organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-fluoro-2-(3-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by L. Fabian, University of East Anglia, England (Received 8 October 2014; accepted 13 October 2014; online 18 October 2014)

In the title compound, C15H10F2O2S, the dihedral angle between the planes of the benzo­furan ring system [r.m.s. deviation = 0.015 (1) Å] and the 3-fluoro­phenyl ring is 26.60 (5)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, and by ππ inter­actions between the benzo­furan rings of inversion-related mol­ecules [centroid(benzene)–centroid(furan) distance = 3.819 (2) Å], forming a three-dimensional network.

1. Related literature

For a related structure and background to benzo­furan derivatives, see: Choi & Lee (2014[Choi, H. D. & Lee, U. (2014). Acta Cryst. E70, o991-o992.]). For further synthetic details, see: Choi et al. (1999[Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606-608.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H10F2O2S

  • Mr = 292.29

  • Monoclinic, P 21 /c

  • a = 8.4826 (2) Å

  • b = 16.6307 (4) Å

  • c = 9.7493 (2) Å

  • β = 113.756 (1)°

  • V = 1258.81 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 173 K

  • 0.62 × 0.55 × 0.42 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.846, Tmax = 0.892

  • 12021 measured reflections

  • 3111 independent reflections

  • 2736 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.03

  • 3111 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.45 3.2612 (18) 143
C12—H12⋯O2ii 0.95 2.42 3.3361 (19) 161
C15—H15A⋯F1iii 0.98 2.54 3.409 (2) 147
C15—H15B⋯F2iv 0.98 2.55 3.163 (2) 121
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z-1; (iii) -x+2, -y+1, -z+2; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing program for benzofuran derivatives (Choi & Lee, 2014), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.015 (1) Å from the least-squares plane defined by the nine constituent atoms. The 3-fluorophenyl ring is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring and the 3-fluorophenyl ring is 26.60 (5)°. In the crystal structure (Fig. 2), molecules are linked by C—H···O and C—H···F hydrogen bonds (Table 1), and by ππ interactions between the benzene and furan rings of neighbouring molecules, with a Cg1···Cg2v distance of 3.819 (2) Å and an interplanar distance of 3.283 (2) Å resulting in a slippage of 1.951 (2) Å (Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and C1/C2/C7/O1/C8 furan ring, respectively), forming a three-dimensional network.

Related literature top

For a related structure and background to benzofuran derivatives, see: Choi & Lee (2014). For further synthetic details, see: Choi et al. (1999).

Experimental top

The starting material 5-fluoro-2-(3-fluorophenyl)-3-methylsulfanyl-1-benzofuran was prepared by literature method (Choi et al., 1999). 3-Chloroperoxybenzoic acid (77%, 269 mg, 1.2 mmol) was added in small portions to a stirred solution of 5-fluoro-2-(3-fluorophenyl)-3-methylsulfanyl-1-benzofuran (304 mg, 1.1 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution (2 × 10 ml) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 71% (207 mg); m.p. 459–460 K; Rf = 0.48 (hexane–ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound (24 mg) in acetone (20 ml) at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The rotations of methyl groups were optimized using the SHELXL-97 command AFIX 137 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

A view of the C—H···O, C—H···F and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 2, y -1/2, - z + 3/2; (ii) x - 1, y, z - 1; (iii) - x + 2, - y + 1, - z + 2; (iv) x, y, z + 1; (v) - x + 2, - y + 1, - z + 1; (vi) - x + 2, y + 1/2, - z + 3/2; (vii) x + 1, y, z + 1; (viii) - x + 2, y + 1/2, - z + 3/2.]
5-Fluoro-2-(3-fluorophenyl)-3-methylsulfinyl-1-benzofuran top
Crystal data top
C15H10F2O2SF(000) = 600
Mr = 292.29Dx = 1.542 Mg m3
Monoclinic, P21/cMelting point = 460–459 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.4826 (2) ÅCell parameters from 5007 reflections
b = 16.6307 (4) Åθ = 2.5–28.3°
c = 9.7493 (2) ŵ = 0.28 mm1
β = 113.756 (1)°T = 173 K
V = 1258.81 (5) Å3Block, colourless
Z = 40.62 × 0.55 × 0.42 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3111 independent reflections
Radiation source: rotating anode2736 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.5°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1822
Tmin = 0.846, Tmax = 0.892l = 1212
12021 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.098H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.4861P]
where P = (Fo2 + 2Fc2)/3
3111 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C15H10F2O2SV = 1258.81 (5) Å3
Mr = 292.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4826 (2) ŵ = 0.28 mm1
b = 16.6307 (4) ÅT = 173 K
c = 9.7493 (2) Å0.62 × 0.55 × 0.42 mm
β = 113.756 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3111 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2736 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.892Rint = 0.027
12021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
3111 reflectionsΔρmin = 0.35 e Å3
182 parameters
Special details top

Experimental. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 7.91 (dd, J =8.56 and 2.40 Hz, 1H), 7.47-7.64 (m, 4H), 7.13-7.22 (m, 2H), 3.11 (s, 3H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.68157 (5)0.69175 (2)0.61814 (4)0.02500 (11)
F11.15704 (13)0.43458 (6)0.91143 (11)0.0407 (3)
F20.31417 (14)0.61447 (8)0.13611 (11)0.0455 (3)
O10.66160 (13)0.50305 (6)0.36646 (11)0.0228 (2)
O20.86399 (15)0.71766 (7)0.69804 (14)0.0380 (3)
C10.68851 (17)0.59646 (8)0.54180 (15)0.0206 (3)
C20.81117 (17)0.53330 (8)0.61313 (16)0.0213 (3)
C30.93765 (18)0.51943 (9)0.75628 (16)0.0257 (3)
H30.95680.55540.83710.031*
C41.03265 (19)0.45056 (9)0.77310 (17)0.0284 (3)
C51.0128 (2)0.39587 (9)0.65947 (19)0.0288 (3)
H51.08390.34940.67940.035*
C60.88870 (19)0.40976 (8)0.51726 (18)0.0263 (3)
H60.87200.37420.43640.032*
C70.79001 (17)0.47831 (8)0.49901 (16)0.0220 (3)
C80.60314 (17)0.57525 (8)0.39537 (15)0.0207 (3)
C90.46688 (17)0.61298 (8)0.26667 (15)0.0211 (3)
C100.34606 (18)0.66392 (8)0.28439 (16)0.0231 (3)
H100.35290.67550.38210.028*
C110.21572 (19)0.69790 (9)0.16032 (17)0.0263 (3)
H110.13380.73240.17370.032*
C120.20422 (19)0.68181 (9)0.01715 (17)0.0280 (3)
H120.11590.70490.06850.034*
C130.3254 (2)0.63115 (10)0.00347 (16)0.0287 (3)
C140.45608 (19)0.59613 (9)0.12251 (17)0.0262 (3)
H140.53680.56150.10760.031*
C150.6103 (2)0.66132 (11)0.7597 (2)0.0377 (4)
H15A0.69030.62130.82500.057*
H15B0.49490.63780.71230.057*
H15C0.60680.70820.81930.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0261 (2)0.01759 (17)0.02614 (19)0.00056 (12)0.00519 (15)0.00347 (13)
F10.0340 (5)0.0452 (6)0.0317 (5)0.0116 (4)0.0017 (4)0.0127 (4)
F20.0443 (6)0.0705 (8)0.0194 (5)0.0076 (5)0.0105 (4)0.0019 (4)
O10.0240 (5)0.0197 (5)0.0223 (5)0.0023 (4)0.0069 (4)0.0015 (4)
O20.0311 (6)0.0311 (6)0.0427 (7)0.0107 (5)0.0055 (5)0.0085 (5)
C10.0204 (6)0.0183 (6)0.0215 (6)0.0002 (5)0.0068 (5)0.0003 (5)
C20.0202 (6)0.0192 (6)0.0240 (7)0.0003 (5)0.0086 (5)0.0019 (5)
C30.0245 (7)0.0262 (7)0.0244 (7)0.0006 (6)0.0077 (6)0.0020 (5)
C40.0225 (7)0.0312 (8)0.0276 (7)0.0027 (6)0.0061 (6)0.0099 (6)
C50.0258 (7)0.0230 (7)0.0395 (9)0.0049 (5)0.0152 (7)0.0085 (6)
C60.0291 (7)0.0198 (6)0.0328 (8)0.0017 (5)0.0153 (6)0.0017 (5)
C70.0221 (6)0.0197 (6)0.0238 (7)0.0004 (5)0.0087 (6)0.0021 (5)
C80.0207 (6)0.0187 (6)0.0229 (7)0.0001 (5)0.0090 (5)0.0007 (5)
C90.0188 (6)0.0200 (6)0.0224 (7)0.0024 (5)0.0061 (5)0.0002 (5)
C100.0222 (6)0.0252 (7)0.0214 (6)0.0003 (5)0.0081 (5)0.0001 (5)
C110.0228 (7)0.0245 (7)0.0303 (7)0.0021 (5)0.0092 (6)0.0023 (6)
C120.0227 (7)0.0314 (8)0.0238 (7)0.0003 (6)0.0030 (6)0.0062 (6)
C130.0285 (7)0.0371 (8)0.0190 (7)0.0035 (6)0.0081 (6)0.0009 (6)
C140.0243 (7)0.0301 (7)0.0240 (7)0.0014 (5)0.0095 (6)0.0021 (6)
C150.0439 (10)0.0383 (9)0.0378 (9)0.0002 (7)0.0237 (8)0.0091 (7)
Geometric parameters (Å, º) top
S1—O21.4885 (12)C6—C71.3828 (19)
S1—C11.7619 (14)C6—H60.9500
S1—C151.7880 (17)C8—C91.4614 (19)
F1—C41.3624 (17)C9—C101.3930 (19)
F2—C131.3540 (17)C9—C141.399 (2)
O1—C81.3710 (16)C10—C111.388 (2)
O1—C71.3754 (17)C10—H100.9500
C1—C81.3616 (19)C11—C121.385 (2)
C1—C21.4444 (19)C11—H110.9500
C2—C71.3949 (19)C12—C131.377 (2)
C2—C31.395 (2)C12—H120.9500
C3—C41.372 (2)C13—C141.370 (2)
C3—H30.9500C14—H140.9500
C4—C51.390 (2)C15—H15A0.9800
C5—C61.381 (2)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
O2—S1—C1106.07 (7)C1—C8—C9133.75 (12)
O2—S1—C15106.34 (8)O1—C8—C9115.22 (11)
C1—S1—C1598.65 (7)C10—C9—C14119.50 (13)
C8—O1—C7106.50 (10)C10—C9—C8121.44 (12)
C8—C1—C2106.99 (12)C14—C9—C8119.04 (12)
C8—C1—S1125.57 (11)C11—C10—C9120.46 (13)
C2—C1—S1126.22 (11)C11—C10—H10119.8
C7—C2—C3119.31 (13)C9—C10—H10119.8
C7—C2—C1104.86 (12)C12—C11—C10120.49 (13)
C3—C2—C1135.77 (13)C12—C11—H11119.8
C4—C3—C2115.84 (14)C10—C11—H11119.8
C4—C3—H3122.1C13—C12—C11117.62 (13)
C2—C3—H3122.1C13—C12—H12121.2
F1—C4—C3117.68 (14)C11—C12—H12121.2
F1—C4—C5117.26 (13)F2—C13—C14118.00 (14)
C3—C4—C5125.05 (14)F2—C13—C12118.02 (14)
C6—C5—C4119.27 (13)C14—C13—C12123.98 (14)
C6—C5—H5120.4C13—C14—C9117.95 (13)
C4—C5—H5120.4C13—C14—H14121.0
C5—C6—C7116.38 (14)C9—C14—H14121.0
C5—C6—H6121.8S1—C15—H15A109.5
C7—C6—H6121.8S1—C15—H15B109.5
O1—C7—C6125.23 (13)H15A—C15—H15B109.5
O1—C7—C2110.61 (11)S1—C15—H15C109.5
C6—C7—C2124.14 (14)H15A—C15—H15C109.5
C1—C8—O1111.03 (12)H15B—C15—H15C109.5
O2—S1—C1—C8126.44 (13)C1—C2—C7—C6176.94 (13)
C15—S1—C1—C8123.68 (13)C2—C1—C8—O10.09 (15)
O2—S1—C1—C239.24 (14)S1—C1—C8—O1167.87 (9)
C15—S1—C1—C270.64 (14)C2—C1—C8—C9179.62 (14)
C8—C1—C2—C70.90 (15)S1—C1—C8—C911.7 (2)
S1—C1—C2—C7166.96 (10)C7—O1—C8—C10.78 (15)
C8—C1—C2—C3177.95 (15)C7—O1—C8—C9178.85 (11)
S1—C1—C2—C310.1 (2)C1—C8—C9—C1028.6 (2)
C7—C2—C3—C40.32 (19)O1—C8—C9—C10151.91 (12)
C1—C2—C3—C4177.04 (15)C1—C8—C9—C14152.70 (16)
C2—C3—C4—F1179.70 (12)O1—C8—C9—C1426.82 (18)
C2—C3—C4—C50.8 (2)C14—C9—C10—C110.0 (2)
F1—C4—C5—C6179.77 (13)C8—C9—C10—C11178.75 (13)
C3—C4—C5—C60.3 (2)C9—C10—C11—C120.2 (2)
C4—C5—C6—C70.7 (2)C10—C11—C12—C130.3 (2)
C8—O1—C7—C6176.95 (13)C11—C12—C13—F2179.38 (13)
C8—O1—C7—C21.38 (14)C11—C12—C13—C140.2 (2)
C5—C6—C7—O1179.33 (13)F2—C13—C14—C9179.58 (13)
C5—C6—C7—C21.2 (2)C12—C13—C14—C90.0 (2)
C3—C2—C7—O1179.05 (11)C10—C9—C14—C130.1 (2)
C1—C2—C7—O11.41 (15)C8—C9—C14—C13178.89 (13)
C3—C2—C7—C60.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.453.2612 (18)143
C12—H12···O2ii0.952.423.3361 (19)161
C15—H15A···F1iii0.982.543.409 (2)147
C15—H15B···F2iv0.982.553.163 (2)121
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x1, y, z1; (iii) x+2, y+1, z+2; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.453.2612 (18)143.3
C12—H12···O2ii0.952.423.3361 (19)161.1
C15—H15A···F1iii0.982.543.409 (2)147.4
C15—H15B···F2iv0.982.553.163 (2)120.5
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x1, y, z1; (iii) x+2, y+1, z+2; (iv) x, y, z+1.
 

Acknowledgements

The X-ray centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D. & Lee, U. (2014). Acta Cryst. E70, o991–o992.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606–608.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds