organic compounds
of 1-tosyl-1,2,3,4-tetrahydroquinoline
aDepartment of Physics, St Philomena's College (Autonomous), Mysore, karnataka 570 015, India, bDepartment of Studies and Research in Physics, UCS, Tumkur University, Karnataka 572 103, India, and cDepartment of Chemistry, UCST, Tumkur University, Karnataka 572 103, India
*Correspondence e-mail: palaksha.bspm@gmail.com
In the title compound, C16H17NO2S, the heterocyclic ring adopts a half-chair conformation and the bond-angle sum at the N atom is 350.2°. The dihedral angle between the planes of the aromatic rings is 47.74 (10)°. In the crystal, molecules are linked by C—H⋯O hydrogen bonds to generate [010] chains.
Keywords: crystal structure; quinolines; C—H⋯O interactions; biotransformations; pharmacological activity.
CCDC reference: 1028050
1. Related literature
For reactions related to biotransformations, see: Leresche et al. (2006); Astudillo et al. (2009). For pharmacological activities, see: Bendale et al. (2007); Chen et al. (2007); Singer et al. (2005).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2013); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 1028050
10.1107/S1600536814022181/hb7292sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814022181/hb7292Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814022181/hb7292Isup3.cml
Chemical reactions by biotransformations have a number of advantages because they play an important role in the production of chiral products from racemic mixtures (Leresche et al., 2006) in perticlar the tetrahydroquinoline derivatives can be transformed to other by Mortierella isabelina (Astudillo et al., 2009). The tetrahydroquinoline compounds are core structures in pharmacological activities such as antimalarial activities (Bendale et al., 2007), antipsychotic (Singer et al., 2005), estrogenic receptors (Chen et al., 2007). In the course of our study, we noticed that 1,2,3,4-tetrahydroquinoline derivatives exhibit a few pharmacological activities (our unpublished data). As a part of our study we have undertaken
determination of the title compound and the results are presented here.The molecular structure of the title compound is shown in Fig. 1. In the title molecule, the planes of the C1–C6 and C10–C15 benzene rings form a dihedral angle of 47.74 (9)°. The C1/C6–C9/N1 ring is in a half-chair conformation, with the methylene C9 atom as the flap. The molecular structure is stabilized by intramolecular C9—H9A···O1 and C2—H2···O2 hydrogen bonds (Fig. 2).
In the
intermolecular C14—H14···O2 hydrogen bonds link molecules into C(6) chains along [010] (Fig. 2 and Table 1)To a stirred solution of 1,2,3,4-tetrahydroquinoline (10 mmol) in 30 mL dry dichloroethane, triethylamine (15 mmol) was added at 0 – 5°C. To this reaction mixture 4-methylbenzene-1-sulfonylchloride (12 mmol) was added drop wise. After 2h of stirring at room temperature, the reaction mixture was washed with 5% Na2CO3 and brine. Organic phase was dried over Na2SO4 and then it was concentrated on vacuum to yield titled compound as colourless solid. The crude product was recrystallized in the mixture of ethyl acetate and hexane(1:1) to get colourless prisms.
Crystal data, data collection and structure
details are summarized in Table 1. The H atoms were positioned with idealized geometry using a riding model with C—H = 0.95-0.99 Å. All H-atoms were refined with isotropic displacement parameters (set to 1.2-1.5 times of the U eq of the parent atom).Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. The molecular packing of the title compound, dashed lines indicate intramolecular C—H···O and intermolecular C—H···O hydrogen bonds forming C(6) chains viewed along [010]. |
C16H17NO2S | Prism |
Mr = 287.37 | Dx = 1.311 Mg m−3 |
Monoclinic, P21/n | Melting point: 402 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2176 (7) Å | Cell parameters from 2327 reflections |
b = 8.0468 (6) Å | θ = 1.9–25.0° |
c = 22.2439 (18) Å | µ = 0.22 mm−1 |
β = 98.107 (4)° | T = 94 K |
V = 1456.2 (2) Å3 | Prism, colourless |
Z = 4 | 0.24 × 0.22 × 0.18 mm |
F(000) = 608 |
Bruker APEXII CCD diffractometer | 2568 independent reflections |
Radiation source: fine-focus sealed tube | 2327 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 1.9 pixels mm-1 | θmax = 25.0°, θmin = 1.9° |
phi and ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −9→9 |
Tmin = 0.949, Tmax = 0.961 | l = −26→26 |
20017 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0362P)2 + 0.8395P] where P = (Fo2 + 2Fc2)/3 |
2568 reflections | (Δ/σ)max = 0.001 |
182 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
0 constraints |
C16H17NO2S | V = 1456.2 (2) Å3 |
Mr = 287.37 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.2176 (7) Å | µ = 0.22 mm−1 |
b = 8.0468 (6) Å | T = 94 K |
c = 22.2439 (18) Å | 0.24 × 0.22 × 0.18 mm |
β = 98.107 (4)° |
Bruker APEXII CCD diffractometer | 2568 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | 2327 reflections with I > 2σ(I) |
Tmin = 0.949, Tmax = 0.961 | Rint = 0.046 |
20017 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.23 e Å−3 |
2568 reflections | Δρmin = −0.36 e Å−3 |
182 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5482 (2) | 0.4736 (2) | 0.17137 (8) | 0.0359 (4) | |
C2 | 0.5261 (3) | 0.6396 (2) | 0.15480 (9) | 0.0461 (5) | |
H2 | 0.4386 | 0.7015 | 0.1675 | 0.055* | |
C3 | 0.6312 (3) | 0.7140 (3) | 0.12003 (10) | 0.0565 (6) | |
H3 | 0.6146 | 0.8265 | 0.1078 | 0.068* | |
C4 | 0.7605 (3) | 0.6253 (3) | 0.10294 (10) | 0.0593 (6) | |
H4 | 0.8319 | 0.6758 | 0.0782 | 0.071* | |
C5 | 0.7859 (2) | 0.4634 (3) | 0.12175 (9) | 0.0509 (5) | |
H5 | 0.8772 | 0.4043 | 0.1106 | 0.061* | |
C6 | 0.6818 (2) | 0.3838 (2) | 0.15666 (8) | 0.0400 (4) | |
C7 | 0.7232 (3) | 0.2110 (3) | 0.18038 (11) | 0.0553 (6) | |
H7A | 0.7451 | 0.1398 | 0.1461 | 0.066* | |
H7B | 0.8255 | 0.2161 | 0.2098 | 0.066* | |
C8 | 0.5908 (3) | 0.1313 (3) | 0.21082 (11) | 0.0553 (6) | |
H8A | 0.6394 | 0.0426 | 0.2386 | 0.066* | |
H8B | 0.5079 | 0.0799 | 0.1798 | 0.066* | |
C9 | 0.5085 (3) | 0.2589 (3) | 0.24637 (9) | 0.0505 (5) | |
H9A | 0.4200 | 0.2043 | 0.2651 | 0.061* | |
H9B | 0.5900 | 0.3033 | 0.2795 | 0.061* | |
C10 | 0.2228 (2) | 0.2132 (2) | 0.12881 (8) | 0.0368 (4) | |
C11 | 0.2794 (3) | 0.2300 (3) | 0.07339 (9) | 0.0536 (5) | |
H11 | 0.3210 | 0.3333 | 0.0616 | 0.064* | |
C12 | 0.2741 (4) | 0.0936 (3) | 0.03583 (10) | 0.0661 (7) | |
H12 | 0.3131 | 0.1040 | −0.0022 | 0.079* | |
C13 | 0.2137 (3) | −0.0582 (3) | 0.05179 (10) | 0.0577 (6) | |
C14 | 0.1579 (3) | −0.0714 (3) | 0.10703 (10) | 0.0524 (5) | |
H14 | 0.1156 | −0.1745 | 0.1187 | 0.063* | |
C15 | 0.1626 (2) | 0.0630 (2) | 0.14573 (9) | 0.0427 (4) | |
H15 | 0.1244 | 0.0520 | 0.1839 | 0.051* | |
C16 | 0.2090 (4) | −0.2057 (4) | 0.00972 (13) | 0.0920 (10) | |
H16A | 0.2151 | −0.3085 | 0.0336 | 0.138* | |
H16B | 0.3025 | −0.2004 | −0.0131 | 0.138* | |
H16C | 0.1062 | −0.2042 | −0.0186 | 0.138* | |
O1 | 0.15775 (18) | 0.33842 (19) | 0.22946 (7) | 0.0548 (4) | |
O2 | 0.19664 (17) | 0.52807 (17) | 0.14578 (7) | 0.0532 (4) | |
N | 0.43800 (18) | 0.39748 (19) | 0.20781 (7) | 0.0381 (4) | |
S | 0.24138 (5) | 0.38103 (6) | 0.17987 (2) | 0.03916 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0337 (9) | 0.0389 (10) | 0.0349 (9) | −0.0051 (8) | 0.0038 (7) | −0.0037 (8) |
C2 | 0.0459 (11) | 0.0401 (11) | 0.0527 (11) | −0.0041 (9) | 0.0082 (9) | −0.0020 (9) |
C3 | 0.0605 (14) | 0.0486 (12) | 0.0607 (13) | −0.0124 (11) | 0.0102 (11) | 0.0080 (10) |
C4 | 0.0523 (13) | 0.0752 (16) | 0.0527 (12) | −0.0209 (12) | 0.0152 (10) | 0.0045 (12) |
C5 | 0.0367 (11) | 0.0699 (15) | 0.0470 (11) | −0.0057 (10) | 0.0092 (9) | −0.0098 (11) |
C6 | 0.0341 (10) | 0.0479 (11) | 0.0373 (9) | −0.0024 (8) | 0.0025 (8) | −0.0061 (8) |
C7 | 0.0451 (12) | 0.0545 (13) | 0.0660 (14) | 0.0119 (10) | 0.0070 (10) | −0.0018 (11) |
C8 | 0.0496 (12) | 0.0458 (12) | 0.0689 (14) | 0.0112 (10) | 0.0029 (10) | 0.0139 (10) |
C9 | 0.0495 (12) | 0.0565 (13) | 0.0457 (11) | 0.0021 (10) | 0.0074 (9) | 0.0137 (10) |
C10 | 0.0365 (10) | 0.0350 (10) | 0.0381 (9) | 0.0010 (8) | 0.0028 (7) | 0.0014 (8) |
C11 | 0.0704 (15) | 0.0471 (12) | 0.0444 (11) | −0.0039 (11) | 0.0118 (10) | 0.0067 (9) |
C12 | 0.0952 (19) | 0.0675 (16) | 0.0370 (11) | 0.0029 (14) | 0.0138 (12) | −0.0015 (11) |
C13 | 0.0697 (15) | 0.0497 (13) | 0.0498 (12) | 0.0089 (11) | −0.0056 (11) | −0.0092 (10) |
C14 | 0.0595 (13) | 0.0374 (11) | 0.0578 (13) | −0.0024 (10) | −0.0002 (10) | 0.0005 (9) |
C15 | 0.0454 (11) | 0.0390 (10) | 0.0439 (10) | −0.0020 (8) | 0.0066 (9) | 0.0028 (8) |
C16 | 0.127 (3) | 0.0716 (19) | 0.0739 (18) | 0.0083 (18) | 0.0008 (18) | −0.0298 (15) |
O1 | 0.0478 (8) | 0.0610 (9) | 0.0612 (9) | −0.0083 (7) | 0.0268 (7) | −0.0128 (7) |
O2 | 0.0399 (8) | 0.0352 (7) | 0.0831 (11) | 0.0066 (6) | 0.0040 (7) | 0.0050 (7) |
N | 0.0361 (8) | 0.0379 (8) | 0.0410 (8) | −0.0006 (7) | 0.0084 (7) | 0.0007 (7) |
S | 0.0332 (3) | 0.0345 (3) | 0.0516 (3) | 0.00026 (18) | 0.0119 (2) | −0.0035 (2) |
C1—C2 | 1.390 (3) | C10—C15 | 1.378 (3) |
C1—C6 | 1.392 (3) | C10—C11 | 1.384 (3) |
C1—N | 1.435 (2) | C10—S | 1.7577 (19) |
C2—C3 | 1.375 (3) | C11—C12 | 1.377 (3) |
C2—H2 | 0.9500 | C11—H11 | 0.9500 |
C3—C4 | 1.377 (3) | C12—C13 | 1.384 (3) |
C3—H3 | 0.9500 | C12—H12 | 0.9500 |
C4—C5 | 1.375 (3) | C13—C14 | 1.374 (3) |
C4—H4 | 0.9500 | C13—C16 | 1.508 (3) |
C5—C6 | 1.390 (3) | C14—C15 | 1.379 (3) |
C5—H5 | 0.9500 | C14—H14 | 0.9500 |
C6—C7 | 1.509 (3) | C15—H15 | 0.9500 |
C7—C8 | 1.504 (3) | C16—H16A | 0.9800 |
C7—H7A | 0.9900 | C16—H16B | 0.9800 |
C7—H7B | 0.9900 | C16—H16C | 0.9800 |
C8—C9 | 1.512 (3) | O1—S | 1.4213 (14) |
C8—H8A | 0.9900 | O2—S | 1.4254 (14) |
C8—H8B | 0.9900 | N—S | 1.6526 (16) |
C9—N | 1.475 (2) | S—O1 | 1.4213 (14) |
C9—H9A | 0.9900 | S—O2 | 1.4254 (14) |
C9—H9B | 0.9900 | ||
C2—C1—C6 | 120.95 (17) | H9A—C9—H9B | 107.9 |
C2—C1—N | 119.39 (17) | C15—C10—C11 | 120.52 (18) |
C6—C1—N | 119.52 (17) | C15—C10—S | 119.94 (14) |
C3—C2—C1 | 119.9 (2) | C11—C10—S | 119.40 (15) |
C3—C2—H2 | 120.1 | C12—C11—C10 | 118.5 (2) |
C1—C2—H2 | 120.1 | C12—C11—H11 | 120.8 |
C2—C3—C4 | 120.0 (2) | C10—C11—H11 | 120.8 |
C2—C3—H3 | 120.0 | C11—C12—C13 | 122.0 (2) |
C4—C3—H3 | 120.0 | C11—C12—H12 | 119.0 |
C5—C4—C3 | 119.8 (2) | C13—C12—H12 | 119.0 |
C5—C4—H4 | 120.1 | C14—C13—C12 | 118.3 (2) |
C3—C4—H4 | 120.1 | C14—C13—C16 | 120.8 (2) |
C4—C5—C6 | 121.8 (2) | C12—C13—C16 | 120.9 (2) |
C4—C5—H5 | 119.1 | C13—C14—C15 | 121.0 (2) |
C6—C5—H5 | 119.1 | C13—C14—H14 | 119.5 |
C5—C6—C1 | 117.40 (19) | C15—C14—H14 | 119.5 |
C5—C6—C7 | 119.59 (18) | C10—C15—C14 | 119.75 (19) |
C1—C6—C7 | 122.88 (17) | C10—C15—H15 | 120.1 |
C8—C7—C6 | 114.12 (17) | C14—C15—H15 | 120.1 |
C8—C7—H7A | 108.7 | C13—C16—H16A | 109.5 |
C6—C7—H7A | 108.7 | C13—C16—H16B | 109.5 |
C8—C7—H7B | 108.7 | H16A—C16—H16B | 109.5 |
C6—C7—H7B | 108.7 | C13—C16—H16C | 109.5 |
H7A—C7—H7B | 107.6 | H16A—C16—H16C | 109.5 |
C7—C8—C9 | 110.59 (19) | H16B—C16—H16C | 109.5 |
C7—C8—H8A | 109.5 | C1—N—C9 | 115.09 (15) |
C9—C8—H8A | 109.5 | C1—N—S | 118.90 (12) |
C7—C8—H8B | 109.5 | C9—N—S | 116.17 (13) |
C9—C8—H8B | 109.5 | O1—S—O2 | 119.76 (9) |
H8A—C8—H8B | 108.1 | O1—S—N | 106.36 (9) |
N—C9—C8 | 112.16 (16) | O2—S—N | 107.38 (8) |
N—C9—H9A | 109.2 | O1—S—C10 | 107.98 (9) |
C8—C9—H9A | 109.2 | O2—S—C10 | 107.57 (9) |
N—C9—H9B | 109.2 | N—S—C10 | 107.19 (8) |
C8—C9—H9B | 109.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O2i | 0.95 | 2.53 | 3.340 (2) | 143 |
Symmetry code: (i) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O2i | 0.95 | 2.53 | 3.340 (2) | 143 |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
SJ thanks Vision Group on Science and Technology, Government of Karnataka, for awarding a major project under CISE scheme (reference No. VGST/CISE/GRD-192/2013–14). BSPM thanks Rajegowda, Department of Studies and Research in Physics, UCS, Tumkur University, Karnataka 572 103, India, for his suport.
References
Astudillo, L., De la Guarda, W., Gutierrez, M. & San-Martin, A. (2009). Z. Naturforsch. Teil C, 64, 215–218. CAS Google Scholar
Bendale, P., Olepu, S., Kumar, S. P., Buldule, V., Rivas, K. & Nallan, L. (2007). J. Med. Chem. 50, 4585–4605. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, W., Lin, Z., Ning, M., Yang, C., Yan, X. & Xie, Y. (2007). Bioorg. Med. Chem. 15, 5828–5836. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Leresche, J. & Meyer, H. P. (2006). Org. Process Res. Dev. 10, 572–580. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singer, J. M., Barr, B. M., Coughenour, L. L. & Walters, M. A. (2005). Bioorg. Med. Chem. Lett. 15, 4560–4563. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.