)0.062 (2)0.0266 (12)0.0103 (14)0.0068 (11)0.0078 (12)
O6C0.0238 (12)0.0448 (16)0.0506 (15)0.0054 (10)0.0071 (11)0.0124 (12)
O7C0.0481 (19)0.093 (3)0.067 (2)0.0362 (19)0.0112 (16)0.031 (2)
N1C0.0301 (14)0.0319 (15)0.0272 (13)0.0004 (11)0.0060 (11)0.0037 (11)
N2C0.0398 (16)0.0254 (13)0.0254 (13)0.0066 (11)0.0122 (11)0.0015 (10)
N3C0.0277 (14)0.0337 (16)0.0454 (17)0.0088 (12)0.0141 (13)0.0092 (13)
C1C0.0246 (14)0.0188 (13)0.0229 (13)0.0002 (11)0.0048 (10)0.0017 (10)
C2C0.0250 (14)0.0163 (13)0.0285 (14)0.0005 (10)0.0086 (11)0.0031 (11)
C3C0.0289 (15)0.0181 (13)0.0212 (13)0.0018 (11)0.0102 (11)0.0009 (10)
C4C0.0260 (15)0.0207 (14)0.0263 (14)0.0002 (11)0.0067 (11)0.0037 (11)
C5C0.0221 (14)0.0198 (13)0.0330 (15)0.0025 (11)0.0090 (12)0.0021 (11)
C6C0.0295 (15)0.0172 (13)0.0293 (15)0.0001 (11)0.0124 (12)0.0002 (11)
O1D0.0479 (16)0.0509 (17)0.0263 (12)0.0046 (13)0.0127 (11)0.0048 (11)
O2D0.0306 (14)0.072 (2)0.0364 (14)0.0052 (14)0.0005 (11)0.0061 (14)
O3D0.0220 (11)0.0246 (12)0.0502 (15)0.0019 (9)0.0081 (10)0.0052 (10)
O4D0.069 (3)0.141 (4)0.0406 (18)0.046 (3)0.0046 (16)0.019 (2)
O5D0.057 (3)0.097 (5)0.0320 (18)0.043 (3)0.013 (2)0.002 (3)
O5DA0.057 (3)0.097 (5)0.0320 (18)0.043 (3)0.013 (2)0.002 (3)
O6D0.0276 (13)0.0530 (18)0.0538 (17)0.0088 (12)0.0001 (12)0.0068 (14)
O7D0.0404 (16)0.062 (2)0.0600 (19)0.0220 (15)0.0159 (14)0.0066 (16)
N1D0.0344 (15)0.0273 (14)0.0280 (13)0.0019 (11)0.0051 (11)0.0007 (11)
N2D0.0415 (17)0.0435 (18)0.0284 (14)0.0151 (14)0.0075 (12)0.0011 (13)
N3D0.0243 (14)0.0287 (15)0.0497 (18)0.0059 (11)0.0093 (13)0.0053 (13)
C1D0.0239 (14)0.0217 (14)0.0251 (14)0.0012 (11)0.0044 (11)0.0002 (11)
C2D0.0228 (14)0.0148 (12)0.0282 (14)0.0004 (10)0.0077 (11)0.0011 (10)
C3D0.0284 (15)0.0195 (13)0.0246 (13)0.0012 (11)0.0089 (11)0.0020 (11)
C4D0.0273 (15)0.0208 (14)0.0298 (15)0.0007 (11)0.0059 (12)0.0047 (11)
C5D0.0215 (14)0.0207 (14)0.0375 (17)0.0033 (11)0.0091 (12)0.0028 (12)
C6D0.0279 (15)0.0176 (13)0.0325 (16)0.0014 (11)0.0099 (12)0.0002 (11)
O1E0.067 (2)0.0312 (14)0.0550 (18)0.0026 (14)0.0057 (15)0.0125 (13)
O2E0.080 (2)0.0510 (19)0.0371 (16)0.0037 (16)0.0167 (15)0.0018 (13)
O3E0.0479 (16)0.0327 (13)0.0366 (13)0.0064 (12)0.0054 (11)0.0076 (11)
O4E0.0493 (17)0.0308 (14)0.0586 (18)0.0068 (12)0.0237 (14)0.0113 (12)
O5E0.0592 (19)0.0434 (17)0.061 (2)0.0070 (15)0.0172 (16)0.0198 (15)
O6E0.067 (2)0.081 (3)0.0330 (15)0.0158 (19)0.0091 (14)0.0059 (16)
O7E0.0522 (19)0.060 (2)0.0538 (18)0.0085 (16)0.0025 (14)0.0243 (16)
N1E0.0383 (16)0.0356 (16)0.0351 (16)0.0012 (13)0.0059 (13)0.0061 (13)
N2E0.0348 (16)0.0313 (16)0.054 (2)0.0106 (13)0.0216 (14)0.0077 (14)
N3E0.0327 (16)0.062 (2)0.0362 (17)0.0096 (16)0.0003 (13)0.0184 (16)
C1E0.0296 (16)0.0293 (15)0.0269 (15)0.0066 (13)0.0063 (12)0.0011 (12)
C2E0.0275 (15)0.0266 (15)0.0315 (16)0.0070 (12)0.0068 (12)0.0048 (12)
C3E0.0294 (16)0.0236 (14)0.0352 (16)0.0056 (12)0.0104 (13)0.0013 (12)
C4E0.0294 (16)0.0405 (19)0.0279 (16)0.0141 (14)0.0077 (12)0.0052 (13)
C5E0.0256 (15)0.0394 (19)0.0282 (15)0.0090 (13)0.0013 (12)0.0078 (14)
C6E0.0251 (15)0.0279 (16)0.0404 (18)0.0034 (12)0.0072 (13)0.0054 (13)
Geometric parameters (Å, º) top
Cl1A—C7A1.732 (4)O1C—N1C1.233 (4)
N1A—H1A1.0002O2C—N1C1.228 (4)
N1A—C1A1.460 (4)O3C—C2C1.258 (4)
N1A—C4A1.454 (4)O4C—N2C1.228 (4)
N1A—C5A1.405 (4)O5C—N2C1.226 (4)
N2A—H2A0.8805O6C—N3C1.219 (4)
N2A—C2A1.486 (4)O7C—N3C1.219 (4)
N2A—C3A1.487 (4)N1C—C1C1.455 (4)
C1A—H1AA0.9900N2C—C3C1.455 (4)
C1A—H1AB0.9900N3C—C5C1.456 (4)
C1A—C2A1.508 (5)C1C—C2C1.447 (4)
C2A—H2AA0.9900C1C—C6C1.374 (4)
C2A—H2AB0.9900C2C—C3C1.446 (4)
C3A—H3AA0.9900C3C—C4C1.392 (4)
C3A—H3AB0.9900C4C—H4C0.9500
C3A—C4A1.507 (5)C4C—C5C1.372 (4)
C4A—H4AA0.9900C5C—C6C1.379 (5)
C4A—H4AB0.9900C6C—H6C0.9500
C5A—C6A1.401 (5)O1D—N1D1.217 (4)
C5A—C10A1.401 (5)O2D—N1D1.232 (4)
C6A—H6A0.9500O3D—C2D1.254 (4)
C6A—C7A1.391 (5)O4D—N2D1.201 (5)
C7A—C8A1.376 (6)O5D—N2D1.267 (6)
C8A—H8A0.9500O5DA—N2D1.230 (11)
C8A—C9A1.385 (7)O6D—N3D1.227 (4)
C9A—H9A0.9500O7D—N3D1.225 (4)
C9A—C10A1.386 (5)N1D—C1D1.456 (4)
C10A—H10A0.9500N2D—C3D1.458 (4)
Cl1B—C7B1.748 (3)N3D—C5D1.460 (4)
N1B—H1B1.0002C1D—C2D1.441 (4)
N1B—C1B1.459 (4)C1D—C6D1.378 (4)
N1B—C4B1.459 (4)C2D—C3D1.444 (4)
N1B—C5B1.398 (4)C3D—C4D1.377 (4)
N2B—H2B0.8797C4D—H4D0.9500
N2B—C2B1.479 (4)C4D—C5D1.383 (5)
N2B—C3B1.492 (4)C5D—C6D1.378 (5)
C1B—H1BA0.9900C6D—H6D0.9500
C1B—H1BB0.9900O1E—N1E1.233 (4)
C1B—C2B1.525 (5)O2E—N1E1.200 (4)
C2B—H2BA0.9900O3E—H3E0.8395
C2B—H2BB0.9900O3E—C2E1.319 (4)
C3B—H3BA0.9900O4E—N2E1.238 (5)
C3B—H3BB0.9900O5E—N2E1.218 (4)
C3B—C4B1.511 (5)O6E—N3E1.221 (5)
C4B—H4BA0.9900O7E—N3E1.220 (5)
C4B—H4BB0.9900N1E—C1E1.467 (4)
C5B—C6B1.410 (4)N2E—C3E1.461 (5)
C5B—C10B1.404 (4)N3E—C5E1.472 (5)
C6B—H6B0.9500C1E—C2E1.407 (5)
C6B—C7B1.382 (4)C1E—C6E1.378 (5)
C7B—C8B1.381 (5)C2E—C3E1.407 (5)
C8B—H8B0.9500C3E—C4E1.390 (5)
C8B—C9B1.392 (5)C4E—H4E0.9500
C9B—H9B0.9500C4E—C5E1.380 (6)
C9B—C10B1.384 (5)C5E—C6E1.375 (5)
C10B—H10B0.9500C6E—H6E0.9500
C1A—N1A—H1A101.2C7B—C8B—H8B121.6
C4A—N1A—H1A101.1C7B—C8B—C9B116.8 (3)
C4A—N1A—C1A113.2 (3)C9B—C8B—H8B121.6
C5A—N1A—H1A101.1C8B—C9B—H9B119.3
C5A—N1A—C1A118.2 (3)C10B—C9B—C8B121.5 (3)
C5A—N1A—C4A117.7 (3)C10B—C9B—H9B119.3
C2A—N2A—H2A124.9C5B—C10B—H10B119.3
C2A—N2A—C3A110.0 (3)C9B—C10B—C5B121.5 (3)
C3A—N2A—H2A125.1C9B—C10B—H10B119.3
N1A—C1A—H1AA109.3O1C—N1C—C1C117.5 (3)
N1A—C1A—H1AB109.3O2C—N1C—O1C123.3 (3)
N1A—C1A—C2A111.8 (3)O2C—N1C—C1C119.2 (3)
H1AA—C1A—H1AB107.9O4C—N2C—C3C119.8 (3)
C2A—C1A—H1AA109.3O5C—N2C—O4C122.2 (3)
C2A—C1A—H1AB109.3O5C—N2C—C3C118.0 (3)
N2A—C2A—C1A110.2 (3)O6C—N3C—O7C123.5 (3)
N2A—C2A—H2AA109.6O6C—N3C—C5C118.7 (3)
N2A—C2A—H2AB109.6O7C—N3C—C5C117.7 (3)
C1A—C2A—H2AA109.6C2C—C1C—N1C119.1 (3)
C1A—C2A—H2AB109.6C6C—C1C—N1C116.0 (3)
H2AA—C2A—H2AB108.1C6C—C1C—C2C124.9 (3)
N2A—C3A—H3AA109.3O3C—C2C—C1C122.7 (3)
N2A—C3A—H3AB109.3O3C—C2C—C3C125.5 (3)
N2A—C3A—C4A111.8 (3)C3C—C2C—C1C111.7 (3)
H3AA—C3A—H3AB107.9C2C—C3C—N2C120.9 (3)
C4A—C3A—H3AA109.3C4C—C3C—N2C115.1 (3)
C4A—C3A—H3AB109.3C4C—C3C—C2C123.9 (3)
N1A—C4A—C3A112.4 (3)C3C—C4C—H4C120.6
N1A—C4A—H4AA109.1C5C—C4C—C3C118.9 (3)
N1A—C4A—H4AB109.1C5C—C4C—H4C120.6
C3A—C4A—H4AA109.1C4C—C5C—N3C118.8 (3)
C3A—C4A—H4AB109.1C4C—C5C—C6C122.0 (3)
H4AA—C4A—H4AB107.8C6C—C5C—N3C119.1 (3)
C6A—C5A—N1A120.8 (3)C1C—C6C—C5C118.6 (3)
C6A—C5A—C10A117.9 (3)C1C—C6C—H6C120.7
C10A—C5A—N1A121.3 (3)C5C—C6C—H6C120.7
C5A—C6A—H6A120.2O1D—N1D—O2D123.3 (3)
C7A—C6A—C5A119.5 (3)O1D—N1D—C1D118.0 (3)
C7A—C6A—H6A120.2O2D—N1D—C1D118.6 (3)
C6A—C7A—Cl1A118.4 (3)O4D—N2D—O5D116.2 (4)
C8A—C7A—Cl1A118.9 (3)O4D—N2D—O5DA116.5 (6)
C8A—C7A—C6A122.7 (4)O4D—N2D—C3D119.6 (3)
C7A—C8A—H8A121.2O5D—N2D—C3D118.8 (3)
C7A—C8A—C9A117.6 (3)O5DA—N2D—C3D116.5 (5)
C9A—C8A—H8A121.2O6D—N3D—C5D118.2 (3)
C8A—C9A—H9A119.3O7D—N3D—O6D123.7 (3)
C8A—C9A—C10A121.4 (4)O7D—N3D—C5D118.1 (3)
C10A—C9A—H9A119.3C2D—C1D—N1D118.4 (3)
C5A—C10A—H10A119.6C6D—C1D—N1D116.8 (3)
C9A—C10A—C5A120.9 (4)C6D—C1D—C2D124.6 (3)
C9A—C10A—H10A119.6O3D—C2D—C1D123.4 (3)
C1B—N1B—H1B101.6O3D—C2D—C3D124.7 (3)
C4B—N1B—H1B101.7C1D—C2D—C3D111.9 (3)
C4B—N1B—C1B112.8 (3)C2D—C3D—N2D119.4 (3)
C5B—N1B—H1B101.6C4D—C3D—N2D116.2 (3)
C5B—N1B—C1B117.6 (2)C4D—C3D—C2D124.4 (3)
C5B—N1B—C4B117.8 (2)C3D—C4D—H4D120.6
C2B—N2B—H2B124.7C3D—C4D—C5D118.8 (3)
C2B—N2B—C3B110.6 (3)C5D—C4D—H4D120.6
C3B—N2B—H2B124.7C4D—C5D—N3D119.5 (3)
N1B—C1B—H1BA109.3C6D—C5D—N3D118.7 (3)
N1B—C1B—H1BB109.3C6D—C5D—C4D121.7 (3)
N1B—C1B—C2B111.7 (3)C1D—C6D—C5D118.7 (3)
H1BA—C1B—H1BB107.9C1D—C6D—H6D120.7
C2B—C1B—H1BA109.3C5D—C6D—H6D120.7
C2B—C1B—H1BB109.3C2E—O3E—H3E109.5
N2B—C2B—C1B111.2 (3)O1E—N1E—C1E116.5 (3)
N2B—C2B—H2BA109.4O2E—N1E—O1E123.9 (3)
N2B—C2B—H2BB109.4O2E—N1E—C1E119.6 (3)
C1B—C2B—H2BA109.4O4E—N2E—C3E118.6 (3)
C1B—C2B—H2BB109.4O5E—N2E—O4E123.1 (4)
H2BA—C2B—H2BB108.0O5E—N2E—C3E118.2 (3)
N2B—C3B—H3BA109.7O6E—N3E—C5E116.7 (4)
N2B—C3B—H3BB109.7O7E—N3E—O6E125.4 (4)
N2B—C3B—C4B110.0 (3)O7E—N3E—C5E117.9 (4)
H3BA—C3B—H3BB108.2C2E—C1E—N1E120.9 (3)
C4B—C3B—H3BA109.7C6E—C1E—N1E116.1 (3)
C4B—C3B—H3BB109.7C6E—C1E—C2E123.0 (3)
N1B—C4B—C3B111.3 (3)O3E—C2E—C1E119.0 (3)
N1B—C4B—H4BA109.4O3E—C2E—C3E125.2 (3)
N1B—C4B—H4BB109.4C1E—C2E—C3E115.7 (3)
C3B—C4B—H4BA109.4C2E—C3E—N2E119.7 (3)
C3B—C4B—H4BB109.4C4E—C3E—N2E117.6 (3)
H4BA—C4B—H4BB108.0C4E—C3E—C2E122.7 (3)
N1B—C5B—C6B121.3 (3)C3E—C4E—H4E121.1
N1B—C5B—C10B121.7 (3)C5E—C4E—C3E117.8 (3)
C10B—C5B—C6B117.0 (3)C5E—C4E—H4E121.1
C5B—C6B—H6B120.0C4E—C5E—N3E119.3 (3)
C7B—C6B—C5B119.9 (3)C6E—C5E—N3E118.1 (4)
C7B—C6B—H6B120.0C6E—C5E—C4E122.7 (3)
C6B—C7B—Cl1B118.3 (3)C1E—C6E—H6E120.9
C8B—C7B—Cl1B118.4 (3)C5E—C6E—C1E118.1 (3)
C8B—C7B—C6B123.3 (3)C5E—C6E—H6E120.9
Cl1A—C7A—C8A—C9A179.3 (3)C2C—C1C—C6C—C5C1.1 (5)
N1A—C1A—C2A—N2A56.5 (4)C2C—C3C—C4C—C5C0.6 (5)
N1A—C5A—C6A—C7A174.9 (3)C3C—C4C—C5C—N3C179.2 (3)
N1A—C5A—C10A—C9A175.7 (3)C3C—C4C—C5C—C6C0.9 (5)
N2A—C3A—C4A—N1A52.1 (5)C4C—C5C—C6C—C1C1.7 (5)
C1A—N1A—C4A—C3A50.7 (4)C6C—C1C—C2C—O3C178.3 (3)
C1A—N1A—C5A—C6A160.8 (3)C6C—C1C—C2C—C3C0.2 (4)
C1A—N1A—C5A—C10A21.6 (4)O1D—N1D—C1D—C2D142.0 (3)
C2A—N2A—C3A—C4A55.7 (4)O1D—N1D—C1D—C6D33.1 (4)
C3A—N2A—C2A—C1A57.6 (4)O2D—N1D—C1D—C2D39.0 (4)
C4A—N1A—C1A—C2A53.2 (4)O2D—N1D—C1D—C6D145.9 (3)
C4A—N1A—C5A—C6A19.0 (4)O3D—C2D—C3D—N2D1.9 (5)
C4A—N1A—C5A—C10A163.4 (3)O3D—C2D—C3D—C4D179.9 (3)
C5A—N1A—C1A—C2A163.4 (3)O4D—N2D—C3D—C2D163.1 (4)
C5A—N1A—C4A—C3A165.7 (3)O4D—N2D—C3D—C4D18.7 (6)
C5A—C6A—C7A—Cl1A177.6 (3)O5D—N2D—C3D—C2D10.1 (6)
C5A—C6A—C7A—C8A2.2 (5)O5D—N2D—C3D—C4D171.8 (5)
C6A—C5A—C10A—C9A2.0 (5)O5DA—N2D—C3D—C2D47.9 (8)
C6A—C7A—C8A—C9A0.6 (6)O5DA—N2D—C3D—C4D130.2 (8)
C7A—C8A—C9A—C10A0.3 (6)O6D—N3D—C5D—C4D4.1 (5)
C8A—C9A—C10A—C5A0.4 (6)O6D—N3D—C5D—C6D172.6 (3)
C10A—C5A—C6A—C7A2.8 (5)O7D—N3D—C5D—C4D177.9 (3)
Cl1B—C7B—C8B—C9B179.7 (3)O7D—N3D—C5D—C6D5.4 (5)
N1B—C1B—C2B—N2B53.1 (4)N1D—C1D—C2D—O3D4.1 (4)
N1B—C5B—C6B—C7B177.5 (3)N1D—C1D—C2D—C3D173.8 (3)
N1B—C5B—C10B—C9B176.9 (3)N1D—C1D—C6D—C5D175.7 (3)
N2B—C3B—C4B—N1B57.0 (4)N2D—C3D—C4D—C5D176.9 (3)
C1B—N1B—C4B—C3B55.3 (4)N3D—C5D—C6D—C1D178.5 (3)
C1B—N1B—C5B—C6B16.1 (4)C1D—C2D—C3D—N2D176.0 (3)
C1B—N1B—C5B—C10B166.7 (3)C1D—C2D—C3D—C4D2.0 (4)
C2B—N2B—C3B—C4B57.5 (4)C2D—C1D—C6D—C5D1.0 (5)
C3B—N2B—C2B—C1B55.7 (4)C2D—C3D—C4D—C5D1.1 (5)
C4B—N1B—C1B—C2B53.0 (4)C3D—C4D—C5D—N3D177.5 (3)
C4B—N1B—C5B—C6B156.3 (3)C3D—C4D—C5D—C6D1.0 (5)
C4B—N1B—C5B—C10B26.5 (4)C4D—C5D—C6D—C1D2.0 (5)
C5B—N1B—C1B—C2B164.9 (3)C6D—C1D—C2D—O3D178.8 (3)
C5B—N1B—C4B—C3B162.6 (3)C6D—C1D—C2D—C3D0.9 (4)
C5B—C6B—C7B—Cl1B179.6 (2)O1E—N1E—C1E—C2E150.7 (3)
C5B—C6B—C7B—C8B0.0 (5)O1E—N1E—C1E—C6E30.0 (5)
C6B—C5B—C10B—C9B0.4 (5)O2E—N1E—C1E—C2E31.7 (5)
C6B—C7B—C8B—C9B0.7 (5)O2E—N1E—C1E—C6E147.7 (4)
C7B—C8B—C9B—C10B1.3 (5)O3E—C2E—C3E—N2E1.8 (5)
C8B—C9B—C10B—C5B1.1 (5)O3E—C2E—C3E—C4E179.6 (3)
C10B—C5B—C6B—C7B0.1 (4)O4E—N2E—C3E—C2E1.2 (5)
O1C—N1C—C1C—C2C144.5 (3)O4E—N2E—C3E—C4E179.1 (3)
O1C—N1C—C1C—C6C32.3 (4)O5E—N2E—C3E—C2E177.7 (3)
O2C—N1C—C1C—C2C36.0 (4)O5E—N2E—C3E—C4E0.1 (5)
O2C—N1C—C1C—C6C147.3 (3)O6E—N3E—C5E—C4E6.5 (5)
O3C—C2C—C3C—N2C0.6 (5)O6E—N3E—C5E—C6E172.4 (3)
O3C—C2C—C3C—C4C179.1 (3)O7E—N3E—C5E—C4E173.8 (3)
O4C—N2C—C3C—C2C4.5 (5)O7E—N3E—C5E—C6E7.2 (5)
O4C—N2C—C3C—C4C177.0 (3)N1E—C1E—C2E—O3E2.9 (5)
O5C—N2C—C3C—C2C175.3 (3)N1E—C1E—C2E—C3E179.2 (3)
O5C—N2C—C3C—C4C3.3 (4)N1E—C1E—C6E—C5E177.1 (3)
O6C—N3C—C5C—C4C15.4 (5)N2E—C3E—C4E—C5E176.3 (3)
O6C—N3C—C5C—C6C162.9 (3)N3E—C5E—C6E—C1E176.3 (3)
O7C—N3C—C5C—C4C166.0 (4)C1E—C2E—C3E—N2E176.0 (3)
O7C—N3C—C5C—C6C15.7 (5)C1E—C2E—C3E—C4E1.8 (5)
N1C—C1C—C2C—O3C1.9 (4)C2E—C1E—C6E—C5E2.3 (5)
N1C—C1C—C2C—C3C176.2 (3)C2E—C3E—C4E—C5E1.5 (5)
N1C—C1C—C6C—C5C177.6 (3)C3E—C4E—C5E—N3E178.1 (3)
N2C—C3C—C4C—C5C177.9 (3)C3E—C4E—C5E—C6E0.8 (5)
N3C—C5C—C6C—C1C180.0 (3)C4E—C5E—C6E—C1E2.6 (5)
C1C—C2C—C3C—N2C177.4 (3)C6E—C1E—C2E—O3E177.8 (3)
C1C—C2C—C3C—C4C1.1 (4)C6E—C1E—C2E—C3E0.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···Cl1Bi1.002.783.665 (3)147
N2A—H2A···O3C0.882.292.723 (4)110
N2A—H2A···O3D0.882.342.787 (4)112
C3A—H3AB···O7Dii0.992.633.451 (5)140
C4A—H4AA···Cl1Biii0.992.883.690 (4)139
C4A—H4AB···O2D0.992.513.253 (5)132
C8A—H8A···O7Civ0.952.643.572 (5)168
C10A—H10A···O6Ev0.952.533.400 (5)152
N1B—H1B···Cl1Avi1.002.803.653 (3)143
N2B—H2B···O3C0.882.382.848 (4)114
N2B—H2B···O3D0.882.342.771 (4)111
C1B—H1BA···O2C0.992.663.375 (5)129
C1B—H1BB···O2Dvii0.992.523.317 (4)137
C2B—H2BA···O7Cviii0.992.563.419 (5)145
C4B—H4BA···O1Ciii0.992.633.232 (4)120
C6C—H6C···O5Cvii0.952.483.310 (4)146
O3E—H3E···O4C0.842.513.037 (4)122
O3E—H3E···O5C0.842.432.962 (4)122
O3E—H3E···O4E0.841.862.565 (4)140
O3E—H3E···N2E0.842.472.899 (4)113
C4E—H4E···O4Dix0.952.573.412 (6)148
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x, y+2, z1/2; (iv) x+1, y1, z; (v) x+1, y, z+1; (vi) x, y+1, z; (vii) x, y+2, z+1/2; (viii) x+1, y, z; (ix) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···Cl1Bi1.002.783.665 (3)147.2
N2A—H2A···O3C0.882.292.723 (4)110.0
N2A—H2A···O3D0.882.342.787 (4)111.8
C3A—H3AB···O7Dii0.992.633.451 (5)140.2
C4A—H4AA···Cl1Biii0.992.883.690 (4)139.4
C4A—H4AB···O2D0.992.513.253 (5)131.5
C8A—H8A···O7Civ0.952.643.572 (5)168.0
C10A—H10A···O6Ev0.952.533.400 (5)152.1
N1B—H1B···Cl1Avi1.002.803.653 (3)143.4
N2B—H2B···O3C0.882.382.848 (4)113.9
N2B—H2B···O3D0.882.342.771 (4)110.6
C1B—H1BA···O2C0.992.663.375 (5)129.4
C1B—H1BB···O2Dvii0.992.523.317 (4)136.9
C2B—H2BA···O7Cviii0.992.563.419 (5)145.3
C4B—H4BA···O1Ciii0.992.633.232 (4)119.6
C6C—H6C···O5Cvii0.952.483.310 (4)145.8
O3E—H3E···O4C0.842.513.037 (4)122.0
O3E—H3E···O5C0.842.432.962 (4)122.1
O3E—H3E···O4E0.841.862.565 (4)140.4
O3E—H3E···N2E0.842.472.899 (4)112.7
C4E—H4E···O4Dix0.952.573.412 (6)148.0
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x, y+2, z1/2; (iv) x+1, y1, z; (v) x+1, y, z+1; (vi) x, y+1, z; (vii) x, y+2, z+1/2; (viii) x+1, y, z; (ix) x1, y, z1.
 

Acknowledgements

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHomrighausen, C. L. & Krause Bauer, J. A. (2002). Acta Cryst. E58, o1395–o1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHulme, C. & Cherrier, M. P. (1999). Tetrahedron Lett. 40, 5295–5299.  Web of Science CrossRef CAS Google Scholar
First citationKennett, G. A. & Curzon, G. (1988). Psychopharmacology, 96, 93–100.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKoysal, Y., Işık, Ş., Köksal, M., Erdoğan, H. & Gökhan, N. (2003). Acta Cryst. E59, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetkov, V. D., Belcheva, S. & Konstantinova, E. (1995). Clin Pharm. 17, 659–68.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1210-o1211
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds