organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1219-o1220

Crystal structure of (E)-3-(5-bromo-2-hy­droxy­phen­yl)acryl­aldehyde

aDepartment of Chemistry, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon 443-760, Republic of Korea
*Correspondence e-mail: sgkim123@kyonggi.ac.kr

Edited by T. N. Guru Row, Indian Institute of Science, India (Received 27 August 2014; accepted 28 October 2014; online 31 October 2014)

The title compound, C9H7BrO2, displays a trans configuration with respect to the C=C double bond and is essentially planar [maximum deviation from the least-squares plane through all non-H atoms = 0.056 (4) Å]. The vinyl­aldehyde group adopts an extended conformation wih a C—C—C—C torsion angle of 179.7 (4)°. In the crystal, mol­ecules are linked by classical O—H⋯O and weak C—H⋯O hydrogen bonds into a three-dimensional supra­molecular network.

1. Related literature

For the synthesis of 2-hy­droxy­cinnamaldehydes, see: Kim et al. (2004[Kim, J. H., Lee, S., Kwon, M.-G., park, Y. S., Choi, S.-K. & Kwon, B.-M. (2004). Syn. Commun. 34, 1223-1228.]); Zeiter & Rose (2009[Zeitler, K. & Rose, C. A. (2009). J. Org. Chem. 74, 1759-1762.]). For their biological activity, see: Kwon et al. (1996[Kwon, B. M., Cho, Y. K., Lee, S. H., Nam, J. Y., Bok, S. H., Chen, S. K., Kim, J. A. & Lee, I. R. (1996). Planta Med. 62, 183-184.]); Lee et al. (1999[Lee, C. W., Hong, D. H., Han, S. B., Park, S. H., Kim, H. K., Kwon, B. M. & Kim, H. M. (1999). Planta Med. 65, 263-266.]); Ka et al. (2003[Ka, H., Park, H. J., Jung, H. J., Choi, J. W., Cho, K. S., Ha, J. & Lee, K. T. (2003). Cancer Lett. 196, 143-152.]); Gan et al. (2009[Gan, F. F., Chua, Y. S., Scarmagnani, S., Palaniappan, P., Franks, M., Poobalasingam, T., Bradshaw, T. D., Westwell, A. D. & Hagen, T. (2009). Biochem. Biophys. Res. Commun. 387, 741-747.]); Han et al. (2011[Han, Y.-M., Shin, D.-S., Lee, Y.-J., Ismail, I. A., Hong, S.-H., Han, D. C. & Kwon, B. M. (2011). Bioorg. Med. Chem. Lett. 21, 747-751.]). For their synthetic applications, see: Cabrera et al. (2008[Cabrera, S., Reyes, E., Alemán, J., Milelli, A., Kobbelgaard, S. & Jørgensen, K. A. (2008). J. Am. Chem. Soc. 130, 12031-12037.]); Zu et al. (2009[Zu, L., Zhang, S., Xie, H. & Wang, W. (2009). Org. Lett. 11, 1627-1630.]); Choi & Kim (2010[Choi, K.-S. & Kim, S.-G. (2010). Tetrahedron Lett. 51, 5203-5206.]); Lee & Kim (2011[Lee, Y. & Kim, S.-G. (2011). Bull. Korean Chem. Soc. 32, 311-314.]); Lee et al. (2011[Lee, Y., Seo, S. W. & Kim, S.-G. (2011). Adv. Synth. Catal. 353, 2671-2675.]). For related structures, see: Kang & Kim (2013[Kang, K.-T. & Kim, S.-G. (2013). Acta Cryst. E69, o534.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H7BrO2

  • Mr = 227.06

  • Orthorhombic, P n a 21

  • a = 12.1230 (11) Å

  • b = 15.0901 (14) Å

  • c = 4.8763 (4) Å

  • V = 892.06 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.56 mm−1

  • T = 200 K

  • 0.41 × 0.35 × 0.15 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.256, Tmax = 0.548

  • 6031 measured reflections

  • 2052 independent reflections

  • 1683 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.086

  • S = 1.16

  • 2052 reflections

  • 110 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.58 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.021 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.89 2.693 (5) 160
C5—H5⋯O2ii 0.95 2.35 3.267 (6) 162
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

For related structures, see: Kang et al. (2013). 2-Hy­droxy­cinnamaldehyde, isolated from the stern bark of cinnamonum cassia, and its synthetic derivatives have been shown to inhibit on farnesyl protein transferase in vitro as well as angiogenesis. (Kwon et al. 1996; Lee et al. 1999; Ka et al. 2003). Andrecently they also have been reported to have anti­tumor effects against various human tumor cells in vitro and in vivo (Gan et al. 2009; Han et al. 2011).In view of these potential applications and in continuation of our work, the structure of the title compound has been carried out and the results are presented here.

X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The title compound is essentially planar. The C==C double bond is in an E conformation and the vinyl­aldehyde groups adopt extended conformations as can be seen from the torsion angles C2—C7—C8—C9 = 179.7 (4)°. In the crystal, the molecules are linked by classic O—H···O hydrogen bond and weak C—H···O hydrogen bonds (Table 1).

Synthesis and crystallization top

5-Bromo-2-hy­droxy­benzaldehyde (5.0 mmol, 1.01 g) and (tri­phenyl­phospho­ranyl­idene)acetaldehyde (6.0 mmol, 1.83 g) were dissolved in benzene (50 ml). After stirring for 6 h, solvent was evaporated. Purification by silica gel chromatography was afforded the title compound. Crystals suitable for X-ray analysis were obtained by recryatallization from an n-hexane/CH2Cl2 solution..

Refinement top

All H atoms were positioned geometrically, (O—H = 0.84 A ° and C—H = 0.95–0.96 Å) and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for all other H atoms.

Related literature top

For the synthesis of 2-hydroxycinnamaldehydes, see: Kim et al. (2004); Zeiter & Rose (2009). For their biological activity, see: Kwon et al. (1996); Lee et al. (1999); Ka et al. (2003); Gan et al. (2009); Han et al. (2011). For their synthetic applications, see: Cabrera et al. (2008); Zu et al. (2009); Choi & Kim (2010); Lee & Kim (2011); Lee et al. (2011). For related structures, see: Kang & Kim (2013).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
Fig. 1. A view of the molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A partial view of the crystal packing of the title compound. Hydrogen atoms have been omitted for clarity.
(E)-3-(5-Bromo-2-hydroxyphenyl)acrylaldehyde top
Crystal data top
C9H7BrO2F(000) = 448
Mr = 227.06Dx = 1.691 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3701 reflections
a = 12.1230 (11) Åθ = 2.7–28.2°
b = 15.0901 (14) ŵ = 4.56 mm1
c = 4.8763 (4) ÅT = 200 K
V = 892.06 (14) Å3Block, pale yellow
Z = 40.41 × 0.35 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2052 independent reflections
Radiation source: fine-focus sealed tube1683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1613
Tmin = 0.256, Tmax = 0.548k = 2019
6031 measured reflectionsl = 65
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.P)2 + 1.2584P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
2052 reflectionsΔρmax = 0.48 e Å3
110 parametersΔρmin = 0.58 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (19)
Crystal data top
C9H7BrO2V = 892.06 (14) Å3
Mr = 227.06Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.1230 (11) ŵ = 4.56 mm1
b = 15.0901 (14) ÅT = 200 K
c = 4.8763 (4) Å0.41 × 0.35 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2052 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1683 reflections with I > 2σ(I)
Tmin = 0.256, Tmax = 0.548Rint = 0.024
6031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.48 e Å3
S = 1.16Δρmin = 0.58 e Å3
2052 reflectionsAbsolute structure: Flack (1983)
110 parametersAbsolute structure parameter: 0.021 (19)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5560 (4)0.3452 (3)0.1499 (9)0.0325 (9)
O10.4596 (3)0.3084 (2)0.0686 (7)0.0452 (8)
H10.40910.32360.17660.068*
C20.6537 (4)0.3149 (3)0.0237 (8)0.0295 (9)
C30.7531 (3)0.3521 (3)0.1065 (9)0.0305 (9)
H30.82000.33360.02290.037*
C40.7550 (3)0.4153 (3)0.3081 (10)0.0352 (10)
Br10.89425 (3)0.45978 (3)0.4305 (2)0.04971 (16)
C50.6611 (3)0.4457 (2)0.4299 (17)0.0350 (8)
H50.66450.49050.56630.042*
C60.5603 (4)0.4099 (3)0.3509 (8)0.0359 (11)
H60.49420.42990.43510.043*
C70.6470 (4)0.2463 (3)0.1865 (9)0.0350 (9)
H70.57640.22110.21990.042*
C80.7312 (4)0.2157 (3)0.3365 (10)0.0339 (9)
H80.80320.23910.31080.041*
C90.7127 (3)0.1470 (3)0.5372 (13)0.0368 (10)
H90.64030.12340.55240.044*
O20.7830 (3)0.1175 (2)0.6872 (7)0.0426 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.022 (2)0.038 (2)0.038 (2)0.0013 (17)0.0002 (17)0.0013 (19)
O10.0208 (16)0.062 (2)0.053 (2)0.0040 (15)0.0017 (14)0.0239 (17)
C20.026 (2)0.033 (2)0.029 (2)0.0007 (16)0.0008 (15)0.0015 (16)
C30.021 (2)0.032 (2)0.039 (2)0.0016 (16)0.0024 (17)0.0006 (18)
C40.026 (2)0.035 (2)0.045 (2)0.0046 (17)0.0061 (18)0.001 (2)
Br10.0290 (2)0.0552 (3)0.0649 (3)0.00854 (18)0.0047 (3)0.0132 (3)
C50.0267 (18)0.0353 (18)0.043 (2)0.0007 (14)0.002 (4)0.007 (3)
C60.034 (2)0.038 (2)0.036 (3)0.0056 (17)0.0033 (17)0.0051 (18)
C70.031 (2)0.035 (2)0.039 (2)0.0026 (18)0.0010 (19)0.0035 (19)
C80.028 (2)0.035 (2)0.039 (2)0.0007 (18)0.0009 (19)0.0018 (18)
C90.029 (2)0.0342 (19)0.047 (3)0.0032 (15)0.008 (2)0.002 (2)
O20.0374 (19)0.0407 (17)0.050 (2)0.0004 (14)0.0109 (14)0.0110 (15)
Geometric parameters (Å, º) top
C1—O11.353 (5)C5—C61.391 (6)
C1—C61.384 (6)C5—H50.9500
C1—C21.411 (6)C6—H60.9500
O1—H10.8400C7—C81.339 (6)
C2—C31.389 (6)C7—H70.9500
C2—C71.459 (6)C8—C91.443 (7)
C3—C41.370 (6)C8—H80.9500
C3—H30.9500C9—O21.208 (6)
C4—C51.363 (6)C9—H90.9500
C4—Br11.913 (4)
O1—C1—C6122.0 (4)C4—C5—H5120.6
O1—C1—C2117.6 (4)C6—C5—H5120.6
C6—C1—C2120.4 (4)C1—C6—C5120.2 (4)
C1—O1—H1109.5C1—C6—H6119.9
C3—C2—C1118.1 (4)C5—C6—H6119.9
C3—C2—C7122.6 (4)C8—C7—C2125.9 (4)
C1—C2—C7119.3 (4)C8—C7—H7117.0
C4—C3—C2120.3 (4)C2—C7—H7117.0
C4—C3—H3119.9C7—C8—C9120.0 (4)
C2—C3—H3119.9C7—C8—H8120.0
C5—C4—C3122.2 (4)C9—C8—H8120.0
C5—C4—Br1118.9 (4)O2—C9—C8124.5 (4)
C3—C4—Br1118.9 (3)O2—C9—H9117.8
C4—C5—C6118.9 (5)C8—C9—H9117.8
O1—C1—C2—C3179.8 (4)Br1—C4—C5—C6176.7 (4)
C6—C1—C2—C30.2 (6)O1—C1—C6—C5179.6 (5)
O1—C1—C2—C70.1 (6)C2—C1—C6—C50.1 (7)
C6—C1—C2—C7179.7 (4)C4—C5—C6—C10.7 (8)
C1—C2—C3—C41.0 (6)C3—C2—C7—C85.0 (7)
C7—C2—C3—C4178.9 (4)C1—C2—C7—C8175.1 (4)
C2—C3—C4—C51.7 (7)C2—C7—C8—C9179.7 (4)
C2—C3—C4—Br1176.5 (3)C7—C8—C9—O2177.5 (5)
C3—C4—C5—C61.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.892.693 (5)160
C5—H5···O2ii0.952.353.267 (6)162
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.892.693 (5)160.0
C5—H5···O2ii0.952.353.267 (6)162.0
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by Kyonggi University Research Grant 2013.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabrera, S., Reyes, E., Alemán, J., Milelli, A., Kobbelgaard, S. & Jørgensen, K. A. (2008). J. Am. Chem. Soc. 130, 12031–12037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChoi, K.-S. & Kim, S.-G. (2010). Tetrahedron Lett. 51, 5203–5206.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGan, F. F., Chua, Y. S., Scarmagnani, S., Palaniappan, P., Franks, M., Poobalasingam, T., Bradshaw, T. D., Westwell, A. D. & Hagen, T. (2009). Biochem. Biophys. Res. Commun. 387, 741–747.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHan, Y.-M., Shin, D.-S., Lee, Y.-J., Ismail, I. A., Hong, S.-H., Han, D. C. & Kwon, B. M. (2011). Bioorg. Med. Chem. Lett. 21, 747–751.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKim, J. H., Lee, S., Kwon, M.-G., park, Y. S., Choi, S.-K. & Kwon, B.-M. (2004). Syn. Commun. 34, 1223–1228.  CAS Google Scholar
First citationKa, H., Park, H. J., Jung, H. J., Choi, J. W., Cho, K. S., Ha, J. & Lee, K. T. (2003). Cancer Lett. 196, 143–152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKang, K.-T. & Kim, S.-G. (2013). Acta Cryst. E69, o534.  CSD CrossRef IUCr Journals Google Scholar
First citationKwon, B. M., Cho, Y. K., Lee, S. H., Nam, J. Y., Bok, S. H., Chen, S. K., Kim, J. A. & Lee, I. R. (1996). Planta Med. 62, 183–184.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLee, C. W., Hong, D. H., Han, S. B., Park, S. H., Kim, H. K., Kwon, B. M. & Kim, H. M. (1999). Planta Med. 65, 263–266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, Y. & Kim, S.-G. (2011). Bull. Korean Chem. Soc. 32, 311–314.  Web of Science CrossRef CAS Google Scholar
First citationLee, Y., Seo, S. W. & Kim, S.-G. (2011). Adv. Synth. Catal. 353, 2671–2675.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeitler, K. & Rose, C. A. (2009). J. Org. Chem. 74, 1759–1762.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZu, L., Zhang, S., Xie, H. & Wang, W. (2009). Org. Lett. 11, 1627–1630.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1219-o1220
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds