organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1161-o1162

Crystal structure of 2,4-bis­­(2-chloro­phen­yl)-7-tert-pent­yl-3-aza­bi­cyclo[3.3.1]nonan-9-one

aDepartment of Biomedicinal Chemistry, Inje University, Gimhae, Gyeongnam 621 749, Republic of Korea, bDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India, and cDepartment of Chemistry, VEL TECH, Avadi, Chennai 600 062, India
*Correspondence e-mail: parthisivam@yahoo.co.in

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 31 August 2014; accepted 2 October 2014; online 15 October 2014)

The title compound, C25H29Cl2NO, which is a chloro analog of 2,4-bis­(2-bromo­phen­yl)-7-(tert-pent­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one [Park, Ramkumar & Parthiban (2012). Acta Cryst. E68, o2946], exists in a twin-chair conformation with an equatorial orientation of the 2-chloro­phenyl groups. The tert-pentyl group on the cyclo­hexa­none adopts an exocyclic equatorial position and is disordered between two orientations in a ratio 0.520 (8):0.480 (8). The crystal packing shows no directional contacts beyond van der Waals contacts.

1. Related literature

For the synthesis, stereochemistry and biological activity of 3-aza­bicyclo­[3.3.1]nonan-9-ones, see: Park et al. (2011[Park, D. H., Jeong, Y. T. & Parthiban, P. (2011). J. Mol. Struct. 1005, 31-44.], 2012a[Park, D. H., Venkatesan, J., Kim, S. K. & Parthiban, P. (2012a). Bioorg. Med. Chem. Lett. 22, 6004-6009.]). For a related crystal structure, see: Park et al. (2012b[Park, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o2946.]). For the conformation of functionalized 3-aza­bicycles, see: Parthiban et al. (2010[Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2010). Acta Cryst. E66, o194-o195.]); Park et al. (2012c[Park, D. H., Ramkumar, V. & Parthiban, P. (2012c). Acta Cryst. E68, o1481.]); Padegimas & Kovacic (1972[Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672-2676.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C25H29Cl2NO

  • Mr = 430.39

  • Triclinic, [P \overline 1]

  • a = 7.6006 (3) Å

  • b = 10.6240 (5) Å

  • c = 15.1124 (7) Å

  • α = 106.116 (2)°

  • β = 99.996 (2)°

  • γ = 98.266 (2)°

  • V = 1130.54 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.15 mm

2.2. Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.955

  • 13160 measured reflections

  • 3789 independent reflections

  • 2944 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.03

  • 3789 reflections

  • 313 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

Three major conformations, viz., chair-chair (Parthiban et al., 2010), chair-boat (Park et al., 2012c), and boat-boat (Padegimas & Kovacic, 1972) are possible for the bicycle. Hence, the present study is to investigate the stereochemistry of the title compound.

The detailed analysis of asymmetry parameters and torsion angles of the title compound reveal that the values are very similar to its bromo analog. The torsion angles of the title compound C5—C6—C8—C2, C3—C2—C8—C6, C7—C6—C8—C2 and C1—C2—C8—C6 are 63.0 (2), -63.0 (2), -62.6 (2) and 62.4 (2)°, respectively. These values indicate the slightly distorted chair conformation for both six-membered cycles of the fused bicycle.

The orientation of the chlorophenyl groups on both sides of the secondary amino group is identified as equatorial by their torsion angles. The torsion angle of C15—C7—C6—C8 and C8—C2—C1—C9 are 179.99 (17) and -179.01 (17)°, respectively. The orientation of tert-pentyl group on the cyclohexanone ring is also identified as equatorial by the following torsion angles: C21—C4—C5—C6 and C21—C4—C3—C2 are 172.3 (9) and -172.6 (12)°, respectively [C21A—C4—C5—C6 and C21A—C4—C3—C2 are 173.7 (10) and -172.9 (11)°, respectively].

The chloro substituted benzene rings of the title compound is oriented very similar to that of its bromo analog. The benzene rings are inclined to each other with an angle of 29.38°, where as the orientation of bromo analog is 29.6 (3)°.

Based on the complete crystallographic analysis, it is concluded that the title compound, C25H29Cl2NO, exists in a twin-chair conformation with an equatorial orientation of the 2-chlorophenyl groups.

Related literature top

For the synthesis, stereochemistry and biological activity of 3-azabicyclo[3.3.1]nonan-9-ones, see: Park et al. (2011, 2012a). For a related crystal structure, see: Park et al. (2012b). For the conformation of functionalized 3-azabicycles, see: Parthiban et al. (2010); Park et al. (2012c); Padegimas & Kovacic (1972).

Experimental top

2,4-Bis(2-chlorophenyl)-7-(tert-pentyl)-3-azabicyclo[3.3.1]nonan-9-one was synthesized by a modified and an optimized Mannich condensation in one-pot, using 2-chlorobenzaldehyde (0.1 mol, 14.06 g/11.25 ml), 4-tert-pentylcyclohexanone (0.05 mol, 8.41 g/9.15 ml) and ammonium acetate (0.075 mol, 5.78 g) in a 50 ml of absolute ethanol (Park et al., 2011). The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. X-ray diffraction quality crystals of the title compound were obtained by slow evaporation from ethanol.

Refinement top

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å, methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C), methyl H atoms at Uiso(H) = 1.5Ueq(C) and the hydrogen atoms were fixed geometrically and allowed to ride on the parent nitrogen atom with N—H = 0.86 Å and the displacement parameter was set at Uiso(H)= 1.2Ueq(N). The tert-pentyl group attached to the carbon atom (C4) is disordered in two orientations in a ratio 0.520 (8):0.480 (8).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
Figure 1. View of the title molecule showing the atomic numbering and 30% probability displacement ellipsoids. For clarity, only major component of the disordered group is shown.
2,4-Bis(2-chlorophenyl)-7-tert-pentyl-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C25H29Cl2NOV = 1130.54 (9) Å3
Mr = 430.39Z = 2
Triclinic, P1F(000) = 456
a = 7.6006 (3) ÅDx = 1.264 Mg m3
b = 10.6240 (5) ÅMo Kα radiation, λ = 0.71073 Å
c = 15.1124 (7) ŵ = 0.30 mm1
α = 106.116 (2)°T = 298 K
β = 99.996 (2)°Block, colourless
γ = 98.266 (2)°0.25 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2944 reflections with I > 2σ(I)
phi and ω scansRint = 0.020
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 2.0°
Tmin = 0.928, Tmax = 0.955h = 96
13160 measured reflectionsk = 1212
3789 independent reflectionsl = 1717
Refinement top
Refinement on F213 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.5471P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.041
3789 reflectionsΔρmax = 0.36 e Å3
313 parametersΔρmin = 0.27 e Å3
Crystal data top
C25H29Cl2NOγ = 98.266 (2)°
Mr = 430.39V = 1130.54 (9) Å3
Triclinic, P1Z = 2
a = 7.6006 (3) ÅMo Kα radiation
b = 10.6240 (5) ŵ = 0.30 mm1
c = 15.1124 (7) ÅT = 298 K
α = 106.116 (2)°0.25 × 0.20 × 0.15 mm
β = 99.996 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3789 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2944 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.955Rint = 0.020
13160 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04213 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.36 e Å3
3789 reflectionsΔρmin = 0.27 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3313 (3)0.57407 (19)0.12669 (15)0.0406 (5)
H10.22540.52660.07490.049*
C20.2630 (3)0.6552 (2)0.21189 (16)0.0442 (5)
H20.18860.71380.19060.053*
C30.4123 (3)0.7409 (2)0.29862 (15)0.0468 (5)
H3A0.49520.80020.27870.056*
H3B0.35560.79640.34320.056*
C40.5240 (3)0.6624 (2)0.35002 (16)0.0466 (5)
H40.60080.62360.30830.056*
C50.3990 (3)0.5446 (2)0.36240 (16)0.0486 (6)
H5A0.34130.57890.41400.058*
H5B0.47370.48510.38040.058*
C60.2491 (3)0.4627 (2)0.27445 (16)0.0471 (5)
H60.16610.39970.29250.057*
C70.3167 (3)0.38288 (19)0.18868 (15)0.0428 (5)
H70.20970.33300.13820.051*
C80.1434 (3)0.5563 (2)0.24180 (16)0.0488 (6)
C90.4562 (3)0.66577 (19)0.09259 (14)0.0380 (5)
C100.6447 (3)0.6856 (2)0.12042 (16)0.0465 (5)
H100.69510.63810.15800.056*
C110.7590 (3)0.7744 (2)0.09362 (18)0.0562 (6)
H110.88470.78620.11380.067*
C120.6891 (4)0.8452 (2)0.03757 (17)0.0573 (6)
H120.76690.90520.02010.069*
C130.5037 (3)0.8269 (2)0.00741 (15)0.0494 (6)
H130.45500.87370.03120.059*
C140.3896 (3)0.7384 (2)0.03483 (14)0.0419 (5)
C150.4261 (3)0.28405 (19)0.21254 (15)0.0425 (5)
C160.3442 (3)0.1555 (2)0.20782 (16)0.0488 (6)
C170.4439 (4)0.0637 (2)0.22588 (19)0.0623 (7)
H170.38490.02160.22130.075*
C180.6297 (4)0.0981 (3)0.2506 (2)0.0695 (8)
H180.69790.03620.26250.083*
C190.7157 (4)0.2251 (3)0.2577 (2)0.0665 (7)
H190.84230.24940.27550.080*
C200.6147 (3)0.3163 (2)0.23847 (17)0.0532 (6)
H200.67480.40130.24300.064*
C210.647 (3)0.7469 (17)0.4380 (15)0.072 (6)0.520 (8)
C220.753 (3)0.8725 (19)0.4286 (14)0.124 (8)0.520 (8)
H22A0.77620.85440.36630.186*0.520 (8)
H22B0.86670.90150.47450.186*0.520 (8)
H22C0.68310.94160.43890.186*0.520 (8)
C230.565 (3)0.805 (3)0.5161 (11)0.105 (7)0.520 (8)
H23A0.65640.87020.56600.157*0.520 (8)
H23B0.51430.73560.53930.157*0.520 (8)
H23C0.47010.84710.49440.157*0.520 (8)
C240.777 (3)0.668 (2)0.4817 (17)0.171 (5)0.520 (8)
H24A0.70850.62960.51980.205*0.520 (8)
H24B0.78010.59270.42830.205*0.520 (8)
C250.9450 (13)0.7029 (12)0.5319 (9)0.171 (5)0.520 (8)
H25A1.02250.74340.49930.256*0.520 (8)
H25B0.98610.62520.54130.256*0.520 (8)
H25C0.94940.76590.59220.256*0.520 (8)
C21A0.665 (4)0.754 (2)0.4492 (15)0.076 (6)0.480 (8)
C22A0.799 (2)0.6604 (15)0.4763 (10)0.142 (8)0.480 (8)
H22D0.86580.70050.54070.212*0.480 (8)
H22E0.88300.65030.43530.212*0.480 (8)
H22F0.72870.57410.46920.212*0.480 (8)
C23A0.544 (4)0.820 (3)0.5231 (16)0.136 (10)0.480 (8)
H23D0.47410.87500.49690.204*0.480 (8)
H23E0.62450.87430.58200.204*0.480 (8)
H23F0.46360.75030.53350.204*0.480 (8)
C24A0.784 (3)0.8687 (16)0.4277 (14)0.084 (5)0.480 (8)
H24C0.70140.91850.40280.101*0.480 (8)
H24D0.85680.92850.48790.101*0.480 (8)
C25A0.8920 (15)0.8455 (10)0.3726 (7)0.128 (4)0.480 (8)
H25D0.98350.80350.39800.192*0.480 (8)
H25E0.94960.92820.36640.192*0.480 (8)
H25F0.82470.78730.31160.192*0.480 (8)
Cl20.10719 (9)0.10441 (6)0.17580 (6)0.0745 (2)
Cl10.15563 (9)0.72003 (8)0.00583 (5)0.0713 (2)
N10.4263 (2)0.47552 (17)0.15359 (13)0.0433 (4)
O10.0167 (2)0.55371 (18)0.24000 (15)0.0717 (5)
H1N0.461 (3)0.428 (2)0.1038 (17)0.054 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0404 (11)0.0351 (10)0.0469 (12)0.0060 (9)0.0096 (9)0.0147 (9)
C20.0461 (12)0.0391 (11)0.0580 (13)0.0172 (10)0.0191 (10)0.0231 (10)
C30.0616 (14)0.0324 (10)0.0516 (13)0.0109 (10)0.0202 (11)0.0157 (10)
C40.0573 (14)0.0387 (11)0.0478 (13)0.0085 (10)0.0142 (11)0.0192 (10)
C50.0654 (15)0.0404 (11)0.0503 (13)0.0143 (11)0.0229 (11)0.0224 (10)
C60.0508 (13)0.0365 (11)0.0656 (14)0.0079 (10)0.0296 (11)0.0245 (10)
C70.0455 (12)0.0306 (10)0.0536 (13)0.0040 (9)0.0142 (10)0.0151 (9)
C80.0461 (14)0.0454 (12)0.0600 (14)0.0121 (10)0.0226 (11)0.0168 (11)
C90.0432 (12)0.0318 (10)0.0406 (11)0.0083 (9)0.0120 (9)0.0119 (9)
C100.0440 (13)0.0477 (12)0.0535 (13)0.0115 (10)0.0130 (10)0.0226 (10)
C110.0452 (13)0.0586 (14)0.0659 (15)0.0032 (11)0.0173 (12)0.0217 (13)
C120.0693 (17)0.0440 (12)0.0609 (15)0.0005 (12)0.0261 (13)0.0192 (11)
C130.0719 (17)0.0372 (11)0.0455 (12)0.0144 (11)0.0191 (12)0.0176 (10)
C140.0481 (12)0.0381 (11)0.0405 (11)0.0124 (9)0.0105 (9)0.0117 (9)
C150.0519 (13)0.0318 (10)0.0481 (12)0.0084 (9)0.0195 (10)0.0141 (9)
C160.0623 (14)0.0350 (11)0.0536 (13)0.0080 (10)0.0231 (11)0.0160 (10)
C170.092 (2)0.0373 (12)0.0723 (17)0.0202 (13)0.0353 (15)0.0262 (12)
C180.090 (2)0.0608 (16)0.0817 (19)0.0423 (16)0.0340 (16)0.0373 (14)
C190.0578 (16)0.0714 (17)0.0844 (19)0.0266 (14)0.0247 (14)0.0345 (15)
C200.0545 (15)0.0424 (12)0.0703 (16)0.0131 (11)0.0219 (12)0.0231 (11)
C210.088 (9)0.066 (9)0.071 (9)0.014 (8)0.001 (6)0.048 (8)
C220.109 (12)0.121 (12)0.091 (10)0.032 (8)0.022 (8)0.006 (8)
C230.157 (13)0.077 (7)0.044 (7)0.004 (9)0.017 (9)0.004 (6)
C240.107 (6)0.190 (8)0.238 (11)0.020 (6)0.016 (6)0.142 (8)
C250.107 (6)0.190 (8)0.238 (11)0.020 (6)0.016 (6)0.142 (8)
C21A0.088 (10)0.059 (8)0.044 (6)0.039 (7)0.007 (6)0.001 (5)
C22A0.150 (12)0.108 (7)0.114 (7)0.078 (8)0.109 (8)0.088 (6)
C23A0.219 (19)0.100 (14)0.074 (9)0.004 (12)0.078 (11)0.003 (8)
C24A0.073 (7)0.076 (8)0.111 (11)0.020 (5)0.004 (6)0.069 (8)
C25A0.135 (9)0.100 (6)0.122 (8)0.002 (6)0.007 (7)0.015 (6)
Cl20.0669 (4)0.0464 (3)0.1071 (6)0.0064 (3)0.0240 (4)0.0251 (3)
Cl10.0531 (4)0.0934 (5)0.0785 (5)0.0225 (4)0.0065 (3)0.0456 (4)
N10.0528 (11)0.0326 (9)0.0536 (11)0.0125 (8)0.0256 (9)0.0176 (8)
O10.0477 (10)0.0753 (12)0.1089 (15)0.0197 (9)0.0349 (10)0.0412 (11)
Geometric parameters (Å, º) top
C1—N11.461 (3)C17—C181.364 (4)
C1—C91.516 (3)C17—H170.9300
C1—C21.554 (3)C18—C191.378 (4)
C1—H10.9800C18—H180.9300
C2—C81.505 (3)C19—C201.380 (3)
C2—C31.536 (3)C19—H190.9300
C2—H20.9800C20—H200.9300
C3—C41.534 (3)C21—C231.46 (3)
C3—H3A0.9700C21—C221.51 (3)
C3—H3B0.9700C21—C241.56 (3)
C4—C211.454 (19)C22—H22A0.9600
C4—C51.535 (3)C22—H22B0.9600
C4—C21A1.636 (19)C22—H22C0.9600
C4—H40.9800C23—H23A0.9600
C5—C61.539 (3)C23—H23B0.9600
C5—H5A0.9700C23—H23C0.9600
C5—H5B0.9700C24—C251.309 (18)
C6—C81.497 (3)C24—H24A0.9700
C6—C71.552 (3)C24—H24B0.9700
C6—H60.9800C25—H25A0.9600
C7—N11.467 (3)C25—H25B0.9600
C7—C151.511 (3)C25—H25C0.9600
C7—H70.9800C21A—C24A1.55 (3)
C8—O11.209 (3)C21A—C22A1.61 (3)
C9—C101.388 (3)C21A—C23A1.64 (4)
C9—C141.395 (3)C22A—H22D0.9600
C10—C111.381 (3)C22A—H22E0.9600
C10—H100.9300C22A—H22F0.9600
C11—C121.370 (4)C23A—H23D0.9600
C11—H110.9300C23A—H23E0.9600
C12—C131.371 (3)C23A—H23F0.9600
C12—H120.9300C24A—C25A1.27 (3)
C13—C141.384 (3)C24A—H24C0.9700
C13—H130.9300C24A—H24D0.9700
C14—Cl11.742 (2)C25A—H25D0.9600
C15—C201.384 (3)C25A—H25E0.9600
C15—C161.394 (3)C25A—H25F0.9600
C16—C171.374 (3)N1—H1N0.89 (2)
C16—Cl21.745 (2)
N1—C1—C9110.16 (16)C16—C17—H17120.1
N1—C1—C2109.81 (17)C17—C18—C19119.6 (2)
C9—C1—C2111.03 (16)C17—C18—H18120.2
N1—C1—H1108.6C19—C18—H18120.2
C9—C1—H1108.6C18—C19—C20120.3 (3)
C2—C1—H1108.6C18—C19—H19119.9
C8—C2—C3108.14 (18)C20—C19—H19119.9
C8—C2—C1107.25 (16)C19—C20—C15121.5 (2)
C3—C2—C1115.74 (18)C19—C20—H20119.3
C8—C2—H2108.5C15—C20—H20119.3
C3—C2—H2108.5C4—C21—C23117.1 (18)
C1—C2—H2108.5C4—C21—C22113.0 (14)
C4—C3—C2115.32 (17)C23—C21—C22100.3 (18)
C4—C3—H3A108.4C4—C21—C24111.8 (14)
C2—C3—H3A108.4C23—C21—C24102.4 (18)
C4—C3—H3B108.4C22—C21—C24111 (2)
C2—C3—H3B108.4C21—C22—H22A109.4
H3A—C3—H3B107.5C21—C22—H22B109.5
C21—C4—C3113.1 (6)H22A—C22—H22B109.5
C21—C4—C5112.9 (9)C21—C22—H22C109.5
C3—C4—C5110.78 (19)H22A—C22—H22C109.5
C3—C4—C21A114.5 (8)H22B—C22—H22C109.5
C5—C4—C21A112.2 (9)C21—C23—H23A109.5
C21—C4—H4106.5C21—C23—H23B109.5
C3—C4—H4106.5H23A—C23—H23B109.5
C5—C4—H4106.5C21—C23—H23C109.4
C4—C5—C6115.05 (18)H23A—C23—H23C109.5
C4—C5—H5A108.5H23B—C23—H23C109.5
C6—C5—H5A108.5C25—C24—C21132.5 (17)
C4—C5—H5B108.5C25—C24—H24A103.9
C6—C5—H5B108.5C21—C24—H24A103.9
H5A—C5—H5B107.5C25—C24—H24B104.4
C8—C6—C5108.55 (17)C21—C24—H24B104.3
C8—C6—C7107.09 (18)H24A—C24—H24B105.5
C5—C6—C7115.73 (18)C24—C25—H25A109.3
C8—C6—H6108.4C24—C25—H25B109.3
C5—C6—H6108.4H25A—C25—H25B109.5
C7—C6—H6108.4C24—C25—H25C109.8
N1—C7—C15109.85 (17)H25A—C25—H25C109.5
N1—C7—C6109.86 (16)H25B—C25—H25C109.5
C15—C7—C6112.34 (18)C24A—C21A—C22A106 (2)
N1—C7—H7108.2C24A—C21A—C4107.5 (15)
C15—C7—H7108.2C22A—C21A—C4105.6 (13)
C6—C7—H7108.2C24A—C21A—C23A108.6 (19)
O1—C8—C6124.7 (2)C22A—C21A—C23A120.0 (18)
O1—C8—C2124.2 (2)C4—C21A—C23A108.1 (18)
C6—C8—C2111.14 (18)C21A—C22A—H22D109.6
C10—C9—C14116.29 (18)C21A—C22A—H22E109.3
C10—C9—C1121.34 (18)H22D—C22A—H22E109.5
C14—C9—C1122.33 (18)C21A—C22A—H22F109.5
C11—C10—C9121.6 (2)H22D—C22A—H22F109.5
C11—C10—H10119.2H22E—C22A—H22F109.5
C9—C10—H10119.2C21A—C23A—H23D109.5
C12—C11—C10120.7 (2)C21A—C23A—H23E109.5
C12—C11—H11119.7H23D—C23A—H23E109.5
C10—C11—H11119.7C21A—C23A—H23F109.4
C11—C12—C13119.5 (2)H23D—C23A—H23F109.5
C11—C12—H12120.2H23E—C23A—H23F109.5
C13—C12—H12120.2C25A—C24A—C21A121.8 (19)
C12—C13—C14119.6 (2)C25A—C24A—H24C106.9
C12—C13—H13120.2C21A—C24A—H24C106.9
C14—C13—H13120.2C25A—C24A—H24D106.9
C13—C14—C9122.3 (2)C21A—C24A—H24D106.9
C13—C14—Cl1117.25 (17)H24C—C24A—H24D106.7
C9—C14—Cl1120.43 (16)C24A—C25A—H25D109.5
C20—C15—C16116.5 (2)C24A—C25A—H25E109.5
C20—C15—C7121.22 (18)H25D—C25A—H25E109.5
C16—C15—C7122.3 (2)C24A—C25A—H25F109.5
C17—C16—C15122.3 (2)H25D—C25A—H25F109.5
C17—C16—Cl2117.35 (18)H25E—C25A—H25F109.5
C15—C16—Cl2120.29 (18)C1—N1—C7114.20 (16)
C18—C17—C16119.8 (2)C1—N1—H1N108.7 (16)
C18—C17—H17120.1C7—N1—H1N108.5 (15)
N1—C1—C2—C856.9 (2)C6—C7—C15—C2095.7 (2)
C9—C1—C2—C8179.01 (17)N1—C7—C15—C16151.6 (2)
N1—C1—C2—C363.8 (2)C6—C7—C15—C1685.8 (2)
C9—C1—C2—C358.2 (2)C20—C15—C16—C171.3 (3)
C8—C2—C3—C453.9 (2)C7—C15—C16—C17177.4 (2)
C1—C2—C3—C466.4 (2)C20—C15—C16—Cl2179.97 (17)
C2—C3—C4—C21172.6 (12)C7—C15—C16—Cl21.3 (3)
C2—C3—C4—C544.7 (2)C15—C16—C17—C180.8 (4)
C2—C3—C4—C21A172.9 (11)Cl2—C16—C17—C18179.6 (2)
C21—C4—C5—C6172.3 (9)C16—C17—C18—C190.4 (4)
C3—C4—C5—C644.4 (2)C17—C18—C19—C201.1 (4)
C21A—C4—C5—C6173.7 (10)C18—C19—C20—C150.6 (4)
C4—C5—C6—C853.6 (2)C16—C15—C20—C190.6 (3)
C4—C5—C6—C766.8 (2)C7—C15—C20—C19178.1 (2)
C8—C6—C7—N157.4 (2)C3—C4—C21—C2370.0 (17)
C5—C6—C7—N163.8 (2)C5—C4—C21—C2356.8 (16)
C8—C6—C7—C15179.99 (17)C21A—C4—C21—C23120 (81)
C5—C6—C7—C1558.8 (2)C3—C4—C21—C2246 (2)
C5—C6—C8—O1116.6 (3)C5—C4—C21—C22172.5 (16)
C7—C6—C8—O1117.7 (2)C21A—C4—C21—C22125 (82)
C5—C6—C8—C263.0 (2)C3—C4—C21—C24172.4 (14)
C7—C6—C8—C262.6 (2)C5—C4—C21—C2461 (2)
C3—C2—C8—O1116.6 (3)C21A—C4—C21—C242 (79)
C1—C2—C8—O1117.9 (2)C4—C21—C24—C25148 (3)
C3—C2—C8—C663.0 (2)C23—C21—C24—C2586 (3)
C1—C2—C8—C662.4 (2)C22—C21—C24—C2520 (4)
N1—C1—C9—C1023.9 (3)C21—C4—C21A—C24A63 (79)
C2—C1—C9—C1097.9 (2)C3—C4—C21A—C24A53 (2)
N1—C1—C9—C14158.49 (18)C5—C4—C21A—C24A179.7 (14)
C2—C1—C9—C1479.6 (2)C21—C4—C21A—C22A176 (100)
C14—C9—C10—C111.2 (3)C3—C4—C21A—C22A166.3 (11)
C1—C9—C10—C11176.5 (2)C5—C4—C21A—C22A66.3 (17)
C9—C10—C11—C120.6 (4)C21—C4—C21A—C23A54 (80)
C10—C11—C12—C130.4 (4)C3—C4—C21A—C23A64.1 (18)
C11—C12—C13—C140.7 (3)C5—C4—C21A—C23A63.3 (17)
C12—C13—C14—C90.1 (3)C22A—C21A—C24A—C25A49 (2)
C12—C13—C14—Cl1179.93 (17)C4—C21A—C24A—C25A64 (2)
C10—C9—C14—C130.8 (3)C23A—C21A—C24A—C25A179.7 (17)
C1—C9—C14—C13176.83 (18)C9—C1—N1—C7179.34 (17)
C10—C9—C14—Cl1179.14 (15)C2—C1—N1—C756.8 (2)
C1—C9—C14—Cl13.2 (3)C15—C7—N1—C1178.90 (17)
N1—C7—C15—C2027.0 (3)C6—C7—N1—C157.0 (2)

Experimental details

Crystal data
Chemical formulaC25H29Cl2NO
Mr430.39
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.6006 (3), 10.6240 (5), 15.1124 (7)
α, β, γ (°)106.116 (2), 99.996 (2), 98.266 (2)
V3)1130.54 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.928, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
13160, 3789, 2944
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.02
No. of reflections3789
No. of parameters313
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.27

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

This research was supported by Inje University Research Grant 2014.

References

First citationBruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPadegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672–2676.  CrossRef CAS Web of Science Google Scholar
First citationPark, D. H., Jeong, Y. T. & Parthiban, P. (2011). J. Mol. Struct. 1005, 31–44.  Web of Science CrossRef CAS Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o2946.  CSD CrossRef IUCr Journals Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012c). Acta Cryst. E68, o1481.  CSD CrossRef IUCr Journals Google Scholar
First citationPark, D. H., Venkatesan, J., Kim, S. K. & Parthiban, P. (2012a). Bioorg. Med. Chem. Lett. 22, 6004–6009.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParthiban, P., Ramkumar, V. & Jeong, Y. T. (2010). Acta Cryst. E66, o194–o195.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1161-o1162
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds