organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-[(2-acetyl­phen­­oxy)carbon­yl]benzoic acid

aDepartment of Pharmacy, University of Malakand, Khyber Pakhtunkhwa, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 October 2014; accepted 4 October 2014; online 11 October 2014)

In the title compound, C16H12O5, synthesized from isopthaloyl chloride and 2′-hy­droxy­aceto­phenone, the dihedral angle between the planes of the aromatic rings is 71.37 (9)°. In the crystal, carb­oxy­lic acid inversion dimers generate R22(8) loops. The dimers are linked by C—H⋯O inter­actions, generating (101) sheets.

1. Related literature

For related structures, see: Derissen (1974[Derissen, J. L. (1974). Acta Cryst. B30, 2764-2765.]); Tanimoto et al. (1973[Tanimoto, Y., Kobayashi, H., Nagakura, S. & Saito, Y. (1973). Acta Cryst. B29, 1822-1826.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H12O5

  • Mr = 284.26

  • Monoclinic, P 21 /n

  • a = 13.5081 (10) Å

  • b = 7.4743 (6) Å

  • c = 13.9421 (11) Å

  • β = 106.671 (3)°

  • V = 1348.48 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.38 × 0.28 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.977

  • 10280 measured reflections

  • 2655 independent reflections

  • 1971 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.03

  • 2655 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.84 2.6623 (18) 175
C4—H4⋯O5ii 0.93 2.58 3.257 (3) 130
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized for forming different metal complexes. The crystal structures of isophthalic acid and acetophenone have been published by (Derissen, 1974) and (Tanimoto, et al., 1973) which are related to the title compound (I).

In (I) the group A (C1—C8/O1—O4) being like a part of isophthalic acid and benzene ring attached to it B (C9—C13) are almost planar with r. m. s. deviation of 0.0308 and 0.0034 Å, respectively. The dihedral angle between A/B is 71.98 (5)°. The acetaldehyde group C (O5/C15/C16) attached to ring B is of course planar. The dihedral angle between B/C is 9.56 (23)°. The molecules are dimerized due to coventional H-bondings of O—H···O type (Table 1, Fig. 2) forming R22(8) loop. The dimers are further interlinked due to C—H···O bondings where C—H is of benzene containing carboxylate and O is of acetaldehyde group.

Related literature top

For related structures, see: Derissen (1974); Tanimoto et al. (1973).

Experimental top

Isopthaloyl chloride (25 mmol) and 2'-hydroxyacetophenone (35 mmol) were refluxed in the aquauos solution of pyridine for 30 min. The mixture was cooled to room temperature and added to a beaker containing 2 N HCl. The crushed ice was added and stirred vigorously. The precipitate formed were obtained though filteration. The column chromatography was done ethyl acetate:n-hexane (4:6) to obtain the pure product. Light yellow prisms were obtained after two days.

Refinement top

All H atoms were geometrically placed [(O–H = 0.82 Å (hydroxyl), C–H = 0.93 Å (aromatic) and C–H = 0.96 Å (methyl) and refined as riding with with Uiso(H) = xUeq(C, O), where x = 1.5 for hydroxy & methyl and x = 1.2 for aromatic H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. The partial packing (PLATON; Spek, 2009), which shows that molecules form dimers which are interlinked.
3-[(2-Acetylphenoxy)carbonyl]benzoic acid top
Crystal data top
C16H12O5F(000) = 592
Mr = 284.26Dx = 1.400 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.5081 (10) ÅCell parameters from 1971 reflections
b = 7.4743 (6) Åθ = 1.9–26.0°
c = 13.9421 (11) ŵ = 0.11 mm1
β = 106.671 (3)°T = 296 K
V = 1348.48 (18) Å3Prism, light yellow
Z = 40.38 × 0.28 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2655 independent reflections
Radiation source: fine-focus sealed tube1971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 7.50 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scansh = 1516
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 69
Tmin = 0.963, Tmax = 0.977l = 1717
10280 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.4011P]
where P = (Fo2 + 2Fc2)/3
2655 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H12O5V = 1348.48 (18) Å3
Mr = 284.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.5081 (10) ŵ = 0.11 mm1
b = 7.4743 (6) ÅT = 296 K
c = 13.9421 (11) Å0.38 × 0.28 × 0.25 mm
β = 106.671 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2655 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1971 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.977Rint = 0.022
10280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
2655 reflectionsΔρmin = 0.20 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36130 (10)0.0311 (2)0.47366 (9)0.0704 (5)
H10.41660.02760.51770.106*
O20.46474 (9)0.0058 (2)0.37694 (9)0.0627 (4)
O30.14695 (9)0.0066 (2)0.05814 (9)0.0669 (4)
O40.31564 (8)0.05274 (16)0.01634 (7)0.0411 (3)
O50.48190 (13)0.2965 (2)0.11562 (12)0.0767 (5)
C10.37753 (13)0.0154 (2)0.38694 (11)0.0435 (4)
C20.28422 (12)0.0221 (2)0.29912 (11)0.0370 (4)
C30.18668 (13)0.0478 (2)0.31086 (12)0.0435 (4)
H30.17910.06280.37460.052*
C40.10086 (13)0.0512 (3)0.22840 (13)0.0505 (5)
H40.03550.06730.23660.061*
C50.11211 (13)0.0306 (3)0.13359 (13)0.0471 (4)
H50.05420.03360.07800.056*
C60.20966 (12)0.0052 (2)0.12066 (11)0.0368 (4)
C70.29593 (12)0.0005 (2)0.20355 (11)0.0370 (4)
H70.36130.01690.19550.044*
C80.21703 (12)0.0183 (2)0.01684 (12)0.0404 (4)
C90.33430 (12)0.0900 (2)0.07617 (11)0.0381 (4)
C100.30562 (14)0.2564 (3)0.11818 (13)0.0485 (4)
H100.26920.33500.08920.058*
C110.33147 (15)0.3054 (3)0.20375 (13)0.0560 (5)
H110.31320.41780.23190.067*
C120.38433 (14)0.1876 (3)0.24715 (13)0.0552 (5)
H120.40120.21990.30490.066*
C130.41194 (13)0.0225 (3)0.20493 (12)0.0476 (5)
H130.44740.05590.23510.057*
C140.38845 (12)0.0318 (2)0.11770 (11)0.0375 (4)
C150.42394 (13)0.2153 (2)0.07883 (12)0.0456 (4)
C160.38994 (17)0.3003 (3)0.00334 (16)0.0614 (5)
H16A0.41740.41950.01480.092*
H16B0.41480.23110.06350.092*
H16C0.31580.30510.01540.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0455 (8)0.1379 (14)0.0272 (6)0.0069 (9)0.0097 (5)0.0055 (7)
O20.0363 (7)0.1189 (13)0.0323 (6)0.0023 (7)0.0089 (5)0.0024 (7)
O30.0391 (7)0.1245 (13)0.0328 (7)0.0139 (7)0.0037 (5)0.0015 (7)
O40.0325 (6)0.0653 (8)0.0264 (5)0.0005 (5)0.0097 (4)0.0007 (5)
O50.0916 (11)0.0748 (10)0.0791 (10)0.0290 (9)0.0495 (9)0.0073 (8)
C10.0401 (10)0.0629 (12)0.0286 (8)0.0013 (8)0.0116 (7)0.0012 (7)
C20.0356 (9)0.0454 (10)0.0305 (8)0.0018 (7)0.0104 (6)0.0008 (6)
C30.0430 (10)0.0594 (11)0.0321 (8)0.0023 (8)0.0169 (7)0.0031 (7)
C40.0338 (9)0.0763 (13)0.0449 (10)0.0017 (9)0.0171 (8)0.0054 (9)
C50.0329 (9)0.0706 (13)0.0360 (9)0.0009 (8)0.0071 (7)0.0027 (8)
C60.0324 (8)0.0483 (10)0.0300 (8)0.0011 (7)0.0097 (6)0.0008 (7)
C70.0313 (8)0.0500 (10)0.0312 (8)0.0018 (7)0.0113 (6)0.0011 (7)
C80.0317 (8)0.0574 (11)0.0311 (8)0.0010 (7)0.0074 (7)0.0027 (7)
C90.0317 (8)0.0567 (11)0.0256 (7)0.0028 (7)0.0077 (6)0.0007 (7)
C100.0474 (10)0.0557 (11)0.0418 (9)0.0069 (9)0.0118 (8)0.0027 (8)
C110.0544 (11)0.0617 (13)0.0480 (10)0.0025 (9)0.0082 (9)0.0173 (9)
C120.0499 (11)0.0804 (15)0.0376 (9)0.0033 (10)0.0161 (8)0.0135 (9)
C130.0411 (9)0.0692 (13)0.0362 (9)0.0021 (8)0.0172 (7)0.0005 (8)
C140.0296 (8)0.0522 (10)0.0307 (8)0.0036 (7)0.0087 (6)0.0012 (7)
C150.0404 (9)0.0555 (11)0.0419 (9)0.0006 (8)0.0135 (8)0.0047 (8)
C160.0714 (14)0.0531 (12)0.0682 (13)0.0077 (10)0.0335 (11)0.0133 (10)
Geometric parameters (Å, º) top
O1—C11.2946 (19)C6—C81.489 (2)
O1—H10.8200C7—H70.9300
O2—C11.236 (2)C9—C101.382 (2)
O3—C81.1953 (19)C9—C141.394 (2)
O4—C81.3587 (19)C10—C111.385 (2)
O4—C91.4111 (17)C10—H100.9300
O5—C151.215 (2)C11—C121.379 (3)
C1—C21.485 (2)C11—H110.9300
C2—C31.387 (2)C12—C131.372 (3)
C2—C71.395 (2)C12—H120.9300
C3—C41.379 (2)C13—C141.402 (2)
C3—H30.9300C13—H130.9300
C4—C51.382 (2)C14—C151.502 (2)
C4—H40.9300C15—C161.493 (2)
C5—C61.393 (2)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.386 (2)C16—H16C0.9600
C1—O1—H1109.5C10—C9—O4117.60 (14)
C8—O4—C9118.33 (12)C14—C9—O4120.23 (15)
O2—C1—O1122.65 (15)C9—C10—C11119.60 (17)
O2—C1—C2121.50 (14)C9—C10—H10120.2
O1—C1—C2115.84 (14)C11—C10—H10120.2
C3—C2—C7120.03 (15)C12—C11—C10119.96 (18)
C3—C2—C1121.19 (14)C12—C11—H11120.0
C7—C2—C1118.78 (14)C10—C11—H11120.0
C4—C3—C2120.27 (15)C13—C12—C11119.85 (16)
C4—C3—H3119.9C13—C12—H12120.1
C2—C3—H3119.9C11—C12—H12120.1
C3—C4—C5119.91 (15)C12—C13—C14122.08 (17)
C3—C4—H4120.0C12—C13—H13119.0
C5—C4—H4120.0C14—C13—H13119.0
C4—C5—C6120.44 (15)C9—C14—C13116.61 (16)
C4—C5—H5119.8C9—C14—C15126.71 (14)
C6—C5—H5119.8C13—C14—C15116.68 (15)
C7—C6—C5119.71 (14)O5—C15—C16119.23 (18)
C7—C6—C8122.18 (14)O5—C15—C14118.82 (16)
C5—C6—C8118.11 (14)C16—C15—C14121.95 (15)
C6—C7—C2119.65 (15)C15—C16—H16A109.5
C6—C7—H7120.2C15—C16—H16B109.5
C2—C7—H7120.2H16A—C16—H16B109.5
O3—C8—O4122.75 (15)C15—C16—H16C109.5
O3—C8—C6125.75 (15)H16A—C16—H16C109.5
O4—C8—C6111.49 (13)H16B—C16—H16C109.5
C10—C9—C14121.90 (14)
O2—C1—C2—C3179.32 (18)C5—C6—C8—O4176.17 (15)
O1—C1—C2—C31.4 (3)C8—O4—C9—C1074.90 (19)
O2—C1—C2—C71.2 (3)C8—O4—C9—C14110.95 (17)
O1—C1—C2—C7178.08 (17)C14—C9—C10—C110.3 (3)
C7—C2—C3—C40.4 (3)O4—C9—C10—C11173.72 (15)
C1—C2—C3—C4179.14 (17)C9—C10—C11—C120.8 (3)
C2—C3—C4—C50.6 (3)C10—C11—C12—C130.5 (3)
C3—C4—C5—C60.4 (3)C11—C12—C13—C140.2 (3)
C4—C5—C6—C70.0 (3)C10—C9—C14—C130.4 (2)
C4—C5—C6—C8179.31 (17)O4—C9—C14—C13174.31 (13)
C5—C6—C7—C20.3 (3)C10—C9—C14—C15179.79 (16)
C8—C6—C7—C2179.53 (15)O4—C9—C14—C155.9 (2)
C3—C2—C7—C60.1 (2)C12—C13—C14—C90.7 (2)
C1—C2—C7—C6179.60 (15)C12—C13—C14—C15179.48 (16)
C9—O4—C8—O35.1 (3)C9—C14—C15—O5170.50 (17)
C9—O4—C8—C6175.91 (14)C13—C14—C15—O59.7 (2)
C7—C6—C8—O3175.87 (18)C9—C14—C15—C169.6 (3)
C5—C6—C8—O34.9 (3)C13—C14—C15—C16170.19 (17)
C7—C6—C8—O43.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.842.6623 (18)175
C4—H4···O5ii0.932.583.257 (3)130
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.842.6623 (18)175
C4—H4···O5ii0.932.583.257 (3)130
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the University of Malakand, Khyber Pakhtunkhwa, Pakistan, for provision of laboratory facilities for carrying out this research work.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDerissen, J. L. (1974). Acta Cryst. B30, 2764–2765.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanimoto, Y., Kobayashi, H., Nagakura, S. & Saito, Y. (1973). Acta Cryst. B29, 1822–1826.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds