organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,6-bis­­(2,5-di­meth­­oxy­phen­yl)-3,5-di­methyl­piperidin-4-one

aDepartment of Biomedicinal Chemistry, Inje University, Gimhae, Gyeongnam 621 749, Republic of Korea, bDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India, and cDepartment of Chemistry, VEL TECH, Avadi, Chennai 600 062, India
*Correspondence e-mail: parthisivam@yahoo.co.in

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 24 July 2014; accepted 7 October 2014; online 15 October 2014)

In the title mol­ecule, C23H29NO5, the central piperidine ring has a chair conformation. The planes of the two benzene rings are inclined each to other at 61.7 (1)°. The crystal packing exhibits no directional inter­actions only van der Waals contacts.

1. Related literature

For the synthesis, stereochemistry and biological actions of piperidin-4-ones, see: Sahu et al. (2013[Sahu, S. K., Dubey, B. K., Tripathi, A. C., Koshy, M. & Saraf, S. K. (2013). Mini Rev. Med. Chem. 4, 565-583.]); Parthiban et al. (2011[Parthiban, P., Pallela, R., Kim, S. K., Park, D. H. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 22, 6004-6009.]). For a related crystal structure, see: Parthiban et al. (2008[Parthiban, P., Ramkumar, V., Kumar, N. A., Kim, J. S. & Jeong, Y. T. (2008). Acta Cryst. E64, o1631.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H29NO5

  • Mr = 399.47

  • Monoclinic, P 21 /c

  • a = 11.1358 (7) Å

  • b = 9.4756 (5) Å

  • c = 20.4541 (11) Å

  • β = 92.271 (2)°

  • V = 2156.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.15 mm

2.2. Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEXII, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.987

  • 11151 measured reflections

  • 3536 independent reflections

  • 2262 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.116

  • S = 0.98

  • 3536 reflections

  • 272 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEXII, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEXII, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEXII, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The piperidin-4-one pharmacophore is responsible for numerous biological actions such as antibacterial, antimycobacterial, antifungal, anticancer, antioxidant, antiinflammatory, neuronal nicotinistinic, and CNS stimulant and depressant. Its activity is further increased by the incorporation of aryl groups on both sides of the hetero atom along with/without the introduction of functionalities on the hetero atom itself. Interestingly, the amino group of the piperidone that is flanked by aryl groups are responsible not only for the increment in activity, but also in suppressing the toxicity (Sahu et al. 2013; Parthiban et al. 2011). Generally, the piperidin-4-one moiety exists in different stereochemistries upon the modifications in their structure. Since the stereochemistry of the molecule is an important key for its biological response, it is of curious to explore the stereochemistry. Hence the present study is caried out to explore the stereochemistry of the title compound (I) (Fig. 1).

The crystallographic parameters viz., torsion angles, asymmetry parameters and ring puckering parameters calculated for (I) show that the piperidone ring adopts a chair conformation. According to Cremer & Pople and Nardelli, the total puckering amplitude, QT is 0.5875 (8) Å, the phase angle θ is 0.94 (8)° and phi is 34 (4)°. The smallest displacement asymmetry parameters q2 and q3 are 0.0114 (8) and -0.5874 Å, respectively.

The benzene rings of anisyl groups are oriented at an angle of 61.7 (1)°, respect to each other. The torsion angles of C6—C1—C2—C3 and C3—C4—C5—C16 are 174.94 (18) and -174.42 (18)°, respectively. Similarly, the torsion angles of C2—C3—C4—C15 and C14—C2—C3—C4 are -177.8 (2) and 177.1 (2)%, respectively. The torsion angle values also clearly confirm the equatorial orientation of aryl and alkyl groups on the piperidin-4-one moiety.

On the whole, the complete crystallographic analysis of the title compound, C23H29NO5, exhibits a chair conformation with equatorial orientations of all the aryl and alkyl substituents.

Related literature top

For the synthesis, stereochemistry and biological actions of piperidin-4-ones, see: Sahu et al. (2013); Parthiban et al. (2011). For a related crystal structure, see: Parthiban et al. (2008).

Experimental top

The 2,6-bis(2,5-dimethoxyphenyl)-3,5-dimethylpiperidin-4-one was synthesized by a modified and an optimized Mannich condensation in one-pot, using 2,5-dimethoxybenzaldehyde (0.1 mol, 16.618 g), 2-pentanone (0.05 mol) and ammonium acetate (0.075 mol, 5.78 g) in a 50 ml of absolute ethanol (Parthiban et al., 2011). The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. X-ray diffraction quality crystals of the title compound were obtained by slow evaporation from ethanol.

Refinement top

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å, methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C), methyl H atoms at Uiso(H) = 1.5Ueq(C) and the hydrogen atoms were fixed geometrically and allowed to ride on the parent nitrogen atom with N—H = 0.86 Å and the displacement parameter was set at Uiso(H)= 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Figure 1. View of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
2,6-Bis(2,5-dimethoxyphenyl)-3,5-dimethylpiperidin-4-one top
Crystal data top
C23H29NO5Z = 4
Mr = 399.47F(000) = 856
Monoclinic, P21/cDx = 1.230 Mg m3
a = 11.1358 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4756 (5) ŵ = 0.09 mm1
c = 20.4541 (11) ÅT = 298 K
β = 92.271 (2)°Block, yellow
V = 2156.6 (2) Å30.25 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2262 reflections with I > 2σ(I)
phi and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 2.4°
Tmin = 0.979, Tmax = 0.987h = 1212
11151 measured reflectionsk = 1110
3536 independent reflectionsl = 2024
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.9547P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3536 reflectionsΔρmax = 0.17 e Å3
272 parametersΔρmin = 0.18 e Å3
Crystal data top
C23H29NO5V = 2156.6 (2) Å3
Mr = 399.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1358 (7) ŵ = 0.09 mm1
b = 9.4756 (5) ÅT = 298 K
c = 20.4541 (11) Å0.25 × 0.20 × 0.15 mm
β = 92.271 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3536 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2262 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.987Rint = 0.029
11151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.17 e Å3
3536 reflectionsΔρmin = 0.18 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54320 (17)0.4952 (2)0.14728 (9)0.0380 (5)
H10.54450.39180.14680.046*
C20.59048 (18)0.5485 (2)0.21515 (10)0.0439 (5)
H20.58760.65190.21470.053*
C30.50346 (19)0.4971 (2)0.26472 (10)0.0447 (6)
C40.37508 (18)0.5434 (3)0.25295 (10)0.0465 (6)
H40.37370.64690.25260.056*
C50.33417 (17)0.4916 (2)0.18398 (9)0.0413 (5)
H50.33430.38820.18340.050*
C60.61644 (17)0.5504 (2)0.09201 (9)0.0369 (5)
C70.6022 (2)0.6895 (2)0.07205 (10)0.0461 (6)
H70.55140.74840.09460.055*
C80.6620 (2)0.7426 (2)0.01924 (11)0.0510 (6)
C90.7397 (2)0.6581 (3)0.01319 (10)0.0520 (6)
H90.78070.69360.04840.062*
C100.7570 (2)0.5200 (3)0.00665 (10)0.0495 (6)
H100.81060.46310.01500.059*
C110.69529 (18)0.4653 (2)0.05833 (9)0.0404 (5)
C120.6457 (4)0.9225 (3)0.06178 (14)0.1112 (13)
H12A0.72850.93240.07250.167*
H12B0.60531.01120.06810.167*
H12C0.60800.85250.08960.167*
C130.7419 (4)0.2273 (3)0.03408 (15)0.1146 (14)
H13A0.69130.23620.00480.172*
H13B0.73290.13470.05230.172*
H13C0.82420.24160.02330.172*
C140.7187 (2)0.5047 (3)0.23158 (12)0.0684 (8)
H14A0.73900.52820.27630.103*
H14B0.77180.55330.20340.103*
H14C0.72660.40470.22550.103*
C150.2921 (2)0.4933 (3)0.30574 (12)0.0722 (8)
H15A0.28470.39240.30370.108*
H15B0.21430.53550.29880.108*
H15C0.32510.52030.34800.108*
C160.20999 (18)0.5443 (2)0.16386 (10)0.0425 (5)
C170.10969 (19)0.4552 (3)0.16077 (11)0.0487 (6)
C180.0001 (2)0.5069 (3)0.13831 (12)0.0595 (7)
H180.06580.44660.13530.071*
C190.0138 (2)0.6459 (3)0.12020 (12)0.0610 (7)
H190.08860.67940.10550.073*
C200.0835 (2)0.7349 (3)0.12398 (11)0.0534 (6)
C210.1949 (2)0.6839 (3)0.14593 (10)0.0480 (6)
H210.26040.74480.14860.058*
C220.0276 (3)0.2382 (4)0.19599 (19)0.1093 (13)
H22A0.01500.28810.22870.164*
H22B0.05360.14840.21310.164*
H22C0.02440.22400.15800.164*
C230.0296 (3)0.9292 (4)0.08139 (18)0.1084 (12)
H23A0.05390.87720.04280.163*
H23B0.02001.02700.07040.163*
H23C0.08970.92010.11350.163*
N10.41929 (15)0.5441 (2)0.13674 (9)0.0418 (5)
O10.6391 (2)0.88138 (18)0.00307 (9)0.0849 (6)
O20.70918 (15)0.32842 (17)0.07975 (7)0.0610 (5)
O30.53408 (14)0.4179 (2)0.30899 (8)0.0667 (5)
O40.12791 (14)0.31712 (18)0.17881 (9)0.0684 (5)
O50.08013 (16)0.8756 (2)0.10695 (10)0.0790 (6)
H1N0.3918 (19)0.522 (2)0.0956 (11)0.054 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0316 (12)0.0430 (13)0.0398 (12)0.0014 (10)0.0056 (9)0.0003 (9)
C20.0343 (13)0.0565 (14)0.0410 (12)0.0045 (11)0.0012 (9)0.0011 (10)
C30.0425 (14)0.0560 (15)0.0355 (12)0.0051 (11)0.0007 (10)0.0054 (11)
C40.0396 (14)0.0601 (15)0.0405 (12)0.0024 (11)0.0086 (10)0.0017 (11)
C50.0325 (13)0.0491 (14)0.0428 (12)0.0005 (10)0.0065 (9)0.0020 (10)
C60.0293 (12)0.0436 (13)0.0378 (11)0.0002 (10)0.0020 (9)0.0019 (9)
C70.0478 (14)0.0469 (15)0.0442 (13)0.0044 (11)0.0081 (10)0.0026 (10)
C80.0621 (16)0.0460 (15)0.0452 (13)0.0051 (13)0.0062 (12)0.0016 (11)
C90.0586 (16)0.0618 (17)0.0364 (12)0.0123 (13)0.0106 (11)0.0012 (11)
C100.0435 (14)0.0636 (17)0.0422 (13)0.0039 (12)0.0122 (10)0.0060 (11)
C110.0377 (13)0.0461 (14)0.0374 (11)0.0030 (11)0.0028 (10)0.0005 (10)
C120.191 (4)0.077 (2)0.065 (2)0.003 (2)0.001 (2)0.0232 (16)
C130.212 (4)0.059 (2)0.075 (2)0.041 (2)0.034 (2)0.0018 (16)
C140.0398 (15)0.111 (2)0.0547 (15)0.0071 (15)0.0020 (11)0.0093 (15)
C150.0505 (16)0.117 (2)0.0500 (15)0.0073 (16)0.0181 (12)0.0062 (15)
C160.0325 (13)0.0549 (15)0.0407 (12)0.0019 (11)0.0079 (9)0.0023 (10)
C170.0326 (14)0.0611 (17)0.0530 (14)0.0022 (12)0.0087 (10)0.0008 (12)
C180.0338 (15)0.0736 (19)0.0712 (17)0.0039 (13)0.0049 (12)0.0005 (14)
C190.0351 (15)0.083 (2)0.0648 (17)0.0121 (15)0.0022 (12)0.0024 (14)
C200.0474 (16)0.0579 (17)0.0556 (15)0.0122 (14)0.0087 (12)0.0018 (12)
C210.0368 (14)0.0584 (16)0.0494 (13)0.0013 (12)0.0085 (10)0.0027 (11)
C220.065 (2)0.098 (3)0.165 (3)0.0243 (19)0.002 (2)0.051 (2)
C230.096 (3)0.102 (3)0.128 (3)0.043 (2)0.012 (2)0.030 (2)
N10.0293 (10)0.0615 (13)0.0347 (10)0.0010 (9)0.0031 (8)0.0022 (9)
O10.1432 (19)0.0502 (12)0.0627 (12)0.0013 (11)0.0232 (11)0.0144 (9)
O20.0819 (12)0.0503 (10)0.0522 (10)0.0217 (9)0.0209 (8)0.0043 (8)
O30.0544 (11)0.0958 (14)0.0499 (10)0.0008 (10)0.0020 (8)0.0231 (9)
O40.0420 (10)0.0605 (12)0.1031 (14)0.0078 (9)0.0086 (9)0.0132 (10)
O50.0660 (13)0.0680 (13)0.1032 (15)0.0206 (10)0.0044 (10)0.0128 (11)
Geometric parameters (Å, º) top
C1—N11.463 (2)C13—O21.396 (3)
C1—C61.513 (3)C13—H13A0.9600
C1—C21.550 (3)C13—H13B0.9600
C1—H10.9800C13—H13C0.9600
C2—C141.511 (3)C14—H14A0.9600
C2—C31.511 (3)C14—H14B0.9600
C2—H20.9800C14—H14C0.9600
C3—O31.215 (2)C15—H15A0.9600
C3—C41.506 (3)C15—H15B0.9600
C4—C151.525 (3)C15—H15C0.9600
C4—C51.545 (3)C16—C211.381 (3)
C4—H40.9800C16—C171.399 (3)
C5—N11.467 (2)C17—O41.373 (3)
C5—C161.512 (3)C17—C181.377 (3)
C5—H50.9800C18—C191.376 (3)
C6—C71.388 (3)C18—H180.9300
C6—C111.394 (3)C19—C201.372 (3)
C7—C81.386 (3)C19—H190.9300
C7—H70.9300C20—O51.378 (3)
C8—C91.369 (3)C20—C211.389 (3)
C8—O11.378 (3)C21—H210.9300
C9—C101.381 (3)C22—O41.400 (3)
C9—H90.9300C22—H22A0.9600
C10—C111.384 (3)C22—H22B0.9600
C10—H100.9300C22—H22C0.9600
C11—O21.376 (2)C23—O51.405 (3)
C12—O11.387 (3)C23—H23A0.9600
C12—H12A0.9600C23—H23B0.9600
C12—H12B0.9600C23—H23C0.9600
C12—H12C0.9600N1—H1N0.91 (2)
N1—C1—C6108.28 (16)H13A—C13—H13B109.5
N1—C1—C2108.30 (16)O2—C13—H13C109.5
C6—C1—C2112.50 (16)H13A—C13—H13C109.5
N1—C1—H1109.2H13B—C13—H13C109.5
C6—C1—H1109.2C2—C14—H14A109.5
C2—C1—H1109.2C2—C14—H14B109.5
C14—C2—C3112.79 (18)H14A—C14—H14B109.5
C14—C2—C1113.20 (18)C2—C14—H14C109.5
C3—C2—C1106.98 (16)H14A—C14—H14C109.5
C14—C2—H2107.9H14B—C14—H14C109.5
C3—C2—H2107.9C4—C15—H15A109.5
C1—C2—H2107.9C4—C15—H15B109.5
O3—C3—C4122.4 (2)H15A—C15—H15B109.5
O3—C3—C2122.1 (2)C4—C15—H15C109.5
C4—C3—C2115.40 (18)H15A—C15—H15C109.5
C3—C4—C15113.20 (19)H15B—C15—H15C109.5
C3—C4—C5107.28 (16)C21—C16—C17118.5 (2)
C15—C4—C5112.49 (19)C21—C16—C5119.26 (19)
C3—C4—H4107.9C17—C16—C5122.2 (2)
C15—C4—H4107.9O4—C17—C18123.2 (2)
C5—C4—H4107.9O4—C17—C16117.0 (2)
N1—C5—C16108.48 (17)C18—C17—C16119.8 (2)
N1—C5—C4108.59 (17)C17—C18—C19121.3 (2)
C16—C5—C4112.15 (17)C17—C18—H18119.4
N1—C5—H5109.2C19—C18—H18119.4
C16—C5—H5109.2C20—C19—C18119.5 (2)
C4—C5—H5109.2C20—C19—H19120.2
C7—C6—C11118.11 (19)C18—C19—H19120.2
C7—C6—C1119.29 (18)C19—C20—O5124.5 (2)
C11—C6—C1122.56 (19)C19—C20—C21119.8 (2)
C8—C7—C6121.4 (2)O5—C20—C21115.7 (2)
C8—C7—H7119.3C16—C21—C20121.1 (2)
C6—C7—H7119.3C16—C21—H21119.4
C9—C8—O1123.8 (2)C20—C21—H21119.4
C9—C8—C7119.9 (2)O4—C22—H22A109.5
O1—C8—C7116.3 (2)O4—C22—H22B109.5
C8—C9—C10119.6 (2)H22A—C22—H22B109.5
C8—C9—H9120.2O4—C22—H22C109.5
C10—C9—H9120.2H22A—C22—H22C109.5
C11—C10—C9120.8 (2)H22B—C22—H22C109.5
C11—C10—H10119.6O5—C23—H23A109.5
C9—C10—H10119.6O5—C23—H23B109.5
O2—C11—C10122.92 (19)H23A—C23—H23B109.5
O2—C11—C6116.93 (18)O5—C23—H23C109.5
C10—C11—C6120.1 (2)H23A—C23—H23C109.5
O1—C12—H12A109.5H23B—C23—H23C109.5
O1—C12—H12B109.5C1—N1—C5115.22 (16)
H12A—C12—H12B109.5C1—N1—H1N110.3 (13)
O1—C12—H12C109.5C5—N1—H1N109.3 (13)
H12A—C12—H12C109.5C8—O1—C12118.8 (2)
H12B—C12—H12C109.5C11—O2—C13117.55 (19)
O2—C13—H13A109.5C17—O4—C22117.8 (2)
O2—C13—H13B109.5C20—O5—C23117.3 (2)
N1—C1—C2—C14179.85 (19)C7—C6—C11—C100.1 (3)
C6—C1—C2—C1460.2 (2)C1—C6—C11—C10177.74 (19)
N1—C1—C2—C355.3 (2)N1—C5—C16—C2145.6 (3)
C6—C1—C2—C3174.94 (18)C4—C5—C16—C2174.4 (2)
C14—C2—C3—O36.6 (3)N1—C5—C16—C17132.4 (2)
C1—C2—C3—O3118.5 (2)C4—C5—C16—C17107.7 (2)
C14—C2—C3—C4177.1 (2)C21—C16—C17—O4179.87 (19)
C1—C2—C3—C457.8 (2)C5—C16—C17—O41.9 (3)
O3—C3—C4—C155.9 (3)C21—C16—C17—C181.9 (3)
C2—C3—C4—C15177.8 (2)C5—C16—C17—C18176.0 (2)
O3—C3—C4—C5118.8 (2)O4—C17—C18—C19179.4 (2)
C2—C3—C4—C557.5 (2)C16—C17—C18—C191.6 (4)
C3—C4—C5—N154.6 (2)C17—C18—C19—C200.6 (4)
C15—C4—C5—N1179.68 (19)C18—C19—C20—O5179.7 (2)
C3—C4—C5—C16174.42 (18)C18—C19—C20—C210.1 (4)
C15—C4—C5—C1660.5 (3)C17—C16—C21—C201.3 (3)
N1—C1—C6—C744.2 (2)C5—C16—C21—C20176.73 (19)
C2—C1—C6—C775.5 (2)C19—C20—C21—C160.3 (3)
N1—C1—C6—C11133.4 (2)O5—C20—C21—C16179.4 (2)
C2—C1—C6—C11106.9 (2)C6—C1—N1—C5176.09 (17)
C11—C6—C7—C81.5 (3)C2—C1—N1—C561.6 (2)
C1—C6—C7—C8176.22 (19)C16—C5—N1—C1176.60 (17)
C6—C7—C8—C91.9 (3)C4—C5—N1—C161.3 (2)
C6—C7—C8—O1178.8 (2)C9—C8—O1—C1230.9 (4)
O1—C8—C9—C10179.9 (2)C7—C8—O1—C12149.8 (3)
C7—C8—C9—C100.7 (3)C10—C11—O2—C1328.2 (3)
C8—C9—C10—C110.9 (3)C6—C11—O2—C13153.0 (3)
C9—C10—C11—O2179.8 (2)C18—C17—O4—C2221.9 (4)
C9—C10—C11—C61.3 (3)C16—C17—O4—C22160.3 (2)
C7—C6—C11—O2179.04 (18)C19—C20—O5—C232.8 (4)
C1—C6—C11—O23.3 (3)C21—C20—O5—C23176.8 (2)

Experimental details

Crystal data
Chemical formulaC23H29NO5
Mr399.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.1358 (7), 9.4756 (5), 20.4541 (11)
β (°) 92.271 (2)
V3)2156.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.979, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
11151, 3536, 2262
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.116, 0.98
No. of reflections3536
No. of parameters272
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was supported by Inje University Research Grant 2013. The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (2004). APEXII, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParthiban, P., Pallela, R., Kim, S. K., Park, D. H. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 22, 6004–6009.  Google Scholar
First citationParthiban, P., Ramkumar, V., Kumar, N. A., Kim, J. S. & Jeong, Y. T. (2008). Acta Cryst. E64, o1631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSahu, S. K., Dubey, B. K., Tripathi, A. C., Koshy, M. & Saraf, S. K. (2013). Mini Rev. Med. Chem. 4, 565–583.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds