organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-tosyl-1,2,3,4-tetra­hydro­quinoline

aDepartment of Physics, St Philomena's College (Autonomous), Mysore, karnataka 570 015, India, bDepartment of Studies and Research in Physics, UCS, Tumkur University, Karnataka 572 103, India, and cDepartment of Chemistry, UCST, Tumkur University, Karnataka 572 103, India
*Correspondence e-mail: palaksha.bspm@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 September 2014; accepted 8 October 2014; online 24 October 2014)

In the title compound, C16H17NO2S, the heterocyclic ring adopts a half-chair conformation and the bond-angle sum at the N atom is 350.2°. The dihedral angle between the planes of the aromatic rings is 47.74 (10)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds to generate [010] chains.

1. Related literature

For reactions related to biotransformations, see: Leresche et al. (2006[Leresche, J. & Meyer, H. P. (2006). Org. Process Res. Dev. 10, 572-580.]); Astudillo et al. (2009[Astudillo, L., De la Guarda, W., Gutierrez, M. & San-Martin, A. (2009). Z. Naturforsch. Teil C, 64, 215-218.]). For pharmacological activities, see: Bendale et al. (2007[Bendale, P., Olepu, S., Kumar, S. P., Buldule, V., Rivas, K. & Nallan, L. (2007). J. Med. Chem. 50, 4585-4605.]); Chen et al. (2007[Chen, W., Lin, Z., Ning, M., Yang, C., Yan, X. & Xie, Y. (2007). Bioorg. Med. Chem. 15, 5828-5836.]); Singer et al. (2005[Singer, J. M., Barr, B. M., Coughenour, L. L. & Walters, M. A. (2005). Bioorg. Med. Chem. Lett. 15, 4560-4563.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H17NO2S

  • Mr = 287.37

  • Monoclinic, P 21 /n

  • a = 8.2176 (7) Å

  • b = 8.0468 (6) Å

  • c = 22.2439 (18) Å

  • β = 98.107 (4)°

  • V = 1456.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 94 K

  • 0.24 × 0.22 × 0.18 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.961

  • 20017 measured reflections

  • 2568 independent reflections

  • 2327 reflections with I > 2σ(I)

  • Rint = 0.046

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.09

  • 2568 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.95 2.53 3.340 (2) 143
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Chemical context top

Chemical reactions by biotransformations have a number of advantages because they play an important role in the production of chiral products from racemic mixtures (Leresche et al., 2006) in perticlar the tetra­hydro­quinoline derivatives can be transformed to other by Mortierella isabelina (Astudillo et al., 2009). The tetra­hydro­quinoline compounds are core structures in pharmacological activities such as anti­malarial activities (Bendale et al., 2007), anti­psychotic (Singer et al., 2005), estrogenic receptors (Chen et al., 2007). In the course of our study, we noticed that 1,2,3,4-tetra­hydro­quinoline derivatives exhibit a few pharmacological activities (our unpublished data). As a part of our study we have undertaken crystal structure determination of the title compound and the results are presented here.

Structural commentary top

The molecular structure of the title compound is shown in Fig. 1. In the title molecule, the planes of the C1–C6 and C10–C15 benzene rings form a dihedral angle of 47.74 (9)°. The C1/C6–C9/N1 ring is in a half-chair conformation, with the methyl­ene C9 atom as the flap. The molecular structure is stabilized by intra­molecular C9—H9A···O1 and C2—H2···O2 hydrogen bonds (Fig. 2).

Supra­molecular features top

In the crystal structure, inter­molecular C14—H14···O2 hydrogen bonds link molecules into C(6) chains along [010] (Fig. 2 and Table 1)

Synthesis and crystallization top

To a stirred solution of 1,2,3,4-tetra­hydro­quinoline (10 mmol) in 30 mL dry di­chloro­ethane, tri­ethyl­amine (15 mmol) was added at 0 – 5°C. To this reaction mixture 4-methyl­benzene-1-sulfonyl­chloride (12 mmol) was added drop wise. After 2h of stirring at room temperature, the reaction mixture was washed with 5% Na2CO3 and brine. Organic phase was dried over Na2SO4 and then it was concentrated on vacuum to yield titled compound as colourless solid. The crude product was recrystallized in the mixture of ethyl acetate and hexane­(1:1) to get colourless prisms.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were positioned with idealized geometry using a riding model with C—H = 0.95-0.99 Å. All H-atoms were refined with isotropic displacement parameters (set to 1.2-1.5 times of the U eq of the parent atom).

Related literature top

For reactions related to biotransformations, see: Leresche et al. (2006); Astudillo et al. (2009). For pharmacological activities, see: Bendale et al. (2007); Chen et al. (2007); Singer et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

The molecular packing of the title compound, dashed lines indicate intramolecular C—H···O and intermolecular C—H···O hydrogen bonds forming C(6) chains viewed along [010].
1-Tosyl-1,2,3,4-tetrahydroquinoline top
Crystal data top
C16H17NO2SPrism
Mr = 287.37Dx = 1.311 Mg m3
Monoclinic, P21/nMelting point: 402 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.2176 (7) ÅCell parameters from 2327 reflections
b = 8.0468 (6) Åθ = 1.9–25.0°
c = 22.2439 (18) ŵ = 0.22 mm1
β = 98.107 (4)°T = 94 K
V = 1456.2 (2) Å3Prism, colourless
Z = 40.24 × 0.22 × 0.18 mm
F(000) = 608
Data collection top
Bruker APEXII CCD
diffractometer
2568 independent reflections
Radiation source: fine-focus sealed tube2327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 1.9 pixels mm-1θmax = 25.0°, θmin = 1.9°
phi and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 99
Tmin = 0.949, Tmax = 0.961l = 2626
20017 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.8395P]
where P = (Fo2 + 2Fc2)/3
2568 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.36 e Å3
0 constraints
Crystal data top
C16H17NO2SV = 1456.2 (2) Å3
Mr = 287.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2176 (7) ŵ = 0.22 mm1
b = 8.0468 (6) ÅT = 94 K
c = 22.2439 (18) Å0.24 × 0.22 × 0.18 mm
β = 98.107 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2568 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2327 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.961Rint = 0.046
20017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.09Δρmax = 0.23 e Å3
2568 reflectionsΔρmin = 0.36 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5482 (2)0.4736 (2)0.17137 (8)0.0359 (4)
C20.5261 (3)0.6396 (2)0.15480 (9)0.0461 (5)
H20.43860.70150.16750.055*
C30.6312 (3)0.7140 (3)0.12003 (10)0.0565 (6)
H30.61460.82650.10780.068*
C40.7605 (3)0.6253 (3)0.10294 (10)0.0593 (6)
H40.83190.67580.07820.071*
C50.7859 (2)0.4634 (3)0.12175 (9)0.0509 (5)
H50.87720.40430.11060.061*
C60.6818 (2)0.3838 (2)0.15666 (8)0.0400 (4)
C70.7232 (3)0.2110 (3)0.18038 (11)0.0553 (6)
H7A0.74510.13980.14610.066*
H7B0.82550.21610.20980.066*
C80.5908 (3)0.1313 (3)0.21082 (11)0.0553 (6)
H8A0.63940.04260.23860.066*
H8B0.50790.07990.17980.066*
C90.5085 (3)0.2589 (3)0.24637 (9)0.0505 (5)
H9A0.42000.20430.26510.061*
H9B0.59000.30330.27950.061*
C100.2228 (2)0.2132 (2)0.12881 (8)0.0368 (4)
C110.2794 (3)0.2300 (3)0.07339 (9)0.0536 (5)
H110.32100.33330.06160.064*
C120.2741 (4)0.0936 (3)0.03583 (10)0.0661 (7)
H120.31310.10400.00220.079*
C130.2137 (3)0.0582 (3)0.05179 (10)0.0577 (6)
C140.1579 (3)0.0714 (3)0.10703 (10)0.0524 (5)
H140.11560.17450.11870.063*
C150.1626 (2)0.0630 (2)0.14573 (9)0.0427 (4)
H150.12440.05200.18390.051*
C160.2090 (4)0.2057 (4)0.00972 (13)0.0920 (10)
H16A0.21510.30850.03360.138*
H16B0.30250.20040.01310.138*
H16C0.10620.20420.01860.138*
O10.15775 (18)0.33842 (19)0.22946 (7)0.0548 (4)
O20.19664 (17)0.52807 (17)0.14578 (7)0.0532 (4)
N0.43800 (18)0.39748 (19)0.20781 (7)0.0381 (4)
S0.24138 (5)0.38103 (6)0.17987 (2)0.03916 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0337 (9)0.0389 (10)0.0349 (9)0.0051 (8)0.0038 (7)0.0037 (8)
C20.0459 (11)0.0401 (11)0.0527 (11)0.0041 (9)0.0082 (9)0.0020 (9)
C30.0605 (14)0.0486 (12)0.0607 (13)0.0124 (11)0.0102 (11)0.0080 (10)
C40.0523 (13)0.0752 (16)0.0527 (12)0.0209 (12)0.0152 (10)0.0045 (12)
C50.0367 (11)0.0699 (15)0.0470 (11)0.0057 (10)0.0092 (9)0.0098 (11)
C60.0341 (10)0.0479 (11)0.0373 (9)0.0024 (8)0.0025 (8)0.0061 (8)
C70.0451 (12)0.0545 (13)0.0660 (14)0.0119 (10)0.0070 (10)0.0018 (11)
C80.0496 (12)0.0458 (12)0.0689 (14)0.0112 (10)0.0029 (10)0.0139 (10)
C90.0495 (12)0.0565 (13)0.0457 (11)0.0021 (10)0.0074 (9)0.0137 (10)
C100.0365 (10)0.0350 (10)0.0381 (9)0.0010 (8)0.0028 (7)0.0014 (8)
C110.0704 (15)0.0471 (12)0.0444 (11)0.0039 (11)0.0118 (10)0.0067 (9)
C120.0952 (19)0.0675 (16)0.0370 (11)0.0029 (14)0.0138 (12)0.0015 (11)
C130.0697 (15)0.0497 (13)0.0498 (12)0.0089 (11)0.0056 (11)0.0092 (10)
C140.0595 (13)0.0374 (11)0.0578 (13)0.0024 (10)0.0002 (10)0.0005 (9)
C150.0454 (11)0.0390 (10)0.0439 (10)0.0020 (8)0.0066 (9)0.0028 (8)
C160.127 (3)0.0716 (19)0.0739 (18)0.0083 (18)0.0008 (18)0.0298 (15)
O10.0478 (8)0.0610 (9)0.0612 (9)0.0083 (7)0.0268 (7)0.0128 (7)
O20.0399 (8)0.0352 (7)0.0831 (11)0.0066 (6)0.0040 (7)0.0050 (7)
N0.0361 (8)0.0379 (8)0.0410 (8)0.0006 (7)0.0084 (7)0.0007 (7)
S0.0332 (3)0.0345 (3)0.0516 (3)0.00026 (18)0.0119 (2)0.0035 (2)
Geometric parameters (Å, º) top
C1—C21.390 (3)C10—C151.378 (3)
C1—C61.392 (3)C10—C111.384 (3)
C1—N1.435 (2)C10—S1.7577 (19)
C2—C31.375 (3)C11—C121.377 (3)
C2—H20.9500C11—H110.9500
C3—C41.377 (3)C12—C131.384 (3)
C3—H30.9500C12—H120.9500
C4—C51.375 (3)C13—C141.374 (3)
C4—H40.9500C13—C161.508 (3)
C5—C61.390 (3)C14—C151.379 (3)
C5—H50.9500C14—H140.9500
C6—C71.509 (3)C15—H150.9500
C7—C81.504 (3)C16—H16A0.9800
C7—H7A0.9900C16—H16B0.9800
C7—H7B0.9900C16—H16C0.9800
C8—C91.512 (3)O1—S1.4213 (14)
C8—H8A0.9900O2—S1.4254 (14)
C8—H8B0.9900N—S1.6526 (16)
C9—N1.475 (2)S—O11.4213 (14)
C9—H9A0.9900S—O21.4254 (14)
C9—H9B0.9900
C2—C1—C6120.95 (17)H9A—C9—H9B107.9
C2—C1—N119.39 (17)C15—C10—C11120.52 (18)
C6—C1—N119.52 (17)C15—C10—S119.94 (14)
C3—C2—C1119.9 (2)C11—C10—S119.40 (15)
C3—C2—H2120.1C12—C11—C10118.5 (2)
C1—C2—H2120.1C12—C11—H11120.8
C2—C3—C4120.0 (2)C10—C11—H11120.8
C2—C3—H3120.0C11—C12—C13122.0 (2)
C4—C3—H3120.0C11—C12—H12119.0
C5—C4—C3119.8 (2)C13—C12—H12119.0
C5—C4—H4120.1C14—C13—C12118.3 (2)
C3—C4—H4120.1C14—C13—C16120.8 (2)
C4—C5—C6121.8 (2)C12—C13—C16120.9 (2)
C4—C5—H5119.1C13—C14—C15121.0 (2)
C6—C5—H5119.1C13—C14—H14119.5
C5—C6—C1117.40 (19)C15—C14—H14119.5
C5—C6—C7119.59 (18)C10—C15—C14119.75 (19)
C1—C6—C7122.88 (17)C10—C15—H15120.1
C8—C7—C6114.12 (17)C14—C15—H15120.1
C8—C7—H7A108.7C13—C16—H16A109.5
C6—C7—H7A108.7C13—C16—H16B109.5
C8—C7—H7B108.7H16A—C16—H16B109.5
C6—C7—H7B108.7C13—C16—H16C109.5
H7A—C7—H7B107.6H16A—C16—H16C109.5
C7—C8—C9110.59 (19)H16B—C16—H16C109.5
C7—C8—H8A109.5C1—N—C9115.09 (15)
C9—C8—H8A109.5C1—N—S118.90 (12)
C7—C8—H8B109.5C9—N—S116.17 (13)
C9—C8—H8B109.5O1—S—O2119.76 (9)
H8A—C8—H8B108.1O1—S—N106.36 (9)
N—C9—C8112.16 (16)O2—S—N107.38 (8)
N—C9—H9A109.2O1—S—C10107.98 (9)
C8—C9—H9A109.2O2—S—C10107.57 (9)
N—C9—H9B109.2N—S—C10107.19 (8)
C8—C9—H9B109.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.533.340 (2)143
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.533.340 (2)143
Symmetry code: (i) x, y1, z.
 

Acknowledgements

SJ thanks Vision Group on Science and Technology, Government of Karnataka, for awarding a major project under CISE scheme (reference No. VGST/CISE/GRD-192/2013–14). BSPM thanks Rajegowda, Department of Studies and Research in Physics, UCS, Tumkur University, Karnataka 572 103, India, for his suport.

References

First citationAstudillo, L., De la Guarda, W., Gutierrez, M. & San-Martin, A. (2009). Z. Naturforsch. Teil C, 64, 215–218.  CAS Google Scholar
First citationBendale, P., Olepu, S., Kumar, S. P., Buldule, V., Rivas, K. & Nallan, L. (2007). J. Med. Chem. 50, 4585–4605.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W., Lin, Z., Ning, M., Yang, C., Yan, X. & Xie, Y. (2007). Bioorg. Med. Chem. 15, 5828–5836.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLeresche, J. & Meyer, H. P. (2006). Org. Process Res. Dev. 10, 572–580.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinger, J. M., Barr, B. M., Coughenour, L. L. & Walters, M. A. (2005). Bioorg. Med. Chem. Lett. 15, 4560–4563.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds