research communications
H-imidazol-2-yl-κN3)imidazolato-κN]bis(tri-n-butylphosphane-κP)rhodium(III)
of dichlorido[2-(1aDepartment of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: ebihara@gifu-u.ac.jp
In the title compound, [Rh(C6H5N4)Cl2(C12H27P)2], the RhIII ion is chelated by the singly deprotonated 2,2′-biimidazolate (Hbim−) ligand and coordinated by two chloride ions and two tri-n-butylphosphane ligands. The chloride ions and N atoms of the Hbim− ligand lie in a plane where the sum of X—Rh—X angles between cis sites is 360°. The phosphane ligands occupy the sites perpendicular to the plane, completing the overall distorted octahedral coordination sphere. The complex forms a self-complementary hydrogen-bonded dimer with the inversion-related complex through N—H⋯N hydrogen bonds.
Keywords: crystal structure; hydrogen bonding; biimidazole; rhodium complex.
CCDC reference: 1028912
1. Chemical context
Assembled structures and supramolecules from metal complex modules have been one of the most actively investigated areas in coordination chemistry recently. The use of hydrogen bonding is a common method for the construction of structures. We have investigated dirhodium complexes with biimidazole (H2bim) or biimidazolate (Hbim−) ligands and two types of compounds [Rh2(H2bim)4L2]4+ (L = H2O, MeOH, etc.) (Jin-Long et al., 2014a) and [Rh2(H2bim)2(O2CR)2(PPh3)2]2+ (R = propyl and butyl) (Jin-Long et al., 2014b) have been synthesized. We have tried to synthesize [Rh2(H2bim)4(PR3)2]4+, which is expected to have good solubility to organic solvents. However, the reaction of the dinuclear rhodium(II) complex [Rh2(H2bim)4(MeCN)2]4+ with PBu3 gave the mononuclear rhodium(III) compound [Rh(Hbim)Cl2(PBu3)2] (I). The source of the chloride ligands may be the chloroform that was used as solvent.
2. Structural commentary
In the structure of (I), the RhIII ion is chelated by the singly deprotonated biimidazolate (Hbim−) ligand and coordinated by two chloride ions and two tri-n-butylphosphane ligands (Fig. 1, Table 1). The chloride ions and N atoms of the Hbim− ligand lie in a plane where the sum of X—Rh—X angles between cis-sites is 360°. The small bite angle of N1—Rh1—N3 [78.98 (7)°] makes the other angles wider than 90° [N1—Rh1—Cl1 93.28 (5), N3—Rh1—Cl2 94.18 (5) and Cl1—Rh1—Cl2 93.56 (2)°]. The phosphane ligands occupy the axial sites with a P1—Rh1—P2 angle of 176.29 (2)°.
|
3. Supramolecular features
Compound (I) is isostructural with the Re analogue [Re(Hbim)Cl2(PBu3)2] (Tadokoro et al., 2007). The complex forms a self-complementary hydrogen-bonded dimer (Table 2) with the symmetry-related complex about the inversion centre at (½, ½, ½), as shown in Fig. 2. At is 2.772 (3) Å, the hydrogen-bonded N⋯N distance in the dimer is quite similar to those in [Re(Hbim)Cl2(PBu3)2] [2.771 (3) Å; Tadokoro et al., 2007], [Re(Hbim)Cl2(PMe3)2] [2.775 (11) Å; Fortin et al., 2001] and [Rh2(Hbim)2(O2CR)2(PPh3)2]2 [R = propyl: 2.774 (7), 2.737 (7), 2.735 (6) and 2.732 (7) Å, R = butyl: 2.752 (11) and 2.733 (12) Å; Jin-Long et al., 2014b].
4. Database survey
A search of the Cambridge Structural Database (Version 5.35, February 2014 update; Groom & Allen, 2014) reveals only twelve complexes that have an RhN2Cl2P2 core. Among them, two have a cis-NN, cis-ClCl and trans-PP geometry, viz. cis-dichlorido-trans-bis[(2-aminoethyl)diphenylphosphino-N,P]rhodium chloride tetrahydrate (Galsbøl et al., 1986) and dichlorido-[2,2′-ethane-1,2-diylidenebis(1-phenylhydrazine)]bis(triphenylphosphane)rhodium triiodide (Patra et al., 2011).
5. Synthesis and crystallization
[Rh2(H2bim)4(MeCN)2](BF4)4·H2O was prepared by a method described previously (Jin-Long et al., 2014b). A weighed amount of [Rh2(H2bim)4(MeCN)2](BF4)4·H2O (100 mg, 0.084 mmol) and tributylphosphane (0.21 ml, 0.840 mmol) in 5 ml of chloroform was refluxed under an argon atmosphere for 30 min. From the resulting olive-green suspension, the solvent was removed by evaporation in vacuo. The olive-green solid changed to yellow when the flask was opened in air. The yellow solid was dissolved in MeOH and the insoluble solid was removed by filtration. Slow evaporation of the solution gave yellow crystals of [Rh(Hbim)Cl2(PBu3)2] (56 mg, 93%). Analysis calculated for C30H59Cl2N4P2Rh: C 50.64, H 8.36, N 7.87%; found: C 50.37, H 8.37, N 8.05%.
6. Refinement
The hydrogen atom connected to the nitrogen atom N4 was located by difference-Fourier methods and its positional and displacement parameters were refined. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).
Supporting information
CCDC reference: 1028912
10.1107/S1600536814022454/ff2131sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814022454/ff2131Isup2.hkl
Assembled structures and supramolecules from metal complex modules have been one of the most actively investigated areas in coordination chemistry recently. The use of hydrogen bonding is a common method for the construction of structures. We have investigated dirhodium complexes with biimidazole (H2bim) or biimidazolate (Hbim-) ligands and two types of compounds [Rh2(H2bim)4L2]4+ (L = H2O, MeOH, etc.) (Jin-Long et al., 2014a) and [Rh2(H2bim)2(O2CR)2(PPh3)2]2+ (R = [please supply]) (Jin-Long et al., 2014b) have been synthesized. We have tried to synthesize [Rh2(H2bim)4(PR3)2]4+, which is expected to have good solubility to organic solvents. However, the reaction of the dinuclear rhodium(II) complex [Rh2(H2bim)4(MeCN)2]4+ with PBu3 gave the mononuclear rhodium(III) compound [Rh(Hbim)Cl2(PBu3)2] (I). The source of the chloride ligands may be the chloroform that was used as solvent.
In the structure of (I), the RhIII ion is chelated by the singly deprotonated biimidazolate (Hbim-) ligand and coordinated by two chloride ions and two tri-n-butylphosphane ligands. The chloride ions and N atoms of the Hbim- ligand lie in a plane where the sum of X—Rh—X angles between cis-sites is 360°. The small bite angle of N1—Rh1—N3 [78.98 (7)°] makes the other angles wider than 90° [N1—Rh1—Cl1 93.28 (5), N3—Rh1—Cl2 94.18 (5) and Cl1—Rh1—Cl2 93.56 (2)°]. The phosphane ligands occupy the axial sites with a P1—Rh1—P2 angle of 176.29 (2)°.
Compound (I) is isostructural with the Re analogue [Re(Hbim)Cl2(PBu3)2] (Tadokoro et al., 2007). The complex forms a self-complementary hydrogen-bonded dimer with the symmetry-related complex about the inversion centre at (1/2, 1/2, 1/2), as shown in Fig. 2. At is 2.772 (3) Å, the hydrogen-bonded N···N distance in the dimer is quite similar to those in [Re(Hbim)Cl2(PBu3)2] [2.771 (3) Å; Tadokoro et al., 2007], [Re(Hbim)Cl2(PMe3)2] [2.775 (11) Å; Fortin et al., 2001] and [Rh2(Hbim)2(O2CR)2(PPh3)2]2 [R = Pr: 2.774 (7), 2.737 (7), 2.735 (6) and 2.732 (7) Å, R = Bu: 2.752 (11) and 2.733 (12) Å; Jin-Long et al., 2014b].
\ A search of the Cambridge Structural Database (Version 5.35, February 2014 update; Groom & Allen, 2014) reveals only twelve complexes that have an RhN2Cl2P2 core. Among them, two complexes have a cis-NN, cis-ClCl and trans-PP geometry, viz. cis-dichloro-trans-bis[(2-aminoethyl)diphenylphosphino-N,\ P]rhodium chloride tetrahydrate (Galsbøl et al., 1986) and dichloro-[2,2'-ethane-1,2-diylidenebis(1-phenylhydrazine)]\ bis(triphenylphosphane)rhodium triiodide (Patra et al., 2011).
[Rh2(H2bim)4(MeCN)2](BF4)4.H2O was prepared by a method described previously (Jin-Long et al., 2014b). A weighed amount of [Rh2(H2bim)4(MeCN)2](BF4)4·H2O (100 mg, 0.084 mmol) and tributylphosphane (0.21 mL, 0.840 mmol) in 5 mL of chloroform was refluxed under an argon atmosphere for 30 min. From the resulting olive-green suspension, the solvent was removed by evaporation in vacuo. The olive-green solid changed to yellow when the flask was opened in air. The yellow solid was dissolved in MeOH and the insoluble solid was removed by filtration. Slow evaporation of the solution gave yellow crystals of [Rh(Hbim)Cl2(PBu3)2] (56 mg, 93%). Analysis calculated for C30H59Cl2N4P2Rh: C 50.64, H 8.36, N 7.87%; found: C 50.37, H 8.37, N 8.05%.
The hydrogen atom connected to the nitrogen atom N4 was located by difference-Fourier methods and its positional and displacement parameters were refined. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2008); cell
CrystalClear (Molecular Structure Corporation & Rigaku, 2008); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009).The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The hydrogen-bonded dimer structure of the title compound. H atoms except NH have been omitted for clarity. [Symmetry code: (i) -x+1, -y+1, -z+1.] |
[Rh(C6H5N4)Cl2(C12H27P)2] | F(000) = 1504 |
Mr = 711.56 | Dx = 1.258 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2ybc | Cell parameters from 11010 reflections |
a = 11.969 (2) Å | θ = 3.3–27.5° |
b = 18.725 (3) Å | µ = 0.71 mm−1 |
c = 16.894 (3) Å | T = 296 K |
β = 97.233 (3)° | Prism, yellow |
V = 3756.1 (11) Å3 | 0.43 × 0.43 × 0.28 mm |
Z = 4 |
Rigaku/MSC Mercury CCD diffractometer | 8556 independent reflections |
Radiation source: Rotating Anode | 7761 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.025 |
Detector resolution: 14.6306 pixels mm-1 | θmax = 27.5°, θmin = 3.4° |
ω scans | h = −15→15 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −23→24 |
Tmin = 0.762, Tmax = 0.871 | l = −21→13 |
28742 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0491P)2 + 1.6706P] where P = (Fo2 + 2Fc2)/3 |
8556 reflections | (Δ/σ)max = 0.001 |
362 parameters | Δρmax = 1.12 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
[Rh(C6H5N4)Cl2(C12H27P)2] | V = 3756.1 (11) Å3 |
Mr = 711.56 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.969 (2) Å | µ = 0.71 mm−1 |
b = 18.725 (3) Å | T = 296 K |
c = 16.894 (3) Å | 0.43 × 0.43 × 0.28 mm |
β = 97.233 (3)° |
Rigaku/MSC Mercury CCD diffractometer | 8556 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 7761 reflections with I > 2σ(I) |
Tmin = 0.762, Tmax = 0.871 | Rint = 0.025 |
28742 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 1.12 e Å−3 |
8556 reflections | Δρmin = −0.60 e Å−3 |
362 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Rh1 | 0.402953 (14) | 0.658731 (8) | 0.730531 (9) | 0.03314 (7) | |
N1 | 0.46054 (16) | 0.55992 (9) | 0.70670 (10) | 0.0351 (4) | |
C1 | 0.47455 (19) | 0.54765 (11) | 0.62971 (12) | 0.0342 (4) | |
N2 | 0.51758 (18) | 0.48329 (10) | 0.61789 (11) | 0.0420 (4) | |
C2 | 0.5319 (2) | 0.45319 (12) | 0.69256 (14) | 0.0453 (5) | |
H2 | 0.5609 | 0.4078 | 0.7044 | 0.054* | |
C3 | 0.4973 (2) | 0.49954 (12) | 0.74676 (14) | 0.0420 (5) | |
H3 | 0.4985 | 0.4914 | 0.8012 | 0.050* | |
N3 | 0.40158 (17) | 0.66435 (9) | 0.60900 (11) | 0.0362 (4) | |
C4 | 0.44091 (19) | 0.60582 (11) | 0.57681 (12) | 0.0354 (4) | |
N4 | 0.43859 (19) | 0.61395 (11) | 0.49801 (11) | 0.0415 (4) | |
C5 | 0.3956 (2) | 0.68098 (13) | 0.47929 (14) | 0.0452 (5) | |
H5 | 0.3840 | 0.7012 | 0.4287 | 0.054* | |
C6 | 0.3732 (2) | 0.71191 (12) | 0.54776 (14) | 0.0420 (5) | |
H6 | 0.3437 | 0.7574 | 0.5526 | 0.050* | |
Cl1 | 0.41788 (5) | 0.63754 (3) | 0.86826 (3) | 0.04604 (14) | |
Cl2 | 0.33479 (6) | 0.77629 (3) | 0.74172 (4) | 0.04849 (15) | |
P1 | 0.21482 (6) | 0.61643 (3) | 0.72089 (4) | 0.04473 (15) | |
C7 | 0.2076 (2) | 0.52534 (14) | 0.75887 (17) | 0.0509 (6) | |
H7B | 0.2536 | 0.4953 | 0.7292 | 0.061* | |
H7A | 0.2422 | 0.5253 | 0.8140 | 0.061* | |
C8 | 0.0929 (3) | 0.49015 (18) | 0.7562 (2) | 0.0681 (8) | |
H8B | 0.0428 | 0.5219 | 0.7803 | 0.082* | |
H8A | 0.0618 | 0.4829 | 0.7010 | 0.082* | |
C9 | 0.0976 (4) | 0.4194 (2) | 0.7991 (3) | 0.0923 (12) | |
H9B | 0.1572 | 0.3911 | 0.7809 | 0.111* | |
H9A | 0.1183 | 0.4282 | 0.8556 | 0.111* | |
C10 | −0.0076 (5) | 0.3763 (3) | 0.7890 (3) | 0.1197 (18) | |
H10C | −0.0655 | 0.4012 | 0.8123 | 0.180* | |
H10A | 0.0062 | 0.3310 | 0.8149 | 0.180* | |
H10B | −0.0314 | 0.3689 | 0.7332 | 0.180* | |
C11 | 0.1173 (3) | 0.66831 (17) | 0.7734 (2) | 0.0648 (8) | |
H11B | 0.1228 | 0.7179 | 0.7577 | 0.078* | |
H11A | 0.0415 | 0.6525 | 0.7546 | 0.078* | |
C12 | 0.1322 (3) | 0.6655 (2) | 0.8633 (2) | 0.0830 (11) | |
H12B | 0.1286 | 0.6161 | 0.8801 | 0.100* | |
H12A | 0.2063 | 0.6836 | 0.8832 | 0.100* | |
C13 | 0.0456 (4) | 0.7075 (3) | 0.8997 (3) | 0.1032 (14) | |
H13B | −0.0286 | 0.6925 | 0.8759 | 0.124* | |
H13A | 0.0540 | 0.7576 | 0.8871 | 0.124* | |
C14 | 0.0531 (5) | 0.6995 (3) | 0.9884 (3) | 0.128 (2) | |
H14C | 0.0302 | 0.6522 | 1.0011 | 0.192* | |
H14A | 0.0046 | 0.7338 | 1.0090 | 0.192* | |
H14B | 0.1294 | 0.7075 | 1.0120 | 0.192* | |
C15 | 0.1371 (3) | 0.61606 (17) | 0.61953 (19) | 0.0631 (8) | |
H15B | 0.0575 | 0.6122 | 0.6243 | 0.076* | |
H15A | 0.1487 | 0.6619 | 0.5951 | 0.076* | |
C16 | 0.1666 (3) | 0.55842 (18) | 0.56344 (19) | 0.0663 (8) | |
H16B | 0.1340 | 0.5137 | 0.5783 | 0.080* | |
H16A | 0.2478 | 0.5525 | 0.5698 | 0.080* | |
C17 | 0.1262 (4) | 0.5735 (2) | 0.4762 (2) | 0.0876 (12) | |
H17B | 0.0446 | 0.5765 | 0.4691 | 0.105* | |
H17A | 0.1553 | 0.6194 | 0.4620 | 0.105* | |
C18 | 0.1617 (4) | 0.5178 (3) | 0.4204 (3) | 0.1147 (17) | |
H18C | 0.2418 | 0.5113 | 0.4303 | 0.172* | |
H18A | 0.1412 | 0.5330 | 0.3663 | 0.172* | |
H18B | 0.1247 | 0.4734 | 0.4290 | 0.172* | |
P2 | 0.59041 (5) | 0.70149 (3) | 0.74918 (4) | 0.03851 (13) | |
C19 | 0.6997 (2) | 0.63231 (15) | 0.76701 (16) | 0.0509 (6) | |
H19B | 0.6833 | 0.5953 | 0.7271 | 0.061* | |
H19A | 0.7713 | 0.6535 | 0.7588 | 0.061* | |
C20 | 0.7131 (3) | 0.59719 (17) | 0.84883 (18) | 0.0597 (7) | |
H20B | 0.7373 | 0.6327 | 0.8891 | 0.072* | |
H20A | 0.6408 | 0.5787 | 0.8596 | 0.072* | |
C21 | 0.7981 (4) | 0.5368 (2) | 0.8545 (3) | 0.0958 (13) | |
H21B | 0.7713 | 0.5000 | 0.8163 | 0.115* | |
H21A | 0.8689 | 0.5547 | 0.8401 | 0.115* | |
C22 | 0.8184 (5) | 0.5042 (4) | 0.9368 (4) | 0.157 (3) | |
H22C | 0.8370 | 0.5412 | 0.9756 | 0.236* | |
H22A | 0.8795 | 0.4707 | 0.9390 | 0.236* | |
H22B | 0.7516 | 0.4799 | 0.9481 | 0.236* | |
C23 | 0.6346 (2) | 0.74769 (14) | 0.66276 (15) | 0.0498 (6) | |
H23B | 0.7160 | 0.7522 | 0.6709 | 0.060* | |
H23A | 0.6151 | 0.7180 | 0.6160 | 0.060* | |
C24 | 0.5844 (3) | 0.82146 (14) | 0.64528 (15) | 0.0519 (6) | |
H24B | 0.6139 | 0.8540 | 0.6875 | 0.062* | |
H24A | 0.5034 | 0.8190 | 0.6447 | 0.062* | |
C25 | 0.6111 (3) | 0.85031 (15) | 0.56556 (17) | 0.0597 (7) | |
H25B | 0.6920 | 0.8499 | 0.5649 | 0.072* | |
H25A | 0.5776 | 0.8193 | 0.5231 | 0.072* | |
C26 | 0.5677 (4) | 0.92541 (17) | 0.55013 (18) | 0.0744 (10) | |
H26C | 0.4904 | 0.9278 | 0.5597 | 0.112* | |
H26A | 0.5733 | 0.9382 | 0.4957 | 0.112* | |
H26B | 0.6118 | 0.9579 | 0.5852 | 0.112* | |
C27 | 0.6197 (2) | 0.76403 (14) | 0.83187 (15) | 0.0466 (5) | |
H27B | 0.5681 | 0.8040 | 0.8226 | 0.056* | |
H27A | 0.6039 | 0.7404 | 0.8803 | 0.056* | |
C28 | 0.7397 (3) | 0.79327 (19) | 0.84555 (19) | 0.0677 (8) | |
H28B | 0.7907 | 0.7542 | 0.8615 | 0.081* | |
H28A | 0.7589 | 0.8118 | 0.7954 | 0.081* | |
C29 | 0.7582 (4) | 0.8510 (2) | 0.9074 (3) | 0.0898 (12) | |
H29B | 0.8341 | 0.8695 | 0.9079 | 0.108* | |
H29A | 0.7064 | 0.8899 | 0.8920 | 0.108* | |
C30 | 0.7435 (6) | 0.8286 (4) | 0.9867 (3) | 0.145 (3) | |
H30C | 0.6670 | 0.8134 | 0.9878 | 0.217* | |
H30A | 0.7600 | 0.8677 | 1.0230 | 0.217* | |
H30B | 0.7935 | 0.7896 | 1.0024 | 0.217* | |
H4 | 0.451 (3) | 0.5844 (17) | 0.4666 (19) | 0.061 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.03979 (11) | 0.03010 (10) | 0.02944 (10) | 0.00293 (6) | 0.00400 (7) | −0.00268 (6) |
N1 | 0.0432 (10) | 0.0324 (8) | 0.0298 (8) | 0.0030 (7) | 0.0047 (7) | 0.0000 (7) |
C1 | 0.0420 (12) | 0.0289 (9) | 0.0316 (10) | 0.0009 (8) | 0.0045 (8) | −0.0015 (8) |
N2 | 0.0581 (13) | 0.0299 (9) | 0.0379 (10) | 0.0065 (8) | 0.0059 (9) | −0.0025 (7) |
C2 | 0.0613 (16) | 0.0306 (10) | 0.0434 (12) | 0.0060 (10) | 0.0036 (11) | 0.0045 (9) |
C3 | 0.0549 (14) | 0.0347 (11) | 0.0360 (11) | 0.0032 (10) | 0.0041 (10) | 0.0067 (9) |
N3 | 0.0468 (11) | 0.0300 (9) | 0.0312 (9) | 0.0042 (7) | 0.0025 (8) | 0.0005 (7) |
C4 | 0.0443 (12) | 0.0297 (9) | 0.0317 (10) | 0.0016 (8) | 0.0031 (9) | −0.0012 (8) |
N4 | 0.0594 (13) | 0.0364 (10) | 0.0290 (9) | 0.0034 (9) | 0.0061 (8) | −0.0018 (8) |
C5 | 0.0615 (16) | 0.0381 (11) | 0.0348 (11) | 0.0037 (11) | 0.0009 (10) | 0.0058 (9) |
C6 | 0.0555 (14) | 0.0298 (10) | 0.0394 (11) | 0.0051 (10) | 0.0003 (10) | 0.0028 (9) |
Cl1 | 0.0502 (3) | 0.0575 (3) | 0.0310 (3) | 0.0025 (3) | 0.0077 (2) | −0.0005 (2) |
Cl2 | 0.0539 (4) | 0.0342 (3) | 0.0575 (4) | 0.0056 (2) | 0.0076 (3) | −0.0092 (2) |
P1 | 0.0399 (3) | 0.0415 (3) | 0.0519 (4) | 0.0004 (2) | 0.0027 (3) | −0.0010 (3) |
C7 | 0.0523 (15) | 0.0420 (12) | 0.0586 (15) | −0.0024 (11) | 0.0080 (12) | 0.0012 (11) |
C8 | 0.0576 (19) | 0.0624 (18) | 0.086 (2) | −0.0136 (14) | 0.0139 (16) | 0.0066 (16) |
C9 | 0.091 (3) | 0.064 (2) | 0.127 (3) | −0.0124 (19) | 0.037 (3) | 0.008 (2) |
C10 | 0.128 (4) | 0.087 (3) | 0.149 (5) | −0.042 (3) | 0.036 (4) | 0.005 (3) |
C11 | 0.0482 (16) | 0.0554 (16) | 0.094 (3) | 0.0082 (12) | 0.0207 (16) | −0.0015 (15) |
C12 | 0.060 (2) | 0.101 (3) | 0.091 (3) | 0.0125 (18) | 0.0190 (19) | −0.026 (2) |
C13 | 0.088 (3) | 0.103 (3) | 0.126 (4) | 0.017 (2) | 0.043 (3) | −0.022 (3) |
C14 | 0.115 (4) | 0.155 (5) | 0.123 (4) | 0.011 (4) | 0.049 (3) | −0.040 (4) |
C15 | 0.0487 (16) | 0.0671 (18) | 0.0690 (18) | −0.0015 (14) | −0.0100 (14) | 0.0096 (15) |
C16 | 0.0539 (18) | 0.075 (2) | 0.0646 (18) | −0.0078 (15) | −0.0114 (14) | −0.0020 (15) |
C17 | 0.086 (3) | 0.104 (3) | 0.066 (2) | −0.016 (2) | −0.0176 (19) | 0.006 (2) |
C18 | 0.106 (4) | 0.163 (5) | 0.071 (2) | −0.029 (3) | −0.006 (2) | −0.021 (3) |
P2 | 0.0404 (3) | 0.0395 (3) | 0.0361 (3) | 0.0004 (2) | 0.0067 (2) | −0.0019 (2) |
C19 | 0.0420 (14) | 0.0545 (15) | 0.0571 (15) | 0.0074 (11) | 0.0100 (11) | −0.0025 (12) |
C20 | 0.0512 (16) | 0.0639 (17) | 0.0629 (17) | 0.0131 (13) | 0.0025 (13) | 0.0069 (14) |
C21 | 0.081 (3) | 0.100 (3) | 0.109 (3) | 0.048 (2) | 0.019 (2) | 0.029 (2) |
C22 | 0.157 (6) | 0.171 (6) | 0.144 (5) | 0.096 (5) | 0.021 (4) | 0.072 (4) |
C23 | 0.0569 (16) | 0.0526 (14) | 0.0415 (13) | −0.0067 (12) | 0.0131 (11) | 0.0012 (11) |
C24 | 0.0666 (18) | 0.0475 (13) | 0.0425 (13) | −0.0075 (12) | 0.0104 (12) | 0.0002 (11) |
C25 | 0.082 (2) | 0.0576 (16) | 0.0400 (14) | −0.0052 (14) | 0.0075 (14) | 0.0011 (11) |
C26 | 0.119 (3) | 0.0578 (18) | 0.0471 (16) | −0.0030 (18) | 0.0148 (17) | 0.0038 (13) |
C27 | 0.0490 (14) | 0.0469 (13) | 0.0433 (13) | −0.0029 (11) | 0.0031 (10) | −0.0054 (10) |
C28 | 0.0605 (19) | 0.080 (2) | 0.0615 (18) | −0.0184 (16) | 0.0024 (14) | −0.0104 (16) |
C29 | 0.084 (3) | 0.091 (3) | 0.091 (3) | −0.030 (2) | −0.006 (2) | −0.020 (2) |
C30 | 0.162 (6) | 0.194 (6) | 0.081 (3) | −0.081 (5) | 0.025 (3) | −0.039 (4) |
Rh1—N1 | 2.0322 (18) | C15—H15B | 0.9700 |
Rh1—N3 | 2.0538 (19) | C15—H15A | 0.9700 |
Rh1—Cl1 | 2.3450 (7) | C16—C17 | 1.519 (5) |
Rh1—Cl2 | 2.3634 (7) | C16—H16B | 0.9700 |
Rh1—P2 | 2.3657 (7) | C16—H16A | 0.9700 |
Rh1—P1 | 2.3732 (8) | C17—C18 | 1.502 (6) |
N1—C1 | 1.352 (3) | C17—H17B | 0.9700 |
N1—C3 | 1.362 (3) | C17—H17A | 0.9700 |
C1—N2 | 1.335 (3) | C18—H18C | 0.9600 |
C1—C4 | 1.434 (3) | C18—H18A | 0.9600 |
N2—C2 | 1.373 (3) | C18—H18B | 0.9600 |
C2—C3 | 1.363 (3) | P2—C27 | 1.823 (2) |
C2—H2 | 0.9300 | P2—C23 | 1.831 (2) |
C3—H3 | 0.9300 | P2—C19 | 1.839 (3) |
N3—C4 | 1.335 (3) | C19—C20 | 1.521 (4) |
N3—C6 | 1.375 (3) | C19—H19B | 0.9700 |
C4—N4 | 1.337 (3) | C19—H19A | 0.9700 |
N4—C5 | 1.378 (3) | C20—C21 | 1.516 (4) |
N4—H4 | 0.80 (3) | C20—H20B | 0.9700 |
C5—C6 | 1.350 (3) | C20—H20A | 0.9700 |
C5—H5 | 0.9300 | C21—C22 | 1.510 (6) |
C6—H6 | 0.9300 | C21—H21B | 0.9700 |
P1—C7 | 1.828 (3) | C21—H21A | 0.9700 |
P1—C11 | 1.831 (3) | C22—H22C | 0.9600 |
P1—C15 | 1.843 (3) | C22—H22A | 0.9600 |
C7—C8 | 1.518 (4) | C22—H22B | 0.9600 |
C7—H7B | 0.9700 | C23—C24 | 1.521 (4) |
C7—H7A | 0.9700 | C23—H23B | 0.9700 |
C8—C9 | 1.507 (5) | C23—H23A | 0.9700 |
C8—H8B | 0.9700 | C24—C25 | 1.522 (4) |
C8—H8A | 0.9700 | C24—H24B | 0.9700 |
C9—C10 | 1.487 (6) | C24—H24A | 0.9700 |
C9—H9B | 0.9700 | C25—C26 | 1.511 (4) |
C9—H9A | 0.9700 | C25—H25B | 0.9700 |
C10—H10C | 0.9600 | C25—H25A | 0.9700 |
C10—H10A | 0.9600 | C26—H26C | 0.9600 |
C10—H10B | 0.9600 | C26—H26A | 0.9600 |
C11—C12 | 1.507 (5) | C26—H26B | 0.9600 |
C11—H11B | 0.9700 | C27—C28 | 1.527 (4) |
C11—H11A | 0.9700 | C27—H27B | 0.9700 |
C12—C13 | 1.494 (5) | C27—H27A | 0.9700 |
C12—H12B | 0.9700 | C28—C29 | 1.500 (5) |
C12—H12A | 0.9700 | C28—H28B | 0.9700 |
C13—C14 | 1.498 (7) | C28—H28A | 0.9700 |
C13—H13B | 0.9700 | C29—C30 | 1.437 (6) |
C13—H13A | 0.9700 | C29—H29B | 0.9700 |
C14—H14C | 0.9600 | C29—H29A | 0.9700 |
C14—H14A | 0.9600 | C30—H30C | 0.9600 |
C14—H14B | 0.9600 | C30—H30A | 0.9600 |
C15—C16 | 1.507 (5) | C30—H30B | 0.9600 |
N1—Rh1—N3 | 78.98 (7) | C16—C15—H15A | 108.0 |
N1—Rh1—Cl1 | 93.28 (5) | P1—C15—H15A | 108.0 |
N3—Rh1—Cl1 | 172.15 (5) | H15B—C15—H15A | 107.3 |
N1—Rh1—Cl2 | 173.16 (5) | C15—C16—C17 | 114.0 (3) |
N3—Rh1—Cl2 | 94.18 (5) | C15—C16—H16B | 108.8 |
Cl1—Rh1—Cl2 | 93.56 (2) | C17—C16—H16B | 108.8 |
N1—Rh1—P2 | 89.71 (6) | C15—C16—H16A | 108.8 |
N3—Rh1—P2 | 90.22 (6) | C17—C16—H16A | 108.8 |
Cl1—Rh1—P2 | 88.43 (2) | H16B—C16—H16A | 107.7 |
Cl2—Rh1—P2 | 90.30 (2) | C18—C17—C16 | 113.5 (4) |
N1—Rh1—P1 | 91.44 (6) | C18—C17—H17B | 108.9 |
N3—Rh1—P1 | 93.46 (6) | C16—C17—H17B | 108.9 |
Cl1—Rh1—P1 | 87.98 (2) | C18—C17—H17A | 108.9 |
Cl2—Rh1—P1 | 88.98 (2) | C16—C17—H17A | 108.9 |
P2—Rh1—P1 | 176.29 (2) | H17B—C17—H17A | 107.7 |
C1—N1—C3 | 105.41 (18) | C17—C18—H18C | 109.5 |
C1—N1—Rh1 | 115.57 (14) | C17—C18—H18A | 109.5 |
C3—N1—Rh1 | 138.91 (15) | H18C—C18—H18A | 109.5 |
N2—C1—N1 | 113.22 (18) | C17—C18—H18B | 109.5 |
N2—C1—C4 | 132.48 (19) | H18C—C18—H18B | 109.5 |
N1—C1—C4 | 114.30 (18) | H18A—C18—H18B | 109.5 |
C1—N2—C2 | 103.81 (18) | C27—P2—C23 | 105.10 (12) |
C3—C2—N2 | 110.0 (2) | C27—P2—C19 | 105.24 (13) |
C3—C2—H2 | 125.0 | C23—P2—C19 | 101.09 (13) |
N2—C2—H2 | 125.0 | C27—P2—Rh1 | 114.03 (9) |
N1—C3—C2 | 107.52 (19) | C23—P2—Rh1 | 114.71 (9) |
N1—C3—H3 | 126.2 | C19—P2—Rh1 | 115.25 (10) |
C2—C3—H3 | 126.2 | C20—C19—P2 | 116.45 (19) |
C4—N3—C6 | 106.95 (18) | C20—C19—H19B | 108.2 |
C4—N3—Rh1 | 113.98 (14) | P2—C19—H19B | 108.2 |
C6—N3—Rh1 | 139.07 (15) | C20—C19—H19A | 108.2 |
N3—C4—N4 | 110.37 (19) | P2—C19—H19A | 108.2 |
N3—C4—C1 | 117.07 (18) | H19B—C19—H19A | 107.3 |
N4—C4—C1 | 132.5 (2) | C21—C20—C19 | 111.9 (3) |
C4—N4—C5 | 107.01 (19) | C21—C20—H20B | 109.2 |
C4—N4—H4 | 127 (2) | C19—C20—H20B | 109.2 |
C5—N4—H4 | 125 (2) | C21—C20—H20A | 109.2 |
C6—C5—N4 | 107.6 (2) | C19—C20—H20A | 109.2 |
C6—C5—H5 | 126.2 | H20B—C20—H20A | 107.9 |
N4—C5—H5 | 126.2 | C22—C21—C20 | 112.8 (4) |
C5—C6—N3 | 108.1 (2) | C22—C21—H21B | 109.0 |
C5—C6—H6 | 126.0 | C20—C21—H21B | 109.0 |
N3—C6—H6 | 126.0 | C22—C21—H21A | 109.0 |
C7—P1—C11 | 105.28 (14) | C20—C21—H21A | 109.0 |
C7—P1—C15 | 106.38 (14) | H21B—C21—H21A | 107.8 |
C11—P1—C15 | 100.06 (16) | C21—C22—H22C | 109.5 |
C7—P1—Rh1 | 111.95 (9) | C21—C22—H22A | 109.5 |
C11—P1—Rh1 | 116.53 (11) | H22C—C22—H22A | 109.5 |
C15—P1—Rh1 | 115.36 (11) | C21—C22—H22B | 109.5 |
C8—C7—P1 | 118.5 (2) | H22C—C22—H22B | 109.5 |
C8—C7—H7B | 107.7 | H22A—C22—H22B | 109.5 |
P1—C7—H7B | 107.7 | C24—C23—P2 | 115.92 (18) |
C8—C7—H7A | 107.7 | C24—C23—H23B | 108.3 |
P1—C7—H7A | 107.7 | P2—C23—H23B | 108.3 |
H7B—C7—H7A | 107.1 | C24—C23—H23A | 108.3 |
C9—C8—C7 | 112.9 (3) | P2—C23—H23A | 108.3 |
C9—C8—H8B | 109.0 | H23B—C23—H23A | 107.4 |
C7—C8—H8B | 109.0 | C23—C24—C25 | 111.9 (2) |
C9—C8—H8A | 109.0 | C23—C24—H24B | 109.2 |
C7—C8—H8A | 109.0 | C25—C24—H24B | 109.2 |
H8B—C8—H8A | 107.8 | C23—C24—H24A | 109.2 |
C10—C9—C8 | 116.2 (4) | C25—C24—H24A | 109.2 |
C10—C9—H9B | 108.2 | H24B—C24—H24A | 107.9 |
C8—C9—H9B | 108.2 | C26—C25—C24 | 112.2 (3) |
C10—C9—H9A | 108.2 | C26—C25—H25B | 109.2 |
C8—C9—H9A | 108.2 | C24—C25—H25B | 109.2 |
H9B—C9—H9A | 107.4 | C26—C25—H25A | 109.2 |
C9—C10—H10C | 109.5 | C24—C25—H25A | 109.2 |
C9—C10—H10A | 109.5 | H25B—C25—H25A | 107.9 |
H10C—C10—H10A | 109.5 | C25—C26—H26C | 109.5 |
C9—C10—H10B | 109.5 | C25—C26—H26A | 109.5 |
H10C—C10—H10B | 109.5 | H26C—C26—H26A | 109.5 |
H10A—C10—H10B | 109.5 | C25—C26—H26B | 109.5 |
C12—C11—P1 | 117.9 (2) | H26C—C26—H26B | 109.5 |
C12—C11—H11B | 107.8 | H26A—C26—H26B | 109.5 |
P1—C11—H11B | 107.8 | C28—C27—P2 | 115.66 (19) |
C12—C11—H11A | 107.8 | C28—C27—H27B | 108.4 |
P1—C11—H11A | 107.8 | P2—C27—H27B | 108.4 |
H11B—C11—H11A | 107.2 | C28—C27—H27A | 108.4 |
C13—C12—C11 | 113.4 (4) | P2—C27—H27A | 108.4 |
C13—C12—H12B | 108.9 | H27B—C27—H27A | 107.4 |
C11—C12—H12B | 108.9 | C29—C28—C27 | 114.7 (3) |
C13—C12—H12A | 108.9 | C29—C28—H28B | 108.6 |
C11—C12—H12A | 108.9 | C27—C28—H28B | 108.6 |
H12B—C12—H12A | 107.7 | C29—C28—H28A | 108.6 |
C12—C13—C14 | 113.7 (4) | C27—C28—H28A | 108.6 |
C12—C13—H13B | 108.8 | H28B—C28—H28A | 107.6 |
C14—C13—H13B | 108.8 | C30—C29—C28 | 114.4 (4) |
C12—C13—H13A | 108.8 | C30—C29—H29B | 108.7 |
C14—C13—H13A | 108.8 | C28—C29—H29B | 108.7 |
H13B—C13—H13A | 107.7 | C30—C29—H29A | 108.7 |
C13—C14—H14C | 109.5 | C28—C29—H29A | 108.7 |
C13—C14—H14A | 109.5 | H29B—C29—H29A | 107.6 |
H14C—C14—H14A | 109.5 | C29—C30—H30C | 109.5 |
C13—C14—H14B | 109.5 | C29—C30—H30A | 109.5 |
H14C—C14—H14B | 109.5 | H30C—C30—H30A | 109.5 |
H14A—C14—H14B | 109.5 | C29—C30—H30B | 109.5 |
C16—C15—P1 | 117.1 (2) | H30C—C30—H30B | 109.5 |
C16—C15—H15B | 108.0 | H30A—C30—H30B | 109.5 |
P1—C15—H15B | 108.0 | ||
N3—Rh1—N1—C1 | 2.99 (16) | Cl2—Rh1—P1—C11 | −30.31 (12) |
Cl1—Rh1—N1—C1 | −175.70 (16) | N1—Rh1—P1—C15 | −86.56 (13) |
P2—Rh1—N1—C1 | −87.29 (16) | N3—Rh1—P1—C15 | −7.52 (13) |
P1—Rh1—N1—C1 | 96.24 (16) | Cl1—Rh1—P1—C15 | −179.79 (12) |
N3—Rh1—N1—C3 | 178.3 (3) | Cl2—Rh1—P1—C15 | 86.61 (12) |
Cl1—Rh1—N1—C3 | −0.4 (3) | C11—P1—C7—C8 | 53.0 (3) |
P2—Rh1—N1—C3 | 88.0 (3) | C15—P1—C7—C8 | −52.6 (3) |
P1—Rh1—N1—C3 | −88.5 (3) | Rh1—P1—C7—C8 | −179.5 (2) |
C3—N1—C1—N2 | 0.2 (3) | P1—C7—C8—C9 | −172.4 (3) |
Rh1—N1—C1—N2 | 176.96 (16) | C7—C8—C9—C10 | −171.0 (4) |
C3—N1—C1—C4 | −179.7 (2) | C7—P1—C11—C12 | 53.7 (3) |
Rh1—N1—C1—C4 | −2.9 (3) | C15—P1—C11—C12 | 163.9 (3) |
N1—C1—N2—C2 | −0.2 (3) | Rh1—P1—C11—C12 | −71.0 (3) |
C4—C1—N2—C2 | 179.6 (3) | P1—C11—C12—C13 | −177.9 (3) |
C1—N2—C2—C3 | 0.1 (3) | C11—C12—C13—C14 | 174.6 (4) |
C1—N1—C3—C2 | −0.1 (3) | C7—P1—C15—C16 | −49.8 (3) |
Rh1—N1—C3—C2 | −175.67 (19) | C11—P1—C15—C16 | −159.2 (3) |
N2—C2—C3—N1 | 0.0 (3) | Rh1—P1—C15—C16 | 75.0 (3) |
N1—Rh1—N3—C4 | −2.58 (16) | P1—C15—C16—C17 | −163.0 (3) |
Cl2—Rh1—N3—C4 | 177.40 (16) | C15—C16—C17—C18 | 176.7 (3) |
P2—Rh1—N3—C4 | 87.08 (16) | N1—Rh1—P2—C27 | −140.17 (11) |
P1—Rh1—N3—C4 | −93.37 (16) | N3—Rh1—P2—C27 | 140.85 (11) |
N1—Rh1—N3—C6 | 178.7 (3) | Cl1—Rh1—P2—C27 | −46.89 (10) |
Cl2—Rh1—N3—C6 | −1.3 (3) | Cl2—Rh1—P2—C27 | 46.67 (10) |
P2—Rh1—N3—C6 | −91.6 (3) | N1—Rh1—P2—C23 | 98.54 (11) |
P1—Rh1—N3—C6 | 87.9 (3) | N3—Rh1—P2—C23 | 19.57 (11) |
C6—N3—C4—N4 | −0.1 (3) | Cl1—Rh1—P2—C23 | −168.17 (10) |
Rh1—N3—C4—N4 | −179.23 (16) | Cl2—Rh1—P2—C23 | −74.61 (10) |
C6—N3—C4—C1 | −179.0 (2) | N1—Rh1—P2—C19 | −18.28 (11) |
Rh1—N3—C4—C1 | 1.9 (3) | N3—Rh1—P2—C19 | −97.26 (11) |
N2—C1—C4—N3 | −179.2 (2) | Cl1—Rh1—P2—C19 | 75.01 (10) |
N1—C1—C4—N3 | 0.7 (3) | Cl2—Rh1—P2—C19 | 168.56 (10) |
N2—C1—C4—N4 | 2.2 (5) | C27—P2—C19—C20 | 52.7 (2) |
N1—C1—C4—N4 | −178.0 (2) | C23—P2—C19—C20 | 161.8 (2) |
N3—C4—N4—C5 | 0.0 (3) | Rh1—P2—C19—C20 | −73.9 (2) |
C1—C4—N4—C5 | 178.6 (3) | P2—C19—C20—C21 | 175.0 (3) |
C4—N4—C5—C6 | 0.2 (3) | C19—C20—C21—C22 | 176.3 (4) |
N4—C5—C6—N3 | −0.3 (3) | C27—P2—C23—C24 | −53.6 (2) |
C4—N3—C6—C5 | 0.2 (3) | C19—P2—C23—C24 | −162.9 (2) |
Rh1—N3—C6—C5 | 179.00 (19) | Rh1—P2—C23—C24 | 72.5 (2) |
N1—Rh1—P1—C7 | 35.28 (11) | P2—C23—C24—C25 | −170.9 (2) |
N3—Rh1—P1—C7 | 114.32 (11) | C23—C24—C25—C26 | −176.5 (3) |
Cl1—Rh1—P1—C7 | −57.95 (10) | C23—P2—C27—C28 | −53.1 (3) |
Cl2—Rh1—P1—C7 | −151.55 (10) | C19—P2—C27—C28 | 53.1 (2) |
N1—Rh1—P1—C11 | 156.52 (13) | Rh1—P2—C27—C28 | −179.6 (2) |
N3—Rh1—P1—C11 | −124.43 (13) | P2—C27—C28—C29 | 173.0 (3) |
Cl1—Rh1—P1—C11 | 63.29 (12) | C27—C28—C29—C30 | 64.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···N2i | 0.80 (3) | 1.98 (3) | 2.772 (3) | 176 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Rh1—N1 | 2.0322 (18) | Rh1—Cl2 | 2.3634 (7) |
Rh1—N3 | 2.0538 (19) | Rh1—P2 | 2.3657 (7) |
Rh1—Cl1 | 2.3450 (7) | Rh1—P1 | 2.3732 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···N2i | 0.80 (3) | 1.98 (3) | 2.772 (3) | 176 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Rh(C6H5N4)Cl2(C12H27P)2] |
Mr | 711.56 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 11.969 (2), 18.725 (3), 16.894 (3) |
β (°) | 97.233 (3) |
V (Å3) | 3756.1 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.71 |
Crystal size (mm) | 0.43 × 0.43 × 0.28 |
Data collection | |
Diffractometer | Rigaku/MSC Mercury CCD diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.762, 0.871 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28742, 8556, 7761 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.100, 1.12 |
No. of reflections | 8556 |
No. of parameters | 362 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.12, −0.60 |
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009).
Acknowledgements
We thank Professor Tadokoro (Tokyo University of Science) for the provision of biimidazole. This work was supported by JSPS KAKENHI grant Nos. 22550058 and 26410068.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fortin, S., Fabre, P.-L., Dartiguenave, M. & Beauchamp, A. L. (2001). J. Chem. Soc. Dalton Trans. pp. 3520–3527. Web of Science CSD CrossRef Google Scholar
Galsbøl, F., Kojima, M., Ishii, T., Ohba, S., Saito, Y. & Fujita, J. (1986). Bull. Chem. Soc. Jpn, 59, 1701–1707. Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662–671. Web of Science CrossRef CAS PubMed Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Jin-Long, Uemura, K. & Ebihara, M. (2014a). Acta Cryst. B70. In the press [Co-editor code RY5061]. CrossRef IUCr Journals Google Scholar
Jin-Long, Uemura, K. & Ebihara, M. (2014b). Inorg. Chem. Submitted. Google Scholar
Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Molecular Structure Corporation & Rigaku (2008). Crystal Clear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Patra, S. C., Biswas, M. K., Maity, A. N. & Ghosh, P. (2011). Inorg. Chem. 50, 1331–1338. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tadokoro, M., Inoue, T., Tamaki, S., Fujii, K., Isogai, K., Nakazawa, H., Takeda, S., Isobe, K., Koga, N., Ichimura, A. & Nakasuji, K. (2007). Angew. Chem. Int. Ed. 46, 5938–5942. Web of Science CSD CrossRef CAS Google Scholar
Wakita, K. (2001). Yadokari-XG 2009. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.