research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­chlorido­[2-(1H-imidazol-2-yl-κN3)imidazolato-κN]bis­­(tri-n-butyl­phosphane-κP)rhodium(III)

aDepartment of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: ebihara@gifu-u.ac.jp

Edited by K. Fejfarova, Institute of Macromol­ecular Chemistry, AS CR, v.v.i, Czech Republic (Received 30 September 2014; accepted 13 October 2014; online 24 October 2014)

In the title compound, [Rh(C6H5N4)Cl2(C12H27P)2], the RhIII ion is chelated by the singly deprotonated 2,2′-biimidazolate (Hbim) ligand and coordinated by two chloride ions and two tri-n-butyl­phosphane ligands. The chloride ions and N atoms of the Hbim ligand lie in a plane where the sum of X—Rh—X angles between cis sites is 360°. The phosphane ligands occupy the sites perpendicular to the plane, completing the overall distorted octahedral coordination sphere. The complex forms a self-complementary hydrogen-bonded dimer with the inversion-related complex through N—H⋯N hydrogen bonds.

1. Chemical context

Assembled structures and supra­molecules from metal complex modules have been one of the most actively investigated areas in coordination chemistry recently. The use of hydrogen bonding is a common method for the construction of structures. We have investigated dirhodium complexes with bi­imidazole (H2bim) or biimidazolate (Hbim) ligands and two types of compounds [Rh2(H2bim)4L2]4+ (L = H2O, MeOH, etc.) (Jin-Long et al., 2014a[Jin-Long, Uemura, K. & Ebihara, M. (2014a). Acta Cryst. B70. In the press [Co-editor code RY5061].]) and [Rh2(H2bim)2(O2CR)2(PPh3)2]2+ (R = propyl and butyl) (Jin-Long et al., 2014b[Jin-Long, Uemura, K. & Ebihara, M. (2014b). Inorg. Chem. Submitted.]) have been synthesized. We have tried to synthesize [Rh2(H2bim)4(PR3)2]4+, which is expected to have good solubility to organic solvents. However, the reaction of the dinuclear rhodium(II) complex [Rh2(H2bim)4(MeCN)2]4+ with PBu3 gave the mononuclear rhodium(III) compound [Rh(Hbim)Cl2(PBu3)2] (I)[link]. The source of the chloride ligands may be the chloro­form that was used as solvent.

[Scheme 1]

2. Structural commentary

In the structure of (I)[link], the RhIII ion is chelated by the singly deprotonated biimidazolate (Hbim) ligand and coordinated by two chloride ions and two tri-n-butyl­phosphane ligands (Fig. 1[link], Table 1[link]). The chloride ions and N atoms of the Hbim ligand lie in a plane where the sum of X—Rh—X angles between cis-sites is 360°. The small bite angle of N1—Rh1—N3 [78.98 (7)°] makes the other angles wider than 90° [N1—Rh1—Cl1 93.28 (5), N3—Rh1—Cl2 94.18 (5) and Cl1—Rh1—Cl2 93.56 (2)°]. The phosphane ligands occupy the axial sites with a P1—Rh1—P2 angle of 176.29 (2)°.

Table 1
Selected bond lengths (Å)

Rh1—N1 2.0322 (18) Rh1—Cl2 2.3634 (7)
Rh1—N3 2.0538 (19) Rh1—P2 2.3657 (7)
Rh1—Cl1 2.3450 (7) Rh1—P1 2.3732 (8)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

3. Supra­molecular features

Compound (I)[link] is isostructural with the Re analogue [Re(Hbim)Cl2(PBu3)2] (Tadokoro et al., 2007[Tadokoro, M., Inoue, T., Tamaki, S., Fujii, K., Isogai, K., Nakazawa, H., Takeda, S., Isobe, K., Koga, N., Ichimura, A. & Nakasuji, K. (2007). Angew. Chem. Int. Ed. 46, 5938-5942.]). The complex forms a self-complementary hydrogen-bonded dimer (Table 2[link]) with the symmetry-related complex about the inversion centre at (½, ½, ½), as shown in Fig. 2[link]. At is 2.772 (3) Å, the hydrogen-bonded N⋯N distance in the dimer is quite similar to those in [Re(Hbim)Cl2(PBu3)2] [2.771 (3) Å; Tadokoro et al., 2007[Tadokoro, M., Inoue, T., Tamaki, S., Fujii, K., Isogai, K., Nakazawa, H., Takeda, S., Isobe, K., Koga, N., Ichimura, A. & Nakasuji, K. (2007). Angew. Chem. Int. Ed. 46, 5938-5942.]], [Re(Hbim)Cl2(PMe3)2] [2.775 (11) Å; Fortin et al., 2001[Fortin, S., Fabre, P.-L., Dartiguenave, M. & Beauchamp, A. L. (2001). J. Chem. Soc. Dalton Trans. pp. 3520-3527.]] and [Rh2(Hbim)2(O2CR)2(PPh3)2]2 [R = propyl: 2.774 (7), 2.737 (7), 2.735 (6) and 2.732 (7) Å, R = butyl: 2.752 (11) and 2.733 (12) Å; Jin-Long et al., 2014b[Jin-Long, Uemura, K. & Ebihara, M. (2014b). Inorg. Chem. Submitted.]].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N2i 0.80 (3) 1.98 (3) 2.772 (3) 176 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The hydrogen-bonded dimer structure of the title compound. H atoms except NH have been omitted for clarity. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, February 2014 update; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662-671.]) reveals only twelve complexes that have an RhN2Cl2P2 core. Among them, two have a cis-NN, cis-ClCl and trans-PP geometry, viz. cis-di­chlorido-trans-bis­[(2-amino­eth­yl)di­phenyl­phosphino-N,P]rhodium chloride tetra­hydrate (Galsbøl et al., 1986[Galsbøl, F., Kojima, M., Ishii, T., Ohba, S., Saito, Y. & Fujita, J. (1986). Bull. Chem. Soc. Jpn, 59, 1701-1707.]) and dichlorido-[2,2′-ethane-1,2-diylidenebis(1-phenyl­hydrazine)]bis­(tri­­phenyl­phosphane)rhodium triiodide (Patra et al., 2011[Patra, S. C., Biswas, M. K., Maity, A. N. & Ghosh, P. (2011). Inorg. Chem. 50, 1331-1338.]).

5. Synthesis and crystallization

[Rh2(H2bim)4(MeCN)2](BF4)4·H2O was prepared by a method described previously (Jin-Long et al., 2014b[Jin-Long, Uemura, K. & Ebihara, M. (2014b). Inorg. Chem. Submitted.]). A weighed amount of [Rh2(H2bim)4(MeCN)2](BF4)4·H2O (100 mg, 0.084 mmol) and tri­butyl­phosphane (0.21 ml, 0.840 mmol) in 5 ml of chloro­form was refluxed under an argon atmosphere for 30 min. From the resulting olive-green suspension, the solvent was removed by evaporation in vacuo. The olive-green solid changed to yellow when the flask was opened in air. The yellow solid was dissolved in MeOH and the insoluble solid was removed by filtration. Slow evap­oration of the solution gave yellow crystals of [Rh(Hbim)Cl2(PBu3)2] (56 mg, 93%). Analysis calculated for C30H59Cl2N4P2Rh: C 50.64, H 8.36, N 7.87%; found: C 50.37, H 8.37, N 8.05%.

6. Refinement

The hydrogen atom connected to the nitro­gen atom N4 was located by difference-Fourier methods and its positional and displacement parameters were refined. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).[link]

Table 3
Experimental details

Crystal data
Chemical formula [Rh(C6H5N4)Cl2(C12H27P)2]
Mr 711.56
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.969 (2), 18.725 (3), 16.894 (3)
β (°) 97.233 (3)
V3) 3756.1 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.71
Crystal size (mm) 0.43 × 0.43 × 0.28
 
Data collection
Diffractometer Rigaku/MSC Mercury CCD
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.762, 0.871
No. of measured, independent and observed [I > 2σ(I)] reflections 28742, 8556, 7761
Rint 0.025
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.12
No. of reflections 8556
No. of parameters 362
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.12, −0.60
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2008[Molecular Structure Corporation & Rigaku (2008). Crystal Clear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and Yadokari-XG 2009 (Wakita, 2001[Wakita, K. (2001). Yadokari-XG 2009. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari ]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218-224.]).

Supporting information


Chemical context top

Assembled structures and supra­molecules from metal complex modules have been one of the most actively investigated areas in coordination chemistry recently. The use of hydrogen bonding is a common method for the construction of structures. We have investigated dirhodium complexes with bi­imidazole (H2bim) or biimidazolate (Hbim-) ligands and two types of compounds [Rh2(H2bim)4L2]4+ (L = H2O, MeOH, etc.) (Jin-Long et al., 2014a) and [Rh2(H2bim)2(O2CR)2(PPh3)2]2+ (R = [please supply]) (Jin-Long et al., 2014b) have been synthesized. We have tried to synthesize [Rh2(H2bim)4(PR3)2]4+, which is expected to have good solubility to organic solvents. However, the reaction of the dinuclear rhodium(II) complex [Rh2(H2bim)4(MeCN)2]4+ with PBu3 gave the mononuclear rhodium(III) compound [Rh(Hbim)Cl2(PBu3)2] (I). The source of the chloride ligands may be the chloro­form that was used as solvent.

Structural commentary top

In the structure of (I), the RhIII ion is chelated by the singly deprotonated biimidazolate (Hbim-) ligand and coordinated by two chloride ions and two tri-n-butyl­phosphane ligands. The chloride ions and N atoms of the Hbim- ligand lie in a plane where the sum of X—Rh—X angles between cis-sites is 360°. The small bite angle of N1—Rh1—N3 [78.98 (7)°] makes the other angles wider than 90° [N1—Rh1—Cl1 93.28 (5), N3—Rh1—Cl2 94.18 (5) and Cl1—Rh1—Cl2 93.56 (2)°]. The phosphane ligands occupy the axial sites with a P1—Rh1—P2 angle of 176.29 (2)°.

Supra­molecular features top

Compound (I) is isostructural with the Re analogue [Re(Hbim)Cl2(PBu3)2] (Tadokoro et al., 2007). The complex forms a self-complementary hydrogen-bonded dimer with the symmetry-related complex about the inversion centre at (1/2, 1/2, 1/2), as shown in Fig. 2. At is 2.772 (3) Å, the hydrogen-bonded N···N distance in the dimer is quite similar to those in [Re(Hbim)Cl2(PBu3)2] [2.771 (3) Å; Tadokoro et al., 2007], [Re(Hbim)Cl2(PMe3)2] [2.775 (11) Å; Fortin et al., 2001] and [Rh2(Hbim)2(O2CR)2(PPh3)2]2 [R = Pr: 2.774 (7), 2.737 (7), 2.735 (6) and 2.732 (7) Å, R = Bu: 2.752 (11) and 2.733 (12) Å; Jin-Long et al., 2014b].

Database survey top

\ A search of the Cambridge Structural Database (Version 5.35, February 2014 update; Groom & Allen, 2014) reveals only twelve complexes that have an RhN2Cl2P2 core. Among them, two complexes have a cis-NN, cis-ClCl and trans-PP geometry, viz. cis-di­chloro-trans-bis­[(2-amino­ethyl)­diphenyl­phosphino-N,\ P]rhodium chloride tetra­hydrate (Galsbøl et al., 1986) and di­chloro-[2,2'-ethane-1,2-diylidenebis(1-phenyl­hydrazine)]\ bis­(tri­phenyl­phosphane)rhodium triiodide (Patra et al., 2011).

Synthesis and crystallization top

[Rh2(H2bim)4(MeCN)2](BF4)4.H2O was prepared by a method described previously (Jin-Long et al., 2014b). A weighed amount of [Rh2(H2bim)4(MeCN)2](BF4)4·H2O (100 mg, 0.084 mmol) and tri­butyl­phosphane (0.21 mL, 0.840 mmol) in 5 mL of chloro­form was refluxed under an argon atmosphere for 30 min. From the resulting olive-green suspension, the solvent was removed by evaporation in vacuo. The olive-green solid changed to yellow when the flask was opened in air. The yellow solid was dissolved in MeOH and the insoluble solid was removed by filtration. Slow evaporation of the solution gave yellow crystals of [Rh(Hbim)Cl2(PBu3)2] (56 mg, 93%). Analysis calculated for C30H59Cl2N4P2Rh: C 50.64, H 8.36, N 7.87%; found: C 50.37, H 8.37, N 8.05%.

Refinement top

The hydrogen atom connected to the nitro­gen atom N4 was located by difference-Fourier methods and its positional and displacement parameters were refined. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Related literature top

For the crystal structures of closely related complexes, see: Tadokoro et al. (2007); Fortin et al. (2001). For the related rhodium complexes with biimidazole or biimidazolate, see: Jin-Long et al. (2014ab).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2008); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2008); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009).

Figures top
The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

The hydrogen-bonded dimer structure of the title compound. H atoms except NH have been omitted for clarity. [Symmetry code: (i) -x+1, -y+1, -z+1.]
Dichlorido[2-(1H-imidazol-2-yl-κN3)imidazolido-κN]bis(tri-n-butylphosphane-κP)rhodium(III) top
Crystal data top
[Rh(C6H5N4)Cl2(C12H27P)2]F(000) = 1504
Mr = 711.56Dx = 1.258 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 11010 reflections
a = 11.969 (2) Åθ = 3.3–27.5°
b = 18.725 (3) ŵ = 0.71 mm1
c = 16.894 (3) ÅT = 296 K
β = 97.233 (3)°Prism, yellow
V = 3756.1 (11) Å30.43 × 0.43 × 0.28 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
8556 independent reflections
Radiation source: Rotating Anode7761 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.025
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 1515
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2324
Tmin = 0.762, Tmax = 0.871l = 2113
28742 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0491P)2 + 1.6706P]
where P = (Fo2 + 2Fc2)/3
8556 reflections(Δ/σ)max = 0.001
362 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Rh(C6H5N4)Cl2(C12H27P)2]V = 3756.1 (11) Å3
Mr = 711.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.969 (2) ŵ = 0.71 mm1
b = 18.725 (3) ÅT = 296 K
c = 16.894 (3) Å0.43 × 0.43 × 0.28 mm
β = 97.233 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
8556 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
7761 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.871Rint = 0.025
28742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 1.12 e Å3
8556 reflectionsΔρmin = 0.60 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.402953 (14)0.658731 (8)0.730531 (9)0.03314 (7)
N10.46054 (16)0.55992 (9)0.70670 (10)0.0351 (4)
C10.47455 (19)0.54765 (11)0.62971 (12)0.0342 (4)
N20.51758 (18)0.48329 (10)0.61789 (11)0.0420 (4)
C20.5319 (2)0.45319 (12)0.69256 (14)0.0453 (5)
H20.56090.40780.70440.054*
C30.4973 (2)0.49954 (12)0.74676 (14)0.0420 (5)
H30.49850.49140.80120.050*
N30.40158 (17)0.66435 (9)0.60900 (11)0.0362 (4)
C40.44091 (19)0.60582 (11)0.57681 (12)0.0354 (4)
N40.43859 (19)0.61395 (11)0.49801 (11)0.0415 (4)
C50.3956 (2)0.68098 (13)0.47929 (14)0.0452 (5)
H50.38400.70120.42870.054*
C60.3732 (2)0.71191 (12)0.54776 (14)0.0420 (5)
H60.34370.75740.55260.050*
Cl10.41788 (5)0.63754 (3)0.86826 (3)0.04604 (14)
Cl20.33479 (6)0.77629 (3)0.74172 (4)0.04849 (15)
P10.21482 (6)0.61643 (3)0.72089 (4)0.04473 (15)
C70.2076 (2)0.52534 (14)0.75887 (17)0.0509 (6)
H7B0.25360.49530.72920.061*
H7A0.24220.52530.81400.061*
C80.0929 (3)0.49015 (18)0.7562 (2)0.0681 (8)
H8B0.04280.52190.78030.082*
H8A0.06180.48290.70100.082*
C90.0976 (4)0.4194 (2)0.7991 (3)0.0923 (12)
H9B0.15720.39110.78090.111*
H9A0.11830.42820.85560.111*
C100.0076 (5)0.3763 (3)0.7890 (3)0.1197 (18)
H10C0.06550.40120.81230.180*
H10A0.00620.33100.81490.180*
H10B0.03140.36890.73320.180*
C110.1173 (3)0.66831 (17)0.7734 (2)0.0648 (8)
H11B0.12280.71790.75770.078*
H11A0.04150.65250.75460.078*
C120.1322 (3)0.6655 (2)0.8633 (2)0.0830 (11)
H12B0.12860.61610.88010.100*
H12A0.20630.68360.88320.100*
C130.0456 (4)0.7075 (3)0.8997 (3)0.1032 (14)
H13B0.02860.69250.87590.124*
H13A0.05400.75760.88710.124*
C140.0531 (5)0.6995 (3)0.9884 (3)0.128 (2)
H14C0.03020.65221.00110.192*
H14A0.00460.73381.00900.192*
H14B0.12940.70751.01200.192*
C150.1371 (3)0.61606 (17)0.61953 (19)0.0631 (8)
H15B0.05750.61220.62430.076*
H15A0.14870.66190.59510.076*
C160.1666 (3)0.55842 (18)0.56344 (19)0.0663 (8)
H16B0.13400.51370.57830.080*
H16A0.24780.55250.56980.080*
C170.1262 (4)0.5735 (2)0.4762 (2)0.0876 (12)
H17B0.04460.57650.46910.105*
H17A0.15530.61940.46200.105*
C180.1617 (4)0.5178 (3)0.4204 (3)0.1147 (17)
H18C0.24180.51130.43030.172*
H18A0.14120.53300.36630.172*
H18B0.12470.47340.42900.172*
P20.59041 (5)0.70149 (3)0.74918 (4)0.03851 (13)
C190.6997 (2)0.63231 (15)0.76701 (16)0.0509 (6)
H19B0.68330.59530.72710.061*
H19A0.77130.65350.75880.061*
C200.7131 (3)0.59719 (17)0.84883 (18)0.0597 (7)
H20B0.73730.63270.88910.072*
H20A0.64080.57870.85960.072*
C210.7981 (4)0.5368 (2)0.8545 (3)0.0958 (13)
H21B0.77130.50000.81630.115*
H21A0.86890.55470.84010.115*
C220.8184 (5)0.5042 (4)0.9368 (4)0.157 (3)
H22C0.83700.54120.97560.236*
H22A0.87950.47070.93900.236*
H22B0.75160.47990.94810.236*
C230.6346 (2)0.74769 (14)0.66276 (15)0.0498 (6)
H23B0.71600.75220.67090.060*
H23A0.61510.71800.61600.060*
C240.5844 (3)0.82146 (14)0.64528 (15)0.0519 (6)
H24B0.61390.85400.68750.062*
H24A0.50340.81900.64470.062*
C250.6111 (3)0.85031 (15)0.56556 (17)0.0597 (7)
H25B0.69200.84990.56490.072*
H25A0.57760.81930.52310.072*
C260.5677 (4)0.92541 (17)0.55013 (18)0.0744 (10)
H26C0.49040.92780.55970.112*
H26A0.57330.93820.49570.112*
H26B0.61180.95790.58520.112*
C270.6197 (2)0.76403 (14)0.83187 (15)0.0466 (5)
H27B0.56810.80400.82260.056*
H27A0.60390.74040.88030.056*
C280.7397 (3)0.79327 (19)0.84555 (19)0.0677 (8)
H28B0.79070.75420.86150.081*
H28A0.75890.81180.79540.081*
C290.7582 (4)0.8510 (2)0.9074 (3)0.0898 (12)
H29B0.83410.86950.90790.108*
H29A0.70640.88990.89200.108*
C300.7435 (6)0.8286 (4)0.9867 (3)0.145 (3)
H30C0.66700.81340.98780.217*
H30A0.76000.86771.02300.217*
H30B0.79350.78961.00240.217*
H40.451 (3)0.5844 (17)0.4666 (19)0.061 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.03979 (11)0.03010 (10)0.02944 (10)0.00293 (6)0.00400 (7)0.00268 (6)
N10.0432 (10)0.0324 (8)0.0298 (8)0.0030 (7)0.0047 (7)0.0000 (7)
C10.0420 (12)0.0289 (9)0.0316 (10)0.0009 (8)0.0045 (8)0.0015 (8)
N20.0581 (13)0.0299 (9)0.0379 (10)0.0065 (8)0.0059 (9)0.0025 (7)
C20.0613 (16)0.0306 (10)0.0434 (12)0.0060 (10)0.0036 (11)0.0045 (9)
C30.0549 (14)0.0347 (11)0.0360 (11)0.0032 (10)0.0041 (10)0.0067 (9)
N30.0468 (11)0.0300 (9)0.0312 (9)0.0042 (7)0.0025 (8)0.0005 (7)
C40.0443 (12)0.0297 (9)0.0317 (10)0.0016 (8)0.0031 (9)0.0012 (8)
N40.0594 (13)0.0364 (10)0.0290 (9)0.0034 (9)0.0061 (8)0.0018 (8)
C50.0615 (16)0.0381 (11)0.0348 (11)0.0037 (11)0.0009 (10)0.0058 (9)
C60.0555 (14)0.0298 (10)0.0394 (11)0.0051 (10)0.0003 (10)0.0028 (9)
Cl10.0502 (3)0.0575 (3)0.0310 (3)0.0025 (3)0.0077 (2)0.0005 (2)
Cl20.0539 (4)0.0342 (3)0.0575 (4)0.0056 (2)0.0076 (3)0.0092 (2)
P10.0399 (3)0.0415 (3)0.0519 (4)0.0004 (2)0.0027 (3)0.0010 (3)
C70.0523 (15)0.0420 (12)0.0586 (15)0.0024 (11)0.0080 (12)0.0012 (11)
C80.0576 (19)0.0624 (18)0.086 (2)0.0136 (14)0.0139 (16)0.0066 (16)
C90.091 (3)0.064 (2)0.127 (3)0.0124 (19)0.037 (3)0.008 (2)
C100.128 (4)0.087 (3)0.149 (5)0.042 (3)0.036 (4)0.005 (3)
C110.0482 (16)0.0554 (16)0.094 (3)0.0082 (12)0.0207 (16)0.0015 (15)
C120.060 (2)0.101 (3)0.091 (3)0.0125 (18)0.0190 (19)0.026 (2)
C130.088 (3)0.103 (3)0.126 (4)0.017 (2)0.043 (3)0.022 (3)
C140.115 (4)0.155 (5)0.123 (4)0.011 (4)0.049 (3)0.040 (4)
C150.0487 (16)0.0671 (18)0.0690 (18)0.0015 (14)0.0100 (14)0.0096 (15)
C160.0539 (18)0.075 (2)0.0646 (18)0.0078 (15)0.0114 (14)0.0020 (15)
C170.086 (3)0.104 (3)0.066 (2)0.016 (2)0.0176 (19)0.006 (2)
C180.106 (4)0.163 (5)0.071 (2)0.029 (3)0.006 (2)0.021 (3)
P20.0404 (3)0.0395 (3)0.0361 (3)0.0004 (2)0.0067 (2)0.0019 (2)
C190.0420 (14)0.0545 (15)0.0571 (15)0.0074 (11)0.0100 (11)0.0025 (12)
C200.0512 (16)0.0639 (17)0.0629 (17)0.0131 (13)0.0025 (13)0.0069 (14)
C210.081 (3)0.100 (3)0.109 (3)0.048 (2)0.019 (2)0.029 (2)
C220.157 (6)0.171 (6)0.144 (5)0.096 (5)0.021 (4)0.072 (4)
C230.0569 (16)0.0526 (14)0.0415 (13)0.0067 (12)0.0131 (11)0.0012 (11)
C240.0666 (18)0.0475 (13)0.0425 (13)0.0075 (12)0.0104 (12)0.0002 (11)
C250.082 (2)0.0576 (16)0.0400 (14)0.0052 (14)0.0075 (14)0.0011 (11)
C260.119 (3)0.0578 (18)0.0471 (16)0.0030 (18)0.0148 (17)0.0038 (13)
C270.0490 (14)0.0469 (13)0.0433 (13)0.0029 (11)0.0031 (10)0.0054 (10)
C280.0605 (19)0.080 (2)0.0615 (18)0.0184 (16)0.0024 (14)0.0104 (16)
C290.084 (3)0.091 (3)0.091 (3)0.030 (2)0.006 (2)0.020 (2)
C300.162 (6)0.194 (6)0.081 (3)0.081 (5)0.025 (3)0.039 (4)
Geometric parameters (Å, º) top
Rh1—N12.0322 (18)C15—H15B0.9700
Rh1—N32.0538 (19)C15—H15A0.9700
Rh1—Cl12.3450 (7)C16—C171.519 (5)
Rh1—Cl22.3634 (7)C16—H16B0.9700
Rh1—P22.3657 (7)C16—H16A0.9700
Rh1—P12.3732 (8)C17—C181.502 (6)
N1—C11.352 (3)C17—H17B0.9700
N1—C31.362 (3)C17—H17A0.9700
C1—N21.335 (3)C18—H18C0.9600
C1—C41.434 (3)C18—H18A0.9600
N2—C21.373 (3)C18—H18B0.9600
C2—C31.363 (3)P2—C271.823 (2)
C2—H20.9300P2—C231.831 (2)
C3—H30.9300P2—C191.839 (3)
N3—C41.335 (3)C19—C201.521 (4)
N3—C61.375 (3)C19—H19B0.9700
C4—N41.337 (3)C19—H19A0.9700
N4—C51.378 (3)C20—C211.516 (4)
N4—H40.80 (3)C20—H20B0.9700
C5—C61.350 (3)C20—H20A0.9700
C5—H50.9300C21—C221.510 (6)
C6—H60.9300C21—H21B0.9700
P1—C71.828 (3)C21—H21A0.9700
P1—C111.831 (3)C22—H22C0.9600
P1—C151.843 (3)C22—H22A0.9600
C7—C81.518 (4)C22—H22B0.9600
C7—H7B0.9700C23—C241.521 (4)
C7—H7A0.9700C23—H23B0.9700
C8—C91.507 (5)C23—H23A0.9700
C8—H8B0.9700C24—C251.522 (4)
C8—H8A0.9700C24—H24B0.9700
C9—C101.487 (6)C24—H24A0.9700
C9—H9B0.9700C25—C261.511 (4)
C9—H9A0.9700C25—H25B0.9700
C10—H10C0.9600C25—H25A0.9700
C10—H10A0.9600C26—H26C0.9600
C10—H10B0.9600C26—H26A0.9600
C11—C121.507 (5)C26—H26B0.9600
C11—H11B0.9700C27—C281.527 (4)
C11—H11A0.9700C27—H27B0.9700
C12—C131.494 (5)C27—H27A0.9700
C12—H12B0.9700C28—C291.500 (5)
C12—H12A0.9700C28—H28B0.9700
C13—C141.498 (7)C28—H28A0.9700
C13—H13B0.9700C29—C301.437 (6)
C13—H13A0.9700C29—H29B0.9700
C14—H14C0.9600C29—H29A0.9700
C14—H14A0.9600C30—H30C0.9600
C14—H14B0.9600C30—H30A0.9600
C15—C161.507 (5)C30—H30B0.9600
N1—Rh1—N378.98 (7)C16—C15—H15A108.0
N1—Rh1—Cl193.28 (5)P1—C15—H15A108.0
N3—Rh1—Cl1172.15 (5)H15B—C15—H15A107.3
N1—Rh1—Cl2173.16 (5)C15—C16—C17114.0 (3)
N3—Rh1—Cl294.18 (5)C15—C16—H16B108.8
Cl1—Rh1—Cl293.56 (2)C17—C16—H16B108.8
N1—Rh1—P289.71 (6)C15—C16—H16A108.8
N3—Rh1—P290.22 (6)C17—C16—H16A108.8
Cl1—Rh1—P288.43 (2)H16B—C16—H16A107.7
Cl2—Rh1—P290.30 (2)C18—C17—C16113.5 (4)
N1—Rh1—P191.44 (6)C18—C17—H17B108.9
N3—Rh1—P193.46 (6)C16—C17—H17B108.9
Cl1—Rh1—P187.98 (2)C18—C17—H17A108.9
Cl2—Rh1—P188.98 (2)C16—C17—H17A108.9
P2—Rh1—P1176.29 (2)H17B—C17—H17A107.7
C1—N1—C3105.41 (18)C17—C18—H18C109.5
C1—N1—Rh1115.57 (14)C17—C18—H18A109.5
C3—N1—Rh1138.91 (15)H18C—C18—H18A109.5
N2—C1—N1113.22 (18)C17—C18—H18B109.5
N2—C1—C4132.48 (19)H18C—C18—H18B109.5
N1—C1—C4114.30 (18)H18A—C18—H18B109.5
C1—N2—C2103.81 (18)C27—P2—C23105.10 (12)
C3—C2—N2110.0 (2)C27—P2—C19105.24 (13)
C3—C2—H2125.0C23—P2—C19101.09 (13)
N2—C2—H2125.0C27—P2—Rh1114.03 (9)
N1—C3—C2107.52 (19)C23—P2—Rh1114.71 (9)
N1—C3—H3126.2C19—P2—Rh1115.25 (10)
C2—C3—H3126.2C20—C19—P2116.45 (19)
C4—N3—C6106.95 (18)C20—C19—H19B108.2
C4—N3—Rh1113.98 (14)P2—C19—H19B108.2
C6—N3—Rh1139.07 (15)C20—C19—H19A108.2
N3—C4—N4110.37 (19)P2—C19—H19A108.2
N3—C4—C1117.07 (18)H19B—C19—H19A107.3
N4—C4—C1132.5 (2)C21—C20—C19111.9 (3)
C4—N4—C5107.01 (19)C21—C20—H20B109.2
C4—N4—H4127 (2)C19—C20—H20B109.2
C5—N4—H4125 (2)C21—C20—H20A109.2
C6—C5—N4107.6 (2)C19—C20—H20A109.2
C6—C5—H5126.2H20B—C20—H20A107.9
N4—C5—H5126.2C22—C21—C20112.8 (4)
C5—C6—N3108.1 (2)C22—C21—H21B109.0
C5—C6—H6126.0C20—C21—H21B109.0
N3—C6—H6126.0C22—C21—H21A109.0
C7—P1—C11105.28 (14)C20—C21—H21A109.0
C7—P1—C15106.38 (14)H21B—C21—H21A107.8
C11—P1—C15100.06 (16)C21—C22—H22C109.5
C7—P1—Rh1111.95 (9)C21—C22—H22A109.5
C11—P1—Rh1116.53 (11)H22C—C22—H22A109.5
C15—P1—Rh1115.36 (11)C21—C22—H22B109.5
C8—C7—P1118.5 (2)H22C—C22—H22B109.5
C8—C7—H7B107.7H22A—C22—H22B109.5
P1—C7—H7B107.7C24—C23—P2115.92 (18)
C8—C7—H7A107.7C24—C23—H23B108.3
P1—C7—H7A107.7P2—C23—H23B108.3
H7B—C7—H7A107.1C24—C23—H23A108.3
C9—C8—C7112.9 (3)P2—C23—H23A108.3
C9—C8—H8B109.0H23B—C23—H23A107.4
C7—C8—H8B109.0C23—C24—C25111.9 (2)
C9—C8—H8A109.0C23—C24—H24B109.2
C7—C8—H8A109.0C25—C24—H24B109.2
H8B—C8—H8A107.8C23—C24—H24A109.2
C10—C9—C8116.2 (4)C25—C24—H24A109.2
C10—C9—H9B108.2H24B—C24—H24A107.9
C8—C9—H9B108.2C26—C25—C24112.2 (3)
C10—C9—H9A108.2C26—C25—H25B109.2
C8—C9—H9A108.2C24—C25—H25B109.2
H9B—C9—H9A107.4C26—C25—H25A109.2
C9—C10—H10C109.5C24—C25—H25A109.2
C9—C10—H10A109.5H25B—C25—H25A107.9
H10C—C10—H10A109.5C25—C26—H26C109.5
C9—C10—H10B109.5C25—C26—H26A109.5
H10C—C10—H10B109.5H26C—C26—H26A109.5
H10A—C10—H10B109.5C25—C26—H26B109.5
C12—C11—P1117.9 (2)H26C—C26—H26B109.5
C12—C11—H11B107.8H26A—C26—H26B109.5
P1—C11—H11B107.8C28—C27—P2115.66 (19)
C12—C11—H11A107.8C28—C27—H27B108.4
P1—C11—H11A107.8P2—C27—H27B108.4
H11B—C11—H11A107.2C28—C27—H27A108.4
C13—C12—C11113.4 (4)P2—C27—H27A108.4
C13—C12—H12B108.9H27B—C27—H27A107.4
C11—C12—H12B108.9C29—C28—C27114.7 (3)
C13—C12—H12A108.9C29—C28—H28B108.6
C11—C12—H12A108.9C27—C28—H28B108.6
H12B—C12—H12A107.7C29—C28—H28A108.6
C12—C13—C14113.7 (4)C27—C28—H28A108.6
C12—C13—H13B108.8H28B—C28—H28A107.6
C14—C13—H13B108.8C30—C29—C28114.4 (4)
C12—C13—H13A108.8C30—C29—H29B108.7
C14—C13—H13A108.8C28—C29—H29B108.7
H13B—C13—H13A107.7C30—C29—H29A108.7
C13—C14—H14C109.5C28—C29—H29A108.7
C13—C14—H14A109.5H29B—C29—H29A107.6
H14C—C14—H14A109.5C29—C30—H30C109.5
C13—C14—H14B109.5C29—C30—H30A109.5
H14C—C14—H14B109.5H30C—C30—H30A109.5
H14A—C14—H14B109.5C29—C30—H30B109.5
C16—C15—P1117.1 (2)H30C—C30—H30B109.5
C16—C15—H15B108.0H30A—C30—H30B109.5
P1—C15—H15B108.0
N3—Rh1—N1—C12.99 (16)Cl2—Rh1—P1—C1130.31 (12)
Cl1—Rh1—N1—C1175.70 (16)N1—Rh1—P1—C1586.56 (13)
P2—Rh1—N1—C187.29 (16)N3—Rh1—P1—C157.52 (13)
P1—Rh1—N1—C196.24 (16)Cl1—Rh1—P1—C15179.79 (12)
N3—Rh1—N1—C3178.3 (3)Cl2—Rh1—P1—C1586.61 (12)
Cl1—Rh1—N1—C30.4 (3)C11—P1—C7—C853.0 (3)
P2—Rh1—N1—C388.0 (3)C15—P1—C7—C852.6 (3)
P1—Rh1—N1—C388.5 (3)Rh1—P1—C7—C8179.5 (2)
C3—N1—C1—N20.2 (3)P1—C7—C8—C9172.4 (3)
Rh1—N1—C1—N2176.96 (16)C7—C8—C9—C10171.0 (4)
C3—N1—C1—C4179.7 (2)C7—P1—C11—C1253.7 (3)
Rh1—N1—C1—C42.9 (3)C15—P1—C11—C12163.9 (3)
N1—C1—N2—C20.2 (3)Rh1—P1—C11—C1271.0 (3)
C4—C1—N2—C2179.6 (3)P1—C11—C12—C13177.9 (3)
C1—N2—C2—C30.1 (3)C11—C12—C13—C14174.6 (4)
C1—N1—C3—C20.1 (3)C7—P1—C15—C1649.8 (3)
Rh1—N1—C3—C2175.67 (19)C11—P1—C15—C16159.2 (3)
N2—C2—C3—N10.0 (3)Rh1—P1—C15—C1675.0 (3)
N1—Rh1—N3—C42.58 (16)P1—C15—C16—C17163.0 (3)
Cl2—Rh1—N3—C4177.40 (16)C15—C16—C17—C18176.7 (3)
P2—Rh1—N3—C487.08 (16)N1—Rh1—P2—C27140.17 (11)
P1—Rh1—N3—C493.37 (16)N3—Rh1—P2—C27140.85 (11)
N1—Rh1—N3—C6178.7 (3)Cl1—Rh1—P2—C2746.89 (10)
Cl2—Rh1—N3—C61.3 (3)Cl2—Rh1—P2—C2746.67 (10)
P2—Rh1—N3—C691.6 (3)N1—Rh1—P2—C2398.54 (11)
P1—Rh1—N3—C687.9 (3)N3—Rh1—P2—C2319.57 (11)
C6—N3—C4—N40.1 (3)Cl1—Rh1—P2—C23168.17 (10)
Rh1—N3—C4—N4179.23 (16)Cl2—Rh1—P2—C2374.61 (10)
C6—N3—C4—C1179.0 (2)N1—Rh1—P2—C1918.28 (11)
Rh1—N3—C4—C11.9 (3)N3—Rh1—P2—C1997.26 (11)
N2—C1—C4—N3179.2 (2)Cl1—Rh1—P2—C1975.01 (10)
N1—C1—C4—N30.7 (3)Cl2—Rh1—P2—C19168.56 (10)
N2—C1—C4—N42.2 (5)C27—P2—C19—C2052.7 (2)
N1—C1—C4—N4178.0 (2)C23—P2—C19—C20161.8 (2)
N3—C4—N4—C50.0 (3)Rh1—P2—C19—C2073.9 (2)
C1—C4—N4—C5178.6 (3)P2—C19—C20—C21175.0 (3)
C4—N4—C5—C60.2 (3)C19—C20—C21—C22176.3 (4)
N4—C5—C6—N30.3 (3)C27—P2—C23—C2453.6 (2)
C4—N3—C6—C50.2 (3)C19—P2—C23—C24162.9 (2)
Rh1—N3—C6—C5179.00 (19)Rh1—P2—C23—C2472.5 (2)
N1—Rh1—P1—C735.28 (11)P2—C23—C24—C25170.9 (2)
N3—Rh1—P1—C7114.32 (11)C23—C24—C25—C26176.5 (3)
Cl1—Rh1—P1—C757.95 (10)C23—P2—C27—C2853.1 (3)
Cl2—Rh1—P1—C7151.55 (10)C19—P2—C27—C2853.1 (2)
N1—Rh1—P1—C11156.52 (13)Rh1—P2—C27—C28179.6 (2)
N3—Rh1—P1—C11124.43 (13)P2—C27—C28—C29173.0 (3)
Cl1—Rh1—P1—C1163.29 (12)C27—C28—C29—C3064.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N2i0.80 (3)1.98 (3)2.772 (3)176 (3)
Symmetry code: (i) x+1, y+1, z+1.
Selected bond lengths (Å) top
Rh1—N12.0322 (18)Rh1—Cl22.3634 (7)
Rh1—N32.0538 (19)Rh1—P22.3657 (7)
Rh1—Cl12.3450 (7)Rh1—P12.3732 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N2i0.80 (3)1.98 (3)2.772 (3)176 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Rh(C6H5N4)Cl2(C12H27P)2]
Mr711.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.969 (2), 18.725 (3), 16.894 (3)
β (°) 97.233 (3)
V3)3756.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.43 × 0.43 × 0.28
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.762, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
28742, 8556, 7761
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.12
No. of reflections8556
No. of parameters362
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.12, 0.60

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009).

 

Acknowledgements

We thank Professor Tadokoro (Tokyo University of Science) for the provision of bi­imidazole. This work was supported by JSPS KAKENHI grant Nos. 22550058 and 26410068.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFortin, S., Fabre, P.-L., Dartiguenave, M. & Beauchamp, A. L. (2001). J. Chem. Soc. Dalton Trans. pp. 3520–3527.  Web of Science CSD CrossRef Google Scholar
First citationGalsbøl, F., Kojima, M., Ishii, T., Ohba, S., Saito, Y. & Fujita, J. (1986). Bull. Chem. Soc. Jpn, 59, 1701–1707.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662–671.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJin-Long, Uemura, K. & Ebihara, M. (2014a). Acta Cryst. B70. In the press [Co-editor code RY5061].  CrossRef IUCr Journals Google Scholar
First citationJin-Long, Uemura, K. & Ebihara, M. (2014b). Inorg. Chem. Submitted.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMolecular Structure Corporation & Rigaku (2008). Crystal Clear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPatra, S. C., Biswas, M. K., Maity, A. N. & Ghosh, P. (2011). Inorg. Chem. 50, 1331–1338.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadokoro, M., Inoue, T., Tamaki, S., Fujii, K., Isogai, K., Nakazawa, H., Takeda, S., Isobe, K., Koga, N., Ichimura, A. & Nakasuji, K. (2007). Angew. Chem. Int. Ed. 46, 5938–5942.  Web of Science CSD CrossRef CAS Google Scholar
First citationWakita, K. (2001). Yadokari-XG 2009. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds