organic compounds
E)-3-(5-bromo-2-hydroxyphenyl)acrylaldehyde
of (aDepartment of Chemistry, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon 443-760, Republic of Korea
*Correspondence e-mail: sgkim123@kyonggi.ac.kr
The title compound, C9H7BrO2, displays a trans configuration with respect to the C=C double bond and is essentially planar [maximum deviation from the least-squares plane through all non-H atoms = 0.056 (4) Å]. The vinylaldehyde group adopts an extended conformation wih a C—C—C—C torsion angle of 179.7 (4)°. In the crystal, molecules are linked by classical O—H⋯O and weak C—H⋯O hydrogen bonds into a three-dimensional supramolecular network.
Keywords: crystal structure; trans configuration; vinylaldehyde group; hydrogen bonding; three-dimensional supramolecular network 2-hydroxycinnamaldehydes.
CCDC reference: 1031276
1. Related literature
For the synthesis of 2-hydroxycinnamaldehydes, see: Kim et al. (2004); Zeiter & Rose (2009). For their biological activity, see: Kwon et al. (1996); Lee et al. (1999); Ka et al. (2003); Gan et al. (2009); Han et al. (2011). For their synthetic applications, see: Cabrera et al. (2008); Zu et al. (2009); Choi & Kim (2010); Lee & Kim (2011); Lee et al. (2011). For related structures, see: Kang & Kim (2013).
2. Experimental
2.1. Crystal data
|
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1031276
10.1107/S1600536814023708/gw2149sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814023708/gw2149Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814023708/gw2149Isup3.cml
For related structures, see: Kang et al. (2013). 2-Hydroxycinnamaldehyde, isolated from the stern bark of cinnamonum cassia, and its synthetic derivatives have been shown to inhibit on farnesyl protein transferase in vitro as well as angiogenesis. (Kwon et al. 1996; Lee et al. 1999; Ka et al. 2003). Andrecently they also have been reported to have antitumor effects against various human tumor cells in vitro and in vivo (Gan et al. 2009; Han et al. 2011).In view of these potential applications and in continuation of our work, the structure of the title compound has been carried out and the results are presented here.
X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The title compound is essentially planar. The C==C double bond is in an E conformation and the vinylaldehyde groups adopt extended conformations as can be seen from the torsion angles C2—C7—C8—C9 = 179.7 (4)°. In the crystal, the molecules are linked by classic O—H···O hydrogen bond and weak C—H···O hydrogen bonds (Table 1).
5-Bromo-2-hydroxybenzaldehyde (5.0 mmol, 1.01 g) and (triphenylphosphoranylidene)acetaldehyde (6.0 mmol, 1.83 g) were dissolved in benzene (50 ml). After stirring for 6 h, solvent was evaporated. Purification by silica gel
was afforded the title compound. Crystals suitable for X-ray analysis were obtained by recryatallization from an n-hexane/CH2Cl2 solution..Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).Fig. 1. A view of the molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Fig. 2. A partial view of the crystal packing of the title compound. Hydrogen atoms have been omitted for clarity. |
C9H7BrO2 | F(000) = 448 |
Mr = 227.06 | Dx = 1.691 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 3701 reflections |
a = 12.1230 (11) Å | θ = 2.7–28.2° |
b = 15.0901 (14) Å | µ = 4.56 mm−1 |
c = 4.8763 (4) Å | T = 200 K |
V = 892.06 (14) Å3 | Block, pale yellow |
Z = 4 | 0.41 × 0.35 × 0.15 mm |
Bruker SMART CCD area-detector diffractometer | 2052 independent reflections |
Radiation source: fine-focus sealed tube | 1683 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
phi and ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −16→13 |
Tmin = 0.256, Tmax = 0.548 | k = −20→19 |
6031 measured reflections | l = −6→5 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.P)2 + 1.2584P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max = 0.001 |
2052 reflections | Δρmax = 0.48 e Å−3 |
110 parameters | Δρmin = −0.58 e Å−3 |
1 restraint | Absolute structure: Flack (1983) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.021 (19) |
C9H7BrO2 | V = 892.06 (14) Å3 |
Mr = 227.06 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 12.1230 (11) Å | µ = 4.56 mm−1 |
b = 15.0901 (14) Å | T = 200 K |
c = 4.8763 (4) Å | 0.41 × 0.35 × 0.15 mm |
Bruker SMART CCD area-detector diffractometer | 2052 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1683 reflections with I > 2σ(I) |
Tmin = 0.256, Tmax = 0.548 | Rint = 0.024 |
6031 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.086 | Δρmax = 0.48 e Å−3 |
S = 1.16 | Δρmin = −0.58 e Å−3 |
2052 reflections | Absolute structure: Flack (1983) |
110 parameters | Absolute structure parameter: 0.021 (19) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5560 (4) | 0.3452 (3) | 0.1499 (9) | 0.0325 (9) | |
O1 | 0.4596 (3) | 0.3084 (2) | 0.0686 (7) | 0.0452 (8) | |
H1 | 0.4091 | 0.3236 | 0.1766 | 0.068* | |
C2 | 0.6537 (4) | 0.3149 (3) | 0.0237 (8) | 0.0295 (9) | |
C3 | 0.7531 (3) | 0.3521 (3) | 0.1065 (9) | 0.0305 (9) | |
H3 | 0.8200 | 0.3336 | 0.0229 | 0.037* | |
C4 | 0.7550 (3) | 0.4153 (3) | 0.3081 (10) | 0.0352 (10) | |
Br1 | 0.89425 (3) | 0.45978 (3) | 0.4305 (2) | 0.04971 (16) | |
C5 | 0.6611 (3) | 0.4457 (2) | 0.4299 (17) | 0.0350 (8) | |
H5 | 0.6645 | 0.4905 | 0.5663 | 0.042* | |
C6 | 0.5603 (4) | 0.4099 (3) | 0.3509 (8) | 0.0359 (11) | |
H6 | 0.4942 | 0.4299 | 0.4351 | 0.043* | |
C7 | 0.6470 (4) | 0.2463 (3) | −0.1865 (9) | 0.0350 (9) | |
H7 | 0.5764 | 0.2211 | −0.2199 | 0.042* | |
C8 | 0.7312 (4) | 0.2157 (3) | −0.3365 (10) | 0.0339 (9) | |
H8 | 0.8032 | 0.2391 | −0.3108 | 0.041* | |
C9 | 0.7127 (3) | 0.1470 (3) | −0.5372 (13) | 0.0368 (10) | |
H9 | 0.6403 | 0.1234 | −0.5524 | 0.044* | |
O2 | 0.7830 (3) | 0.1175 (2) | −0.6872 (7) | 0.0426 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.022 (2) | 0.038 (2) | 0.038 (2) | −0.0013 (17) | 0.0002 (17) | −0.0013 (19) |
O1 | 0.0208 (16) | 0.062 (2) | 0.053 (2) | −0.0040 (15) | 0.0017 (14) | −0.0239 (17) |
C2 | 0.026 (2) | 0.033 (2) | 0.029 (2) | 0.0007 (16) | 0.0008 (15) | −0.0015 (16) |
C3 | 0.021 (2) | 0.032 (2) | 0.039 (2) | 0.0016 (16) | 0.0024 (17) | 0.0006 (18) |
C4 | 0.026 (2) | 0.035 (2) | 0.045 (2) | −0.0046 (17) | −0.0061 (18) | −0.001 (2) |
Br1 | 0.0290 (2) | 0.0552 (3) | 0.0649 (3) | −0.00854 (18) | −0.0047 (3) | −0.0132 (3) |
C5 | 0.0267 (18) | 0.0353 (18) | 0.043 (2) | −0.0007 (14) | 0.002 (4) | −0.007 (3) |
C6 | 0.034 (2) | 0.038 (2) | 0.036 (3) | 0.0056 (17) | 0.0033 (17) | −0.0051 (18) |
C7 | 0.031 (2) | 0.035 (2) | 0.039 (2) | −0.0026 (18) | 0.0010 (19) | −0.0035 (19) |
C8 | 0.028 (2) | 0.035 (2) | 0.039 (2) | 0.0007 (18) | −0.0009 (19) | −0.0018 (18) |
C9 | 0.029 (2) | 0.0342 (19) | 0.047 (3) | −0.0032 (15) | 0.008 (2) | −0.002 (2) |
O2 | 0.0374 (19) | 0.0407 (17) | 0.050 (2) | 0.0004 (14) | 0.0109 (14) | −0.0110 (15) |
C1—O1 | 1.353 (5) | C5—C6 | 1.391 (6) |
C1—C6 | 1.384 (6) | C5—H5 | 0.9500 |
C1—C2 | 1.411 (6) | C6—H6 | 0.9500 |
O1—H1 | 0.8400 | C7—C8 | 1.339 (6) |
C2—C3 | 1.389 (6) | C7—H7 | 0.9500 |
C2—C7 | 1.459 (6) | C8—C9 | 1.443 (7) |
C3—C4 | 1.370 (6) | C8—H8 | 0.9500 |
C3—H3 | 0.9500 | C9—O2 | 1.208 (6) |
C4—C5 | 1.363 (6) | C9—H9 | 0.9500 |
C4—Br1 | 1.913 (4) | ||
O1—C1—C6 | 122.0 (4) | C4—C5—H5 | 120.6 |
O1—C1—C2 | 117.6 (4) | C6—C5—H5 | 120.6 |
C6—C1—C2 | 120.4 (4) | C1—C6—C5 | 120.2 (4) |
C1—O1—H1 | 109.5 | C1—C6—H6 | 119.9 |
C3—C2—C1 | 118.1 (4) | C5—C6—H6 | 119.9 |
C3—C2—C7 | 122.6 (4) | C8—C7—C2 | 125.9 (4) |
C1—C2—C7 | 119.3 (4) | C8—C7—H7 | 117.0 |
C4—C3—C2 | 120.3 (4) | C2—C7—H7 | 117.0 |
C4—C3—H3 | 119.9 | C7—C8—C9 | 120.0 (4) |
C2—C3—H3 | 119.9 | C7—C8—H8 | 120.0 |
C5—C4—C3 | 122.2 (4) | C9—C8—H8 | 120.0 |
C5—C4—Br1 | 118.9 (4) | O2—C9—C8 | 124.5 (4) |
C3—C4—Br1 | 118.9 (3) | O2—C9—H9 | 117.8 |
C4—C5—C6 | 118.9 (5) | C8—C9—H9 | 117.8 |
O1—C1—C2—C3 | −179.8 (4) | Br1—C4—C5—C6 | −176.7 (4) |
C6—C1—C2—C3 | −0.2 (6) | O1—C1—C6—C5 | 179.6 (5) |
O1—C1—C2—C7 | 0.1 (6) | C2—C1—C6—C5 | 0.1 (7) |
C6—C1—C2—C7 | 179.7 (4) | C4—C5—C6—C1 | −0.7 (8) |
C1—C2—C3—C4 | 1.0 (6) | C3—C2—C7—C8 | −5.0 (7) |
C7—C2—C3—C4 | −178.9 (4) | C1—C2—C7—C8 | 175.1 (4) |
C2—C3—C4—C5 | −1.7 (7) | C2—C7—C8—C9 | 179.7 (4) |
C2—C3—C4—Br1 | 176.5 (3) | C7—C8—C9—O2 | 177.5 (5) |
C3—C4—C5—C6 | 1.5 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.84 | 1.89 | 2.693 (5) | 160 |
C5—H5···O2ii | 0.95 | 2.35 | 3.267 (6) | 162 |
Symmetry codes: (i) x−1/2, −y+1/2, z+1; (ii) −x+3/2, y+1/2, z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.84 | 1.89 | 2.693 (5) | 160.0 |
C5—H5···O2ii | 0.95 | 2.35 | 3.267 (6) | 162.0 |
Symmetry codes: (i) x−1/2, −y+1/2, z+1; (ii) −x+3/2, y+1/2, z+3/2. |
Acknowledgements
This work was supported by Kyonggi University Research Grant 2013.
References
Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cabrera, S., Reyes, E., Alemán, J., Milelli, A., Kobbelgaard, S. & Jørgensen, K. A. (2008). J. Am. Chem. Soc. 130, 12031–12037. Web of Science CSD CrossRef PubMed CAS Google Scholar
Choi, K.-S. & Kim, S.-G. (2010). Tetrahedron Lett. 51, 5203–5206. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gan, F. F., Chua, Y. S., Scarmagnani, S., Palaniappan, P., Franks, M., Poobalasingam, T., Bradshaw, T. D., Westwell, A. D. & Hagen, T. (2009). Biochem. Biophys. Res. Commun. 387, 741–747. Web of Science CrossRef PubMed CAS Google Scholar
Han, Y.-M., Shin, D.-S., Lee, Y.-J., Ismail, I. A., Hong, S.-H., Han, D. C. & Kwon, B. M. (2011). Bioorg. Med. Chem. Lett. 21, 747–751. Web of Science CrossRef CAS PubMed Google Scholar
Kim, J. H., Lee, S., Kwon, M.-G., park, Y. S., Choi, S.-K. & Kwon, B.-M. (2004). Syn. Commun. 34, 1223–1228. CAS Google Scholar
Ka, H., Park, H. J., Jung, H. J., Choi, J. W., Cho, K. S., Ha, J. & Lee, K. T. (2003). Cancer Lett. 196, 143–152. Web of Science CrossRef PubMed CAS Google Scholar
Kang, K.-T. & Kim, S.-G. (2013). Acta Cryst. E69, o534. CSD CrossRef IUCr Journals Google Scholar
Kwon, B. M., Cho, Y. K., Lee, S. H., Nam, J. Y., Bok, S. H., Chen, S. K., Kim, J. A. & Lee, I. R. (1996). Planta Med. 62, 183–184. CrossRef PubMed CAS Web of Science Google Scholar
Lee, C. W., Hong, D. H., Han, S. B., Park, S. H., Kim, H. K., Kwon, B. M. & Kim, H. M. (1999). Planta Med. 65, 263–266. Web of Science CrossRef PubMed CAS Google Scholar
Lee, Y. & Kim, S.-G. (2011). Bull. Korean Chem. Soc. 32, 311–314. Web of Science CrossRef CAS Google Scholar
Lee, Y., Seo, S. W. & Kim, S.-G. (2011). Adv. Synth. Catal. 353, 2671–2675. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zeitler, K. & Rose, C. A. (2009). J. Org. Chem. 74, 1759–1762. Web of Science CrossRef PubMed CAS Google Scholar
Zu, L., Zhang, S., Xie, H. & Wang, W. (2009). Org. Lett. 11, 1627–1630. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.